-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
Copy pathsha1.cpp
307 lines (279 loc) · 10.5 KB
/
sha1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/**
* @file
* @author [tGautot](https://github.com/tGautot)
* @brief Simple C++ implementation of the [SHA-1 Hashing
* Algorithm](https://en.wikipedia.org/wiki/SHA-1)
*
* @details
* [SHA-1](https://en.wikipedia.org/wiki/SHA-1) is a cryptographic hash function
* that was developped by the
* [NSA](https://en.wikipedia.org/wiki/National_Security_Agency) 1995.
* SHA-1 is not considered secure since around 2010.
*
* ### Algorithm
* The first step of the algorithm is to pad the message for its length to
* be a multiple of 64 (bytes). This is done by first adding 0x80 (10000000)
* and then only zeroes until the last 8 bytes must be filled, where then the
* 64 bit size of the input will be added
*
* Once this is done, the algo breaks down this padded message
* into 64 bytes chunks. Each chunk is used for one *round*, a round
* breaks the chunk into 16 blocks of 4 bytes. These 16 blocks are then extended
* to 80 blocks using XOR operations on existing blocks (see code for more
* details). The algorithm will then update its 160-bit state (here represented
* used 5 32-bits integer) using partial hashes computed using special functions
* on the blocks previously built. Please take a look at the [wikipedia
* article](https://en.wikipedia.org/wiki/SHA-1#SHA-1_pseudocode) for more
* precision on these operations
* @note This is a simple implementation for a byte string but
* some implmenetations can work on bytestream, messages of unknown length.
*/
#include <algorithm> /// For std::copy
#include <array> /// For std::array
#include <cassert> /// For assert
#include <cstdint>
#include <cstring> /// For std::memcopy
#include <iostream> /// For IO operations
#include <string> /// For strings
#include <vector> /// For std::vector
/**
* @namespace hashing
* @brief Hashing algorithms
*/
namespace hashing {
/**
* @namespace SHA-1
* @brief Functions for the [SHA-1](https://en.wikipedia.org/wiki/SHA-1)
* algorithm implementation
*/
namespace sha1 {
/**
* @brief Rotates the bits of a 32-bit unsigned integer
* @param n Integer to rotate
* @param rotate How many bits for the rotation
* @return uint32_t The rotated integer
*/
uint32_t leftRotate32bits(uint32_t n, std::size_t rotate) {
return (n << rotate) | (n >> (32 - rotate));
}
/**
* @brief Transforms the 160-bit SHA-1 signature into a 40 char hex string
* @param sig The SHA-1 signature (Expected 20 bytes)
* @return std::string The hex signature
*/
std::string sig2hex(void* sig) {
const char* hexChars = "0123456789abcdef";
auto* intsig = static_cast<uint8_t*>(sig);
std::string hex = "";
for (uint8_t i = 0; i < 20; i++) {
hex.push_back(hexChars[(intsig[i] >> 4) & 0xF]);
hex.push_back(hexChars[(intsig[i]) & 0xF]);
}
return hex;
}
/**
* @brief The SHA-1 algorithm itself, taking in a bytestring
* @param input_bs The bytestring to hash
* @param input_size The size (in BYTES) of the input
* @return void* Pointer to the 160-bit signature
*/
void* hash_bs(const void* input_bs, uint64_t input_size) {
auto* input = static_cast<const uint8_t*>(input_bs);
// Step 0: The initial 160-bit state
uint32_t h0 = 0x67452301, a = 0;
uint32_t h1 = 0xEFCDAB89, b = 0;
uint32_t h2 = 0x98BADCFE, c = 0;
uint32_t h3 = 0x10325476, d = 0;
uint32_t h4 = 0xC3D2E1F0, e = 0;
// Step 1: Processing the bytestring
// First compute the size the padded message will have
// so it is possible to allocate the right amount of memory
uint64_t padded_message_size = 0;
if (input_size % 64 < 56) {
padded_message_size = input_size + 64 - (input_size % 64);
} else {
padded_message_size = input_size + 128 - (input_size % 64);
}
// Allocate the memory for the padded message
std::vector<uint8_t> padded_message(padded_message_size);
// Beginning of the padded message is the original message
std::copy(input, input + input_size, padded_message.begin());
// Afterwards comes a single 1 bit and then only zeroes
padded_message[input_size] = 1 << 7; // 10000000
for (uint64_t i = input_size; i % 64 != 56; i++) {
if (i == input_size) {
continue; // pass first iteration
}
padded_message[i] = 0;
}
// We then have to add the 64-bit size of the message in bits (hence the
// times 8) in the last 8 bytes
uint64_t input_bitsize = input_size * 8;
for (uint8_t i = 0; i < 8; i++) {
padded_message[padded_message_size - 8 + i] =
(input_bitsize >> (56 - 8 * i)) & 0xFF;
}
// Already allocate memory for blocks
std::array<uint32_t, 80> blocks{};
// Rounds
for (uint64_t chunk = 0; chunk * 64 < padded_message_size; chunk++) {
// First, build 16 32-bits blocks from the chunk
for (uint8_t bid = 0; bid < 16; bid++) {
blocks[bid] = 0;
// Having to build a 32-bit word from 4-bit words
// Add each and shift them to the left
for (uint8_t cid = 0; cid < 4; cid++) {
blocks[bid] = (blocks[bid] << 8) +
padded_message[chunk * 64 + bid * 4 + cid];
}
// Extend the 16 32-bit words into 80 32-bit words
for (uint8_t i = 16; i < 80; i++) {
blocks[i] =
leftRotate32bits(blocks[i - 3] ^ blocks[i - 8] ^
blocks[i - 14] ^ blocks[i - 16],
1);
}
}
a = h0;
b = h1;
c = h2;
d = h3;
e = h4;
// Main "hashing" loop
for (uint8_t i = 0; i < 80; i++) {
uint32_t F = 0, g = 0;
if (i < 20) {
F = (b & c) | ((~b) & d);
g = 0x5A827999;
} else if (i < 40) {
F = b ^ c ^ d;
g = 0x6ED9EBA1;
} else if (i < 60) {
F = (b & c) | (b & d) | (c & d);
g = 0x8F1BBCDC;
} else {
F = b ^ c ^ d;
g = 0xCA62C1D6;
}
// Update the accumulators
uint32_t temp = leftRotate32bits(a, 5) + F + e + g + blocks[i];
e = d;
d = c;
c = leftRotate32bits(b, 30);
b = a;
a = temp;
}
// Update the state with this chunk's hash
h0 += a;
h1 += b;
h2 += c;
h3 += d;
h4 += e;
}
// Build signature from state
// Note, any type could be used for the signature
// uint8_t was used to make the 20 bytes obvious
auto* sig = new uint8_t[20];
for (uint8_t i = 0; i < 4; i++) {
sig[i] = (h0 >> (24 - 8 * i)) & 0xFF;
sig[i + 4] = (h1 >> (24 - 8 * i)) & 0xFF;
sig[i + 8] = (h2 >> (24 - 8 * i)) & 0xFF;
sig[i + 12] = (h3 >> (24 - 8 * i)) & 0xFF;
sig[i + 16] = (h4 >> (24 - 8 * i)) & 0xFF;
}
return sig;
}
/**
* @brief Converts the string to bytestring and calls the main algorithm
* @param message Plain character message to hash
* @return void* Pointer to the SHA-1 signature
*/
void* hash(const std::string& message) {
return hash_bs(&message[0], message.size());
}
} // namespace sha1
} // namespace hashing
/**
* @brief Self-test implementations of well-known SHA-1 hashes
* @returns void
*/
static void test() {
// Hashes empty string and stores signature
void* sig = hashing::sha1::hash("");
std::cout << "Hashing empty string" << std::endl;
// Prints signature hex representation
std::cout << hashing::sha1::sig2hex(sig) << std::endl << std::endl;
// Test with cassert wether sig is correct from expected value
assert(hashing::sha1::sig2hex(sig).compare(
"da39a3ee5e6b4b0d3255bfef95601890afd80709") == 0);
// Hashes "The quick brown fox jumps over the lazy dog" and stores signature
void* sig2 =
hashing::sha1::hash("The quick brown fox jumps over the lazy dog");
std::cout << "Hashing The quick brown fox jumps over the lazy dog"
<< std::endl;
// Prints signature hex representation
std::cout << hashing::sha1::sig2hex(sig2) << std::endl << std::endl;
// Test with cassert wether sig is correct from expected value
assert(hashing::sha1::sig2hex(sig2).compare(
"2fd4e1c67a2d28fced849ee1bb76e7391b93eb12") == 0);
// Hashes "The quick brown fox jumps over the lazy dog." (notice the
// additional period) and stores signature
void* sig3 =
hashing::sha1::hash("The quick brown fox jumps over the lazy dog.");
std::cout << "Hashing "
"The quick brown fox jumps over the lazy dog."
<< std::endl;
// Prints signature hex representation
std::cout << hashing::sha1::sig2hex(sig3) << std::endl << std::endl;
// Test with cassert wether sig is correct from expected value
assert(hashing::sha1::sig2hex(sig3).compare(
"408d94384216f890ff7a0c3528e8bed1e0b01621") == 0);
// Hashes "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
// and stores signature
void* sig4 = hashing::sha1::hash(
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
std::cout
<< "Hashing "
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
<< std::endl;
// Prints signature hex representation
std::cout << hashing::sha1::sig2hex(sig4) << std::endl << std::endl;
// Test with cassert wether sig is correct from expected value
assert(hashing::sha1::sig2hex(sig4).compare(
"761c457bf73b14d27e9e9265c46f4b4dda11f940") == 0);
}
/**
* @brief Puts user in a loop where inputs can be given and SHA-1 hash will be
* computed and printed
* @returns void
*/
static void interactive() {
while (true) {
std::string input;
std::cout << "Enter a message to be hashed (Ctrl-C to exit): "
<< std::endl;
std::getline(std::cin, input);
void* sig = hashing::sha1::hash(input);
std::cout << "Hash is: " << hashing::sha1::sig2hex(sig) << std::endl;
while (true) {
std::cout << "Want to enter another message? (y/n) ";
std::getline(std::cin, input);
if (input.compare("y") == 0) {
break;
} else if (input.compare("n") == 0) {
return;
}
}
}
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
// Launch interactive mode where user can input messages and see
// their hash
interactive();
return 0;
}