-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
Copy pathmatrix_chain_multiplication.cpp
61 lines (46 loc) · 1.71 KB
/
matrix_chain_multiplication.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#include <climits>
#include <iostream>
using namespace std;
#define MAX 10
// dp table to store the solution for already computed sub problems
int dp[MAX][MAX];
// Function to find the most efficient way to multiply the given sequence of
// matrices
int MatrixChainMultiplication(int dim[], int i, int j) {
// base case: one matrix
if (j <= i + 1)
return 0;
// stores minimum number of scalar multiplications (i.e., cost)
// needed to compute the matrix M[i+1]...M[j] = M[i..j]
int min = INT_MAX;
// if dp[i][j] is not calculated (calculate it!!)
if (dp[i][j] == 0) {
// take the minimum over each possible position at which the
// sequence of matrices can be split
for (int k = i + 1; k <= j - 1; k++) {
// recur for M[i+1]..M[k] to get a i x k matrix
int cost = MatrixChainMultiplication(dim, i, k);
// recur for M[k+1]..M[j] to get a k x j matrix
cost += MatrixChainMultiplication(dim, k, j);
// cost to multiply two (i x k) and (k x j) matrix
cost += dim[i] * dim[k] * dim[j];
if (cost < min)
min = cost; // store the minimum cost
}
dp[i][j] = min;
}
// return min cost to multiply M[j+1]..M[j]
return dp[i][j];
}
// main function
int main() {
// Matrix i has Dimensions dim[i-1] & dim[i] for i=1..n
// input is 10 x 30 matrix, 30 x 5 matrix, 5 x 60 matrix
int dim[] = {10, 30, 5, 60};
int n = sizeof(dim) / sizeof(dim[0]);
// Function Calling: MatrixChainMultiplications(dimensions_array, starting,
// ending);
cout << "Minimum cost is " << MatrixChainMultiplication(dim, 0, n - 1)
<< "\n";
return 0;
}