-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtelraam_monitoring.py
774 lines (686 loc) · 48.4 KB
/
telraam_monitoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
# TELRAAM monitoring script by Dr. Péter I. Pápics (Transport & Mobility Leuven)
#
# Version history:
# v0028: (C. Van Poyer) use json instead of mysql
# v0027: (C. Van Poyer) added timeouts to requests.post
# v0026: (C. Van Poyer) added sending background image at startup and at 12h
# v0025: (P. Papics) commented out lines 540-550 to temporarily disable the transfer of raw contour data to the server
# v0024: (S. Maerivoet) modified the test-flag to verbose and separated test image saving from verbose mode
# v0023: (S. Maerivoet) changed access point for the API calls to telraam-api.net
# v0022: (S. Maerivoet) changed cloudfront API calls to https protocol
# v0021: (S. Maerivoet) fixed some types + (W. Himpe) fixed sending data to the back-end using JSON
# v0020: (W. Himpe) changed the back-end URLs + (P. Papics) removed the quotes around numbers when storing them to the back-end them using JSON
# v0019: (S. Maerivoet) code validated according to PEP8 + (P. Papics) fixed a bug when average_brightness was zero
# v0018: (S. Maerivoet) code review and reformatting
# v0017: (P. Papics) make sure that data transfer to the server is in small enough chunks if the data is large
# v0016: (P. Papics) if there is no connection to the server for some reason (wifi/server down), then observations will still continue and data will be saved to a buffer
# v0015: (P. Papics) sending the data to the central server
# v0014: (P. Papics) recording the begin and end of observing intervals, so correction factors can be calculated for downtime. Frame rotation option added. Speed is now correctly new-old and not the other way around...
# v0013: (P. Papics) removed the memory leak introduced in v0012
# v0012: (P. Papics) use MAC address instead of telraam ID, differentiate between no observed objects or too dark to observe
# v0011: (P. Papics) can run continuously and will only observe if the calculated background is bright enough
# v0010: (P. Papics) refined simple tracking algorithm
# v0009: (P. Papics) separated/reorganised tracking/ID loop so later it is easier to do it in post-processing
# v0008: (P. Papics) minor corrections
# v0007: (P. Papics) manual camera controls
# v0006: (P. Papics) switched to time index instead of frame number, and during tracking only those IDs are considered that were actually observed the previous frame
# v0005: (P. Papics) separated detection and tracking loop (tracking is moved to data dump instead of real time)
import warnings
import numpy as np
import cv2
import time
import pandas as pd
import socket
import argparse
import pathlib
import subprocess
import uuid
import json
import requests
import base64
from datetime import datetime
from math import floor
__version__ = '2021.06.14'
warnings.simplefilter(action='ignore', category=FutureWarning)
# Parameter definitions
X_RESOLUTION = 1280
Y_RESOLUTION = 720
VIDEO_FPS = 40 # 40 FPS is the top value for larger FOV at 720p, at FPS > 40 the FOV gets narrower!
X_RESIZE_PERCENTAGE = 50 # Horizontal processing resolution in percentage of the recording resolution
Y_RESIZE_PERCENTAGE = 50 # Vertical processing resolution in percentage of the recording resolution
BINARY_THRESHOLD_ABOVE_50PC_OF_HISTOGRAM = 18 # 24 # The threshold in the graysale image for deciding if a deviation from the background is an object or not, relative to the point in the histogram under which 50 percent of total intensity can be found
MIN_OBJECT_PERCENTAGE_OF_IMAGE = 0.1
MAX_OBJECT_PERCENTAGE_OF_IMAGE = 100
AREA_EDGE_X_PERCENTAGE = 25 # Percentage of the image horizontally to be used as buffer area
AREA_EDGE_Y_PERCENTAGE = 0 # Percentage of the image vertically to be used as buffer area
MAX_CONTOURS_BETWEEN_DATA_DUMP = 100000 # This is a hard limit, when reached there will be a data dump, no matter what
PREFERRED_CONTOURS_BETWEEN_DATA_DUMP = 50000 # This is the preferred number, from here on if there is no objects on the screen there will ba a data dump
MAX_TIME_BETWEEN_DATA_DUMP = 60 # 120 # This is a hard limit, if this much time has passed, there will be a data dump no matter what
PREFERRED_TIME_BETWEEN_DATA_DUMP = 30 # 60 # Preferred number of seconds between data dumps, from here on if there is no objects on the screen there will ba a data dump
MIN_FRAMES_FOR_BACKGROUND = 100 # 300
MIN_TIME_FOR_BACKGROUND = 30 # 60
MAX_TIME_BETWEEN_BACKGROUND = 180 # 360
PREFERRED_TIME_BETWEEN_BACKGROUND = 150 # 300
SEND_CAMERA_SETUP_DATA_HOUR=12 #send camera setup data the first time a background is calculated after 12h
# Database related definitions
URL_RAW_CONTOURS = 'https://telraam-api.net/v0/rawcontours'
HEAD_RAW_CONTOURS = {'Content-Type': "application/json", 'cache-control': "no-cache"}
URL_SUMMARY = 'https://telraam-api.net/v0/summaries'
HEAD_SUMMARY = {'Content-Type': "application/json", 'cache-control': "no-cache"}
URL_UPTIME = 'https://telraam-api.net/v0/uptimes'
HEAD_UPTIME = {'Content-Type': "application/json", 'cache-control': "no-cache"}
MAX_JSON_LENGTH = 5000 # maximum length of data transfer (hard limit at server side is now set at 10000, so never go above that!)
dict_list_raw_contours = []
dict_list_summary = []
dict_list_uptime = []
# Extra parameters calculated using the definitions
X_RESIZED = int(X_RESOLUTION * (X_RESIZE_PERCENTAGE / 100.))
Y_RESIZED = int(Y_RESOLUTION * (X_RESIZE_PERCENTAGE / 100.))
MIN_OBJECT_AREA = ((X_RESIZED * Y_RESIZED) / 100.) * MIN_OBJECT_PERCENTAGE_OF_IMAGE
MAX_OBJECT_AREA = ((X_RESIZED * Y_RESIZED) / 100.) * MAX_OBJECT_PERCENTAGE_OF_IMAGE
print('\n\
╔╦╗╦═╗╔═╗╔╗╔╔═╗╔═╗╔═╗╦═╗╔╦╗ ┬ ╔╦╗╔═╗╔╗ ╦╦ ╦╔╦╗╦ ╦\n\
║ ╠╦╝╠═╣║║║╚═╗╠═╝║ ║╠╦╝ ║ ┌┼─ ║║║║ ║╠╩╗║║ ║ ║ ╚╦╝\n\
╩ ╩╚═╩ ╩╝╚╝╚═╝╩ ╚═╝╩╚═ ╩ └┘ ╩ ╩╚═╝╚═╝╩╩═╝╩ ╩ ╩ \n\
┬ ┌─┐┬ ┬┬ ┬┌─┐┌┐┌ \n\
│ ├┤ │ │└┐┌┘├┤ │││ \n\
┴─┘└─┘└─┘ └┘ └─┘┘└┘ ')
print('\n\
████████╗███████╗██╗ ██████╗ █████╗ █████╗ ███╗ ███╗\n\
╚══██╔══╝██╔════╝██║ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║\n\
██║ █████╗ ██║ ██████╔╝███████║███████║██╔████╔██║\n\
██║ ██╔══╝ ██║ ██╔══██╗██╔══██║██╔══██║██║╚██╔╝██║\n\
██║ ███████╗███████╗██║ ██║██║ ██║██║ ██║██║ ╚═╝ ██║\n\
╚═╝ ╚══════╝╚══════╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝')
print(' Version:', __version__)
# Possibility to run with extra output for testing
parser = argparse.ArgumentParser()
parser.add_argument('--verbose', help='Verbose mode on.', action='store_true')
parser.add_argument('--test', help='Testing mode on.', action='store_true')
parser.add_argument('--idandtrack', help='Simple object identification and tracking enabled.', action='store_true')
parser.add_argument('--display', help='Display mode on.', action='store_true')
parser.add_argument('--fov', help='Set up the field of view.', action='store_true')
parser.add_argument('--rotate', dest='field_rotation', help='Set rotation angle for the camera (0 or 180, default is 180).', default=180, metavar='0')
args = parser.parse_args()
if args.verbose:
print('Running in verbose mode.')
if args.test:
print('Running in test mode (minimal slowdown, produces extra data files and background images).')
if args.idandtrack:
print('Running with a simple object identification and tracking enabled (takes some extra time, produces extra data files with data per IDd object - mergers are not handled).')
if args.display:
print('Running with continuous image display on (slow, only use for testing).')
if args.fov:
print('Running only to show the field ov view.')
field_rotation = args.field_rotation
# Initialise manual settings on the camera
print("Setting cam_props (1/2)...")
exposure_time = 100 # 100 equals to 10 ms (0.01 s = 1/100 s), also this can not be more than 1/FPS so at 60 FPS the max exposure time is ~1/60 = 0.016s -> 160, at 30 FPS it is 320.
cam_props = {'brightness': 50, 'contrast': 15, 'saturation': 0, 'red_balance': 1500, 'blue_balance': 1400, 'sharpness': 0,
'color_effects': 0, 'rotate': field_rotation, 'video_bitrate_mode': 1, 'video_bitrate': 20000000, 'auto_exposure': 1, 'exposure_time_absolute': exposure_time,
'white_balance_auto_preset': 0, 'iso_sensitivity_auto': 0, 'iso_sensitivity': 1, 'compression_quality': 100} # For some reason ISO sensitivity does not seem to work at all
print("Setting cam_props (2/2)...")
for key in cam_props: # Here we basically set all camera properties to manual, so they don't change during observing spells between data dumps
print("... " + str(key))
subprocess.call(['v4l2-ctl -d /dev/video0 -c {}={}'.format(key, str(cam_props[key]))], shell=True)
print("... Done.")
# Functions
def set_exposure_time(number_of_frames):
global exposure_time, cap, error_msg
if args.verbose:
print('Adjusting exposure time:')
average_brightness = 0
exposure_time_old = 0
# We want to bring the average brightness level to the frame to 127
while average_brightness < 122 or average_brightness > 132:
# If the projected exposure time would be longer than what can be achieved at a given framerate, then set the exposure time to the longest possible, and live with it
if exposure_time/10000. > 1./VIDEO_FPS:
cap.release()
initialise_video_capture()
exposure_time = int((1. / VIDEO_FPS) * 10000)
subprocess.call(['v4l2-ctl -d /dev/video0 -c {}={}'.format('exposure_time_absolute', str(exposure_time))], shell=True)
if args.verbose:
print('Scene is too dark for optimal exposure time! ( Exposure setting:', exposure_time, ')')
break
# If there is no change during the iteration of the exposure time (can happen when the exposure time is very short, and the small change needed to match the actual criteria does not add up to a difference of 1 in the integer exposure time, leading to an infinite loop)
if exposure_time == exposure_time_old:
cap.release()
initialise_video_capture()
subprocess.call(['v4l2-ctl -d /dev/video0 -c {}={}'.format('exposure_time_absolute', str(exposure_time))], shell=True)
if args.verbose:
print('Scene is likely quite bright, no change in exposure time during the iteration process! ( Exposure setting:', exposure_time, ')')
break
averages = np.zeros(int(number_of_frames))
cap.release() # We need to always stop and start up the video after all commands with the v4l2 driver, otherwise the update of parameters takes a few frames to materialise
initialise_video_capture()
for i in range(int(number_of_frames)):
ret, frame = cap.read() # Get frame
frame_small = cv2.resize(frame, (X_RESIZED, Y_RESIZED), interpolation=cv2.INTER_LINEAR)
frame_gray = cv2.cvtColor(frame_small, cv2.COLOR_BGR2GRAY)
averages[i] = np.average(frame_gray)
average_brightness = max(np.average(averages), 0.001)
exposure_time_old = exposure_time
exposure_time = max(int(exposure_time * (127 / average_brightness)), 1) # Estimated exposure time to bring the average brightness to 127 (minimum 1!)
if args.verbose:
print('Frame brightness (at exposure setting) [individual values] calulated exposure setting:', average_brightness, '(', int(exposure_time_old), ')', averages, int(exposure_time))
subprocess.call(['v4l2-ctl -d /dev/video0 -c {}={}'.format('exposure_time_absolute', str(exposure_time))], shell=True)
# If it is not bright enough outside, wait 5 minutes and try again (at the end also do a blank data dump just to tell the server we are still up and running)
if average_brightness < 85:
if args.verbose:
print('It is too dark outside, waiting for more light (empty data dump will happen)...')
error_msg = -1
# If it is too bright outside, wait 5 minutes and try again (at the end also do a blank data dump just to tell the server we are still up and running)
elif average_brightness > 170:
if args.verbose:
print('It is too bright outside, waiting for less light (empty data dump will happen)...')
error_msg = -2
else:
error_msg = 0
def initialise_video_capture():
global cap
cap = cv2.VideoCapture(0)
cap.set(3, X_RESOLUTION)
cap.set(4, Y_RESOLUTION)
cap.set(5, VIDEO_FPS)
def background_calculation():
global background_time, time_data_pocket_end, time_start, error_msg
error_msg = -9 # Fake value so the loop below can nicely execute
# Try setting the exposure time until the light conditions are suitable
while error_msg != 0:
set_exposure_time(10)
# If conditions are not suitable, wait five minutes then send out a data dump which will contain the error message
if error_msg != 0:
time_start = time.time()
time.sleep(300)
data_dump()
if args.verbose:
print('Calculating background...')
background_time_start = time.time()
background_time = background_time_start
background = None
while background is None or np.shape(background)[2] < MIN_FRAMES_FOR_BACKGROUND or background_time-background_time_start < MIN_TIME_FOR_BACKGROUND:
ret, frame = cap.read() # Get frame
frame_small = cv2.resize(frame, (X_RESIZED, Y_RESIZED), interpolation=cv2.INTER_LINEAR)
if args.display:
display = live_view(frame_small)
if display == 0:
exit()
frame_gray = cv2.cvtColor(frame_small, cv2.COLOR_BGR2GRAY)
frame_gray = np.array(frame_gray[:, :, np.newaxis], np.uint8) # Give array an extra dimension so when we concatenate such arrays there is a third dimension along which it can be done
if background is None:
background = frame_gray
else:
background = np.concatenate((background, frame_gray), axis=2)
background_time = time.time()
medianimage = np.median(background, axis=2)
if args.test:
imagefilename = 'test/backgrounds/background_' + str(int(background_time_start)) + '.png'
cv2.imwrite(imagefilename, medianimage)
if args.verbose:
print('Finished background calculation.')
time_data_pocket_end = time.time() # Save the time of the end of the background calculation, since before all background calibrations (except the first) there is a data transfer
time_start = time_data_pocket_end
return medianimage.astype('uint8')
def initialise_contour_collector(): # This needs to be called after every data dump so we start collecting contours into an empty array (framenumber only used in FPS calculation)
global frame_number, number_of_contours, contour_collector
frame_number = 0
number_of_contours = 0
contour_collector = np.zeros((MAX_CONTOURS_BETWEEN_DATA_DUMP, 6)) # This will store all contours' properties from all frames between data dumps
def set_binary_threshold(image): # Define a binary threshold relative to the histogram of the image (only works on grayscale images!)
hist_item = cv2.calcHist([image], [0], None, [256], [0, 256])
binary_threshold = np.argwhere(np.abs(np.cumsum(hist_item)-0.50*np.cumsum(hist_item)[-1]) == np.min(np.abs(np.cumsum(hist_item)-0.50*np.cumsum(hist_item)[-1])))[0][0] + BINARY_THRESHOLD_ABOVE_50PC_OF_HISTOGRAM
if args.display:
hist_image = np.zeros((300, 256, 3)) # This will be the image of the histogram
cv2.normalize(hist_item, hist_item, 0, 255, cv2.NORM_MINMAX) # Normalise histogram so maximum is 255
hist = np.int32(np.around(hist_item))
# Draw histogram line by line
for x, y in enumerate(hist):
cv2.line(hist_image, (x, 0), (x, y), (255, 255, 255))
cv2.line(hist_image, (binary_threshold - BINARY_THRESHOLD_ABOVE_50PC_OF_HISTOGRAM, 0), (binary_threshold - BINARY_THRESHOLD_ABOVE_50PC_OF_HISTOGRAM, 299), (0, 0, 255)) # Annotate the 50% level of total intensity in the histogram
cv2.line(hist_image, (binary_threshold, 0), (binary_threshold, 299), (255, 0, 0)) # Annotate the binary threshold
hist_image = np.flipud(hist_image)
cv2.imshow('bg.-removed hist.', hist_image)
return binary_threshold
def find_contours(image): # Defining how contours are found in a background-removed image
blur = cv2.blur(image, (10, 10)) # Gaussian blur applied to the background-removed image
binarythreshold = set_binary_threshold(image) # Get threshold setting
ret, thresh1 = cv2.threshold(blur, binarythreshold, 255, cv2.THRESH_BINARY) # Making the-background removed image binary
# im2, contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Find contours (find the circumference of the objects)
contours=None
hierarchy=None
if cv2.__version__.startswith('4'):
contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Find contours (find the circumference of the objects)
else:
im2, contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Find contours (find the circumference of the objects)
return contours, hierarchy
def find_objects(contours, hierarchy): # Defining the object ifentification from a set of contours
cxs = np.zeros(len(contours)) # Vectors to put the centroid positions of the contours
cys = np.zeros(len(contours))
object_areas = np.zeros(len(contours))
ws = np.zeros(len(contours))
hs = np.zeros(len(contours))
for i in range(len(contours)):
if hierarchy[0, i, 3] == -1: # We only want parent contours (so not contours within contours - should not happen in a traffic situation, but still, could be that a dark window gets a contour on a vehicle)
object_area = cv2.contourArea(contours[i])
if MAX_OBJECT_AREA > object_area > MIN_OBJECT_AREA: # If object is large enough to be a positive detection
x, y, w, h = cv2.boundingRect(contours[i]) # Get bounding box
M = cv2.moments(contours[i]) # Get moments for centroid calculation
cx = M['m10'] / M['m00']
cy = M['m01'] / M['m00']
if np.abs(cx-X_RESIZED/2) < (X_RESIZED/2)*(1-AREA_EDGE_X_PERCENTAGE/100.) and np.abs(cy-Y_RESIZED/2) < (Y_RESIZED/2)*(1-AREA_EDGE_Y_PERCENTAGE/100.): # If the object is within the inner area of the frame (not in the buffer)
cxs[i] = cx # We add the centroid positions into our lists
cys[i] = cy
object_areas[i] = object_area
ws[i] = w
hs[i] = h
cxs = cxs[cxs != 0] # Remove centroids that were not inside our main area (but in the buffer)
cys = cys[cys != 0]
object_areas = object_areas[object_areas != 0]
ws = ws[ws != 0]
hs = hs[hs != 0]
return cxs, cys, object_areas, ws, hs
def annotate_contours(image, contours, hierarchy, cxs, cys, object_areas, ws, hs): # Function that adds all contours and their information to an image to be displayed later on
for i in range(len(contours)):
if hierarchy[0, i, 3] == -1: # If contour is a parent
if MAX_OBJECT_AREA > cv2.contourArea(contours[i]) > MIN_OBJECT_AREA: # If object is large enough to be a positive detection
image = cv2.drawContours(image, [contours[i]], 0, (255, 0, 0), 3)
else:
image = cv2.drawContours(image, [contours[i]], 0, (255, 0, 0), 1)
else:
image = cv2.drawContours(image, [contours[i]], 0, (0, 0, 255), 1)
for i in range(len(cxs)): # For the contours that were added to the list as their centroid is inside the main image area and not in the buffer
cv2.circle(image, (int(cxs[i]), int(cys[i])), 1, (0, 255, 255), 5) # Plot the centroid
cv2.putText(image, "A={}".format(str(int(object_areas[i]))), (int(cxs[i]), int(cys[i])), font, 0.5, (0, 255, 0), 2, cv2.LINE_AA) # Plot data of the object
cv2.putText(image, "w={}".format(str(int(ws[i]))), (int(cxs[i]), int(cys[i]-20)), font, 0.5, (0, 255, 0), 2, cv2.LINE_AA)
cv2.putText(image, "h={}".format(str(int(hs[i]))), (int(cxs[i]), int(cys[i]-40)), font, 0.5, (0, 255, 0), 2, cv2.LINE_AA)
cv2.putText(image, "x={}".format(str(int(cxs[i]))), (int(cxs[i]), int(cys[i]-60)), font, 0.5, (0, 255, 0), 2, cv2.LINE_AA)
cv2.putText(image, "y={}".format(str(int(cys[i]))), (int(cxs[i]), int(cys[i]-80)), font, 0.5, (0, 255, 0), 2, cv2.LINE_AA)
def id_and_track(contour_collector):
global total_obs_objects
contour_collector = contour_collector[0:number_of_contours] # Drop lines where no contours were filled in
object_ids = [] # Empty list to keep track of object IDs
total_obs_objects = 0
data_frame_time_stamps = np.unique(contour_collector[:, 0]) # List of unique time stamps of all contours (basically the timestamps of all individual frames)
data_frame = pd.DataFrame(index=data_frame_time_stamps)
data_frame.index.name = "Timestamp"
# If there were contours observed (otherwise the for cycle below is skipped anyway and an empty data_frame is returned)
if len(data_frame_time_stamps):
old_frame_time = data_frame_time_stamps[0]
for time_stamp in data_frame_time_stamps:
frame_time = time_stamp
cxs = contour_collector[:, 1][contour_collector[:, 0] == time_stamp]
cys = contour_collector[:, 2][contour_collector[:, 0] == time_stamp]
object_areas = contour_collector[:, 3][contour_collector[:, 0] == time_stamp]
ws = contour_collector[:, 4][contour_collector[:, 0] == time_stamp]
hs = contour_collector[:, 5][contour_collector[:, 0] == time_stamp]
matched_object_indices = [] # We keep track here of object indexes that have been matched to previously observed objects
if len(cxs): # If there are objects in the frame
if not object_ids: # If we have no objects tracked at the moment
for i in range(len(cxs)): # For each centroid
object_ids.append(total_obs_objects) # Add ID to the list of object_ids
data_frame[total_obs_objects] = '' # Add column to data frame that will track given vehicle
cdx = np.nan # The delta in position compared to the previous frame will be obviously zero
cdy = np.nan
data_frame.at[frame_time, total_obs_objects] = np.array([frame_time, cxs[i], cys[i], cdx, cdy, object_areas[i], ws[i], hs[i]])
total_obs_objects += 1
else: # If we already have tracked objects
dxs = np.zeros((len(cxs), len(object_ids))) # New arrays to calculate position deltas to each tracked object
dys = np.zeros((len(cys), len(object_ids)))
for i in range(len(cxs)): # For each centroid
for j in range(len(object_ids)):
old_cxcy = data_frame.at[old_frame_time, object_ids[j]][1:3] # Gets centroid coordinates for that objectID from previous frame
new_cxcy = np.array([cxs[i], cys[i]]) # The centroids of objects in the current frame
if len(old_cxcy) == 0: # If there is just a new vehicle on this frame, that will not be there on the previous frame, and vehicles that have left the field will also be not there anymore, so then we just go to the next vehicles
continue
else: # We calculate the differences between current and old centroids
dxs[i, j] = new_cxcy[0] - old_cxcy[0]
dys[i, j] = new_cxcy[1] - old_cxcy[1]
for j in range(len(object_ids)):
sum_cdeltas = np.abs(dxs[:, j]) + np.abs(dys[:, j]) # The sum of coordinate differences for each centroid
matched_object_index = np.argmin(np.abs(sum_cdeltas)) # Where the absolute value of the sum is smallest is the matching object (if there is a matching one)
min_dx = dxs[matched_object_index, j] # Value of delta coordinate of centroid for the best match (THIS NEEDS TO BE CHECKED IF LESS THEN MAXIMUM ALLOWED, AND IF SPEED IS SIMILAR TO PREVIOUS IF THAT WAS NOT 0)
min_dy = dys[matched_object_index, j]
if np.all(dxs[:, j] == 0) and np.all(dys[:, j] == 0): # If there is no object with that ID in the previous frame, all arrays will be empty
continue
if frame_time - old_frame_time > 2/fps: # If the previous frame was too long time ago, we probably are not seeing the same object (ACTUALLY IN THE ORIGINAL SCRIPT WE ONLY LOOKED BACK TO THE PREVIOUS FRAME BUT HERE WE ONLY STORED FRAMES WITH OBSERVATIONS...)
continue
if matched_object_index in matched_object_indices: # This is needed so two previously tracked objects don't get matched with the same newly recorded centroid
continue
else:
old_dimension = np.max(data_frame.at[old_frame_time, object_ids[j]][6:8]) # The longer semi axis of the object on the previous frame
max_cdelta = old_dimension/2. # Only allow an object match, if the centroid did not move more than half the objects longer dimension (preferably we would do this separate for x and y dimensions, but if I fit a rotated bounding box, then there is no way to know if height was more in the x or y dimension...)
if np.sqrt(min_dx**2 + min_dy**2) < max_cdelta: # If the centroid with the smallest coordinate difference is within the allowed maximum limit for change in coordinates then we can mathc theat already IDd object with this centroid (so the tracked object can still be seen on this frame)
cdx = min_dx # The coordinate change is then obviosuly the minimum of found coordinate differences
cdy = min_dy
data_frame.at[frame_time, object_ids[j]] = np.array([frame_time, cxs[matched_object_index], cys[matched_object_index], cdx, cdy, object_areas[matched_object_index], ws[matched_object_index], hs[matched_object_index]])
matched_object_indices.append(matched_object_index) # Keep track that we have already matched this centroid with an existing object
for i in range(len(cxs)): # For all centroids
if i not in matched_object_indices: # That has not been matched with existing objects
data_frame[total_obs_objects] = '' # Create a new column
object_ids.append(total_obs_objects) # Add the new ID to the list
cdx = np.nan # The delta in position compared to the previous frame will be obviously zero
cdy = np.nan
data_frame.at[frame_time, total_obs_objects] = np.array([frame_time, cxs[i], cys[i], cdx, cdy, object_areas[i], ws[i], hs[i]])
total_obs_objects += 1
for object_id in object_ids:
if data_frame.at[frame_time, object_id] == '': # Remove object_ids from the list of object_ids that have not been observed in this frame (so in the next cycle they are not matched)
object_ids.remove(object_id)
old_frame_time = frame_time
if args.test:
data_filename = 'test/idandtrack/traffic_idandtrack'+str(int(time_data_dump))+'.csv'
data_frame.to_csv(data_filename, sep=',')
if args.verbose:
print('Number of individual object candidates found:', total_obs_objects)
else:
if args.verbose:
print('Number of individual object candidates found: 0')
return data_frame
def summary_of_tracked_objects(data_frame):
object_ids = data_frame.columns
data_frame.replace('', np.nan, inplace=True) # Fill the empty cells with NaNs
data_dump = np.zeros((len(object_ids), 12)) # Create the resulting data array to be filled later (so we don't have to append which is slower)
d = 0
for object_id in object_ids:
dfslice = data_frame[object_id] # Take the column for that object from the data frame
dfslice.dropna(inplace=True) # Cut the NaNs out so only the part of the column remains which contains the IDd object
dfslicevalues = np.vstack(dfslice.values) # Transform the data frame (list of numpy arrays at this point) into a 2D numpy array
if dfslicevalues.shape[0] > 1: # If something was observed for more than one frame, we calculate averages (otherwise the NaN dx dy would screw up things)
data_dump[d][1:-3] = np.nanmean(dfslicevalues, axis=0) # This is the mean of the recorded values over the interval while the object was observed
else:
data_dump[d][1:-3] = np.nan_to_num(dfslicevalues) # For objects that are only on one frame we replace the NaN dx dy values with 0 just to be consistent in the numpy array and have only real numbers
data_dump[d][0] = hostname
data_dump[d][1] = np.min(dfslicevalues[:, 0]) # Instead of saving the average time, just save the time of first observation, which is a better property along with the length
data_dump[d][-3] = np.sqrt((np.max(dfslicevalues[:, 1])-np.min(dfslicevalues[:, 1]))**2 + (np.max(dfslicevalues[:, 2])-np.min(dfslicevalues[:, 2]))**2) # This is the distance between the two extrema of the observed centroid positions (while average speed might be zero for somebody that walks halfway into the screen then back, this value will still be half the image size)
data_dump[d][-2] = np.max(dfslicevalues[:, 0])-np.min(dfslicevalues[:, 0]) # This is the total interval of observations for this object (if only one frame this is 0)
data_dump[d][-1] = dfslicevalues.shape[0] # This is the number of frames the object was observed for
d = d+1
# data_dump = data_dump[data_dump[:, -1]>4] # Do not report objects that have been visible for less than 5 frmaes (time might be better, but leave it for now)
# data_dump = data_dump[np.sqrt(data_dump[:, 4]**2 + data_dump[:, 5]**2)>=2] # Do not report objects where the average speed was less than 2 pixel per frame
data_dump = data_dump[data_dump[:, -3] > 0.5*(Y_RESIZED*(1-AREA_EDGE_Y_PERCENTAGE))] # Do not report objects that have a centroid trajectory less than 50% the vertical field of the measuring field (so the vertical image size minus buffer)
if len(data_dump) == 0: # if there were no objects recorded in the last interval or we just threw all of them out as negative detections, still put some data just to be able to see that the RPi with the TelraamID is still working
data_dump = np.array([[hostname, time_data_dump, 0, 0, 0, 0, 0, 0, 0, 0, 0, error_msg]])
positive_detections = 0
else:
positive_detections = len(data_dump)
send_json_summary(data_dump)
if args.test:
data_filename = 'test/summary/traffic_summary_' + str(int(time_start)) + '_' + str(int(time_data_dump)) + '_' + str(error_msg) + '.csv'
np.savetxt(data_filename, data_dump, delimiter=',', fmt='%16i, %16.3f, %8.2f, %8.2f, %+7.2f, %+7.2f, %8.1f, %6.1f, %6.1f, %8.2f, %8.3f, %6i')
if args.verbose:
print('Number of positive (tracked) objects:', positive_detections)
def send_json_raw_contours(data, url=URL_RAW_CONTOURS, head=HEAD_RAW_CONTOURS):
print("send_json_raw_contours()...")
global dict_list_raw_contours
keys = ['mac', 'time', 'x', 'y', 'area', 'width', 'height']
i = 0
while i < len(data):
entry = [int(data[i][0]), data[i][1], data[i][2], data[i][3], data[i][4], int(data[i][5]), int(data[i][6])]
dict_list_raw_contours.append(dict(zip(keys, entry)))
i = i+1
try:
# Make sure that we only clean the dictionary list when the data transfer was successful, otherwise we keep it as a buffer and will transfer more data the next time
while len(dict_list_raw_contours) > 0:
if len(dict_list_raw_contours) > MAX_JSON_LENGTH: # We cut the data into multiple parts if it is too long to be transferred in one go
dict_list_raw_contours_payload = dict_list_raw_contours[:MAX_JSON_LENGTH]
dict_list_raw_contours_rest = dict_list_raw_contours[MAX_JSON_LENGTH:]
else:
dict_list_raw_contours_payload = dict_list_raw_contours
dict_list_raw_contours_rest = []
payload = json.dumps(dict_list_raw_contours_payload)
ret = requests.post(url, headers=head, data=payload, timeout=30)
if ret.status_code != 200: # If the data transfer gave an error, we go and try again
raise Exception(ret.content)
dict_list_raw_contours = dict_list_raw_contours_rest # Only if the data transfer for one segment went through, will we pass to the next segment, or to an empty list at the end
print("... Done.")
except Exception as e:
if args.verbose:
print('Transfer of raw contours to the server failed, will retry in the next cycle.')
print(e)
pass
def send_json_summary(data, url=URL_SUMMARY, head=HEAD_SUMMARY):
print("send_json_summary()...")
global dict_list_summary
keys = ['mac', 'time_start', 'pos_x', 'pos_y', 'spd_x', 'spd_y', 'area', 'width', 'height', 'dist', 'vis_sec', 'vis_fr']
i = 0
while i < len(data):
entry = [int(data[i][0]), data[i][1], data[i][2], data[i][3], data[i][4], data[i][5], data[i][6], data[i][7], data[i][8], data[i][9], data[i][10], int(data[i][11])]
dict_list_summary.append(dict(zip(keys, entry)))
i = i+1
try:
# Make sure that we only clean the dictionary list when the data transfer was successful, otherwise we keep it as a buffer and will transfer more data the next time
while len(dict_list_summary) > 0:
if len(dict_list_summary) > MAX_JSON_LENGTH: # We cut the data into multiple parts if it is too long to be transferred in one go
dict_list_summary_payload = dict_list_summary[:MAX_JSON_LENGTH]
dict_list_summary_rest = dict_list_summary[MAX_JSON_LENGTH:]
else:
dict_list_summary_payload = dict_list_summary
dict_list_summary_rest = []
payload = json.dumps(dict_list_summary_payload)
ret = requests.post(url, headers=head, data=payload, timeout=30)
if ret.status_code != 200: # If the data transfer gave an error, we go and try again
raise Exception(ret.content)
dict_list_summary = dict_list_summary_rest # Only if the data transfer for one segment went through, will we pass to the next segment, or to an empty list at the end
print("... Done.")
except Exception as e:
if args.verbose:
print('Transfer of summary data to the server failed, will retry in the next cycle.')
print(e)
pass
def send_json_uptime(data, url=URL_UPTIME, head=HEAD_UPTIME):
print("send_json_uptime()...")
global dict_list_uptime
keys = ['mac', 'time_start', 'time_end', 'status']
i = 0
while i < len(data):
entry = [int(data[i][0]), int(data[i][1]), int(data[i][2]), int(data[i][3])]
dict_list_uptime.append(dict(zip(keys, entry)))
i = i+1
try:
# Make sure that we only clean the dictionary list when the data transfer was successful, otherwise we keep it as a buffer and will transfer more data the next time
while len(dict_list_uptime) > 0:
if len(dict_list_uptime) > MAX_JSON_LENGTH: # We cut the data into multiple parts if it is too long to be transferred in one go
dict_list_uptime_payload = dict_list_uptime[:MAX_JSON_LENGTH]
dict_list_uptime_rest = dict_list_uptime[MAX_JSON_LENGTH:]
else:
dict_list_uptime_payload = dict_list_uptime
dict_list_uptime_rest = []
payload = json.dumps(dict_list_uptime_payload)
ret = requests.post(url, headers=head, data=payload, timeout=30)
if ret.status_code != 200: # If the data transfer gave an error, we go and try again
raise Exception(ret.content)
dict_list_uptime = dict_list_uptime_rest # Only if the data transfer for one segment went through, will we pass to the next segment, or to an empty list at the end
print("... Done.")
except Exception as e:
if args.verbose:
print('Transfer of uptime data to the server failed, will retry in the next cycle.')
print(e)
pass
def data_dump():
global frame_number, number_of_contours, contour_collector, time_data_pocket_end, time_start, fps, time_data_dump
time_end = time.time()
time_data_dump = time_end
fps = frame_number/(time_end-time_start)
if args.test:
data_filename = 'test/rawcontours/traffic_rawcontours_'+str(int(time_start))+'_'+str(int(time_data_dump))+'_'+str(error_msg)+'.csv'
if args.verbose:
print('Data dump in progress...')
print('FPS since last data dump (/s):', fps)
print('Total number of contours observed:', number_of_contours)
uptime_data = np.array([[hostname, time_start, time_data_dump, error_msg]])
send_json_uptime(uptime_data)
#if number_of_contours > 0:
# hostname_column = np.ones(number_of_contours)*hostname
# raw_contours_data = np.column_stack((hostname_column, contour_collector[0:number_of_contours]))
# send_json_raw_contours(raw_contours_data)
# if args.test:
# np.savetxt(data_filename, raw_contours_data, delimiter=',', fmt='%16i, %16.3f, %8.2f, %8.2f, %8.1f, %6.1f, %6.1f')
#else: # We just send a signal with the hostname and zeros plus a possible error message
# raw_contours_data = np.column_stack((hostname, time_data_dump, 0, 0, 0, 0, error_msg))
# send_json_raw_contours(raw_contours_data)
# if args.test:
# np.savetxt(data_filename, raw_contours_data, delimiter=',', fmt='%16i, %16.3f, %8.2f, %8.2f, %8.1f, %6.1f, %6.1f')
if args.idandtrack:
data_frame = id_and_track(contour_collector)
summary_of_tracked_objects(data_frame)
initialise_contour_collector()
time_data_pocket_end = time.time() # Save the time of the last data pocket
time_start = time_data_pocket_end
data_dump_duration = time_start-time_end
if args.verbose:
print('Data dump duration (s):', data_dump_duration)
def live_view(image): # Define simple plotting function for live view testing
cv2.imshow('frame', image) # Display the resulting frame
if cv2.waitKey(1) & 0xFF == ord('q'): # Stop process when 'q' is pressed
data_dump()
cap.release()
cv2.destroyAllWindows()
return 0
else:
return 1
def field_of_view(image): # Define simple plotting function for field-of-view setup
cv2.imshow('frame', image) # Display the resulting frame
if cv2.waitKey(1) & 0xFF == ord('q'): # Stop process when 'q' is pressed
cap.release()
cv2.destroyAllWindows()
return 0
else:
return 1
def check_permission_send_camera_setup_data():
settings_file='/home/pi/Telraam/Scripts/json/telraam_settings.json'
permission=None
try:
with open(settings_file) as json_file:
settings_data=json.load(json_file)
permission=settings_data['send_background']
except FileNotFoundError as e:
#settings file is not found
pass
return permission
def send_camera_setup_data(background):
print('send_camera_setup_data')
try:
image_type='png'
token='4M2u0kLC2WPL7oLMA4NC1yWevHJilMz2MGnQym00'
url='https://telraam-api.net/prod/provisioning/upload-camera-setup-data'
headers={'Content-Type': "application/json", 'X-Api-Key': token}
version_file='/home/pi/Telraam/Scripts/json/telraam_version.json'
pixelate_factor=5
image=None
permission=check_permission_send_camera_setup_data()
if(permission):
print('permission ok')
height, width = background.shape[:2]
# Desired "pixelated" size
height_pixelated, width_pixelated=(floor(height/pixelate_factor), floor(width/pixelate_factor))
# Resize input to "pixelated" size
temp = cv2.resize(background, (width_pixelated, height_pixelated), interpolation=cv2.INTER_LINEAR)
# Initialize output image
pixelated = cv2.resize(temp, (width, height), interpolation=cv2.INTER_NEAREST)
retval, buffer_img= cv2.imencode('.{}'.format(image_type), pixelated)
b64data = base64.b64encode(buffer_img)
image=b64data.decode("utf-8")
else:
print('permission nok')
version=None
try:
with open(version_file) as json_file:
version_data=json.load(json_file)
version=version_data['version']
except FileNotFoundError as e:
#version file is not found
pass
data={
"mac": uuid.getnode(),
"image_format": image_type,
"sensor_image_version": version,
"send_permission": permission,
"image": image
}
try:
ret = requests.post(url, headers=headers, data=json.dumps(data), timeout=30)
if ret.status_code==200:
return True, 'code==200'
else:
return False, 'code={}'.format(ret.status_code)
except Exception as e:
#post url is not available
return False, 'ConnectionError'
except Exception:
return False, 'Exception'
return True, 'default'
# Here we define some aids
mac_addr = uuid.getnode() # This gets the MAC address in decimal, mac_addr = hex(uuid.getnode()).replace('0x','') would be the actual MAC address
hostname = mac_addr # Use the MAC address in the data files as opposed to the telraam ID
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) # Blurring kernel definition
font = cv2.FONT_HERSHEY_SIMPLEX
pathlib.Path('./test').mkdir(parents=True, exist_ok=True) # Creates test directory should it not exist yet
pathlib.Path('./test/backgrounds').mkdir(parents=True, exist_ok=True) # Creates test directory should it not exist yet
pathlib.Path('./test/rawcontours').mkdir(parents=True, exist_ok=True) # Creates test directory should it not exist yet
pathlib.Path('./test/idandtrack').mkdir(parents=True, exist_ok=True) # Creates test directory should it not exist yet
pathlib.Path('./test/summary').mkdir(parents=True, exist_ok=True) # Creates test directory should it not exist yet
last_frame_is_empty = 0
last_camera_setup_data_sent=None
# Here we start the camera
initialise_video_capture()
initialise_contour_collector()
# Here a possible loop to set up the field of view
if args.fov:
while(True):
setexposuretime(10)
ret, frame = cap.read()
frame_small = cv2.resize(frame, (X_RESIZED, Y_RESIZED), interpolation=cv2.INTER_LINEAR)
frame_small = cv2.rectangle(frame_small, ((int(X_RESIZED*(AREA_EDGE_X_PERCENTAGE/100.)/2.)), (int(Y_RESIZED*(AREA_EDGE_Y_PERCENTAGE/100.)/2.))), ((X_RESIZED-int(X_RESIZED*(AREA_EDGE_X_PERCENTAGE/100.)/2.)), (Y_RESIZED-int(Y_RESIZED*(AREA_EDGE_Y_PERCENTAGE/100.)/2.))), (0, 0, 255), 2) # Plot the buffer area on screen
display = field_of_view(frame_small)
if display == 0:
exit()
# Here we start the actual image processing and tracking loop
background = background_calculation()
#do not send background after nighltly updates 0-4h
now=datetime.now()
if(now.hour>5):
ret, msg=send_camera_setup_data(background)
print('ret={}'.format(ret))
print('msg={}'.format(msg))
print('startup background sent')
while(True):
ret, frame = cap.read()
frame_time = time.time()
frame_small = cv2.resize(frame, (X_RESIZED, Y_RESIZED), interpolation=cv2.INTER_LINEAR)
frame_gray = cv2.cvtColor(frame_small, cv2.COLOR_BGR2GRAY)
frame_background_removed = cv2.absdiff(background, frame_gray)
contours, hierarchy = find_contours(frame_background_removed)
cxs, cys, object_areas, ws, hs = find_objects(contours, hierarchy)
if args.display:
screen = frame_small # Here you can set which image you want displayed with info overlays
screen = cv2.rectangle(screen, ((int(X_RESIZED*(AREA_EDGE_X_PERCENTAGE/100.)/2.)), (int(Y_RESIZED*(AREA_EDGE_Y_PERCENTAGE/100.)/2.))), ((X_RESIZED-int(X_RESIZED*(AREA_EDGE_X_PERCENTAGE/100.)/2.)), (Y_RESIZED-int(Y_RESIZED*(AREA_EDGE_Y_PERCENTAGE/100.)/2.))), (0, 0, 255), 2) # Plot the buffer area on screen
annotate_contours(screen, contours, hierarchy, cxs, cys, object_areas, ws, hs)
display = live_view(screen)
if display == 0:
break
number_of_contours_on_frame = len(cxs)
if number_of_contours_on_frame: # Check if there are objects in the frame, add contours to contour_collector
contour_time = np.ones_like(cxs)*frame_time # Array like other contour properties but containing the timestamp of the frame
contours_on_frame = np.stack((contour_time, cxs, cys, object_areas, ws, hs), axis=1) # Creates one array with all data of the contours found on this frame
try: # This try/expect is set up, because in very rare circumstances it could occour, that the contour_collector is almost full, and we are trying to index it beyond its length... Then we just state that it should be taken as full instead and that will directly lead to a data dump
contour_collector[number_of_contours:number_of_contours+number_of_contours_on_frame] = contours_on_frame # Adds the data of contours from this frame to the contour_collector
except:
number_of_contours == MAX_CONTOURS_BETWEEN_DATA_DUMP
last_frame_is_empty = 0 # This is a flag we will use later to check if it is safe to export data, so we do not export when there are objects on the frame
else:
last_frame_is_empty += 1 # This tells how many frames since last object
number_of_contours = number_of_contours + number_of_contours_on_frame
frame_number += 1
if (number_of_contours == MAX_CONTOURS_BETWEEN_DATA_DUMP) or (number_of_contours >= PREFERRED_CONTOURS_BETWEEN_DATA_DUMP and last_frame_is_empty >= 1) or (frame_time - time_data_pocket_end >= MAX_TIME_BETWEEN_DATA_DUMP) or (frame_time - time_data_pocket_end >= PREFERRED_TIME_BETWEEN_DATA_DUMP and last_frame_is_empty >= 1) or (frame_time-background_time > MAX_TIME_BETWEEN_BACKGROUND) or (frame_time-background_time > PREFERRED_TIME_BETWEEN_BACKGROUND and last_frame_is_empty >= 1): # If we have enough data or we need to make a new calibration run, dump it and clear the data_frame
data_dump()
if (frame_time-background_time > MAX_TIME_BETWEEN_BACKGROUND) or (frame_time-background_time > PREFERRED_TIME_BETWEEN_BACKGROUND and last_frame_is_empty >= 1): # If we have to, we calculate a new background
background = background_calculation()
print('after background_calculation')
now=datetime.now()
if(now.hour==SEND_CAMERA_SETUP_DATA_HOUR and (not last_camera_setup_data_sent or last_camera_setup_data_sent.day!=now.day)):
# if(now.minute>35 and (not last_camera_setup_data_sent or last_camera_setup_data_sent.hour!=now.hour)):
print('sending background')
ret, msg=send_camera_setup_data(background)
print('ret={}'.format(ret))
print('msg={}'.format(msg))
if(ret):
last_camera_setup_data_sent=now