Lab Notebook: Augmentations.ipynb
Lab Assignment: Assignment.pdf (Deadline: PR by End-of-Day Monday, 13.11.2023).
For self-study:
- SGD implementation: https://pytorch.org/docs/stable/_modules/torch/optim/sgd.html#SGD
- Check the references (and past references if not done yet)
- Adam paper: https://arxiv.org/abs/1412.6980
References:
- RandAugment:
- CutMix:
- MixUp:
- How to use CutMix and MixUp: https://pytorch.org/vision/main/auto_examples/transforms/plot_cutmix_mixup.html
- CIFAR-10:
- Dataset class: https://pytorch.org/vision/main/generated/torchvision.datasets.CIFAR10.html
- CIFAR-10 training example: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html (you must not use convolutions in your homework!)
- TorchVision transforms getting started: https://pytorch.org/vision/main/auto_examples/transforms/plot_transforms_getting_started.html
- TorchVision examples: https://pytorch.org/vision/stable/auto_examples/transforms/plot_transforms_illustrations.html#sphx-glr-auto-examples-transforms-plot-transforms-illustrations-py
- Optimizers:
- Optimizers, Learning Rate Schedulers & other advanced techniques: https://pytorch.org/docs/stable/optim.html
- SAM implementation: https://github.com/davda54/sam
- Tensorboard: https://pytorch.org/docs/stable/tensorboard.html
- Weights and Biases: https://docs.wandb.ai/guides/integrations/pytorch