-
Notifications
You must be signed in to change notification settings - Fork 10
/
optimizer.py
executable file
·73 lines (62 loc) · 2.17 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- encoding: utf-8 -*-
# ----------------------------------------------
# filename :optimizer.py
# description :NomMer: Nominate Synergistic Context in Vision Transformer for Visual Recognition
# date :2021/12/28 17:44:27
# author :clark
# version number :1.0
# ----------------------------------------------
from torch import optim as optim
def build_optimizer(config, model):
"""
Build optimizer, set weight decay of normalization to 0 by default.
"""
skip = {}
skip_keywords = {}
if hasattr(model, 'no_weight_decay'):
skip = model.no_weight_decay()
if hasattr(model, 'no_weight_decay_keywords'):
skip_keywords = model.no_weight_decay_keywords()
parameters = set_weight_decay(model, skip, skip_keywords)
opt_lower = config.TRAIN.OPTIMIZER.NAME.lower()
optimizer = None
if opt_lower == 'sgd':
optimizer = optim.SGD(
parameters,
momentum=config.TRAIN.OPTIMIZER.MOMENTUM,
nesterov=True,
lr=config.TRAIN.BASE_LR,
weight_decay=config.TRAIN.WEIGHT_DECAY,
)
elif opt_lower == 'adamw':
optimizer = optim.AdamW(
parameters,
eps=config.TRAIN.OPTIMIZER.EPS,
betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR,
weight_decay=config.TRAIN.WEIGHT_DECAY,
)
return optimizer
def set_weight_decay(model, skip_list=(), skip_keywords=()):
has_decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if (
len(param.shape) == 1
or name.endswith(".bias")
or (name in skip_list)
or check_keywords_in_name(name, skip_keywords)
):
no_decay.append(param)
# print(f"{name} has no weight decay")
else:
has_decay.append(param)
return [{'params': has_decay}, {'params': no_decay, 'weight_decay': 0.0}]
def check_keywords_in_name(name, keywords=()):
isin = False
for keyword in keywords:
if keyword in name:
isin = True
return isin