-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsvm_test.py
84 lines (67 loc) · 2.49 KB
/
svm_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import sys
import cv2
import numpy as np
def get_hog() :
winSize = (100,100)
blockSize = (10,10)
blockStride = (5,5)
cellSize = (10,10)
nbins = 9
derivAperture = 1
winSigma = -1.
histogramNormType = 0
L2HysThreshold = 0.2
gammaCorrection = 1
nlevels = 64
signedGradient = True
hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma,histogramNormType,L2HysThreshold,gammaCorrection,nlevels, signedGradient)
return hog
def load_trainData(image_path):
trainData = []
trainLabel = []
i = 0
for path in sorted(os.listdir(image_path)):
files = os.listdir(image_path +'/'+ path)
for f in files:
if (f.endswith('.png') or f.endswith('.jpeg') or f.endswith('.jpg')):
trainData.append(image_path +'/'+ path +'/' + f)
trainLabel.extend([x for x in np.repeat(i,4)])
print ("{} -> {} ".format(path,i))
i = i+1
return trainData,trainLabel
if __name__ == '__main__':
image_path = "data/test"
testData,testLabel = load_trainData(image_path)
# HoG feature descriptor
hog = get_hog()
hog_descriptors = []
svm = cv2.ml.SVM_load("svm_data.dat")
k=0
for data in testData:
img = cv2.imread(data,0)
resized_img = cv2.resize(img,(100,100),interpolation = cv2.INTER_CUBIC)
gauss_img = cv2.GaussianBlur(resized_img,(9,9),0)
th = cv2.adaptiveThreshold(gauss_img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY_INV,11,2)
hog_descriptors.append(hog.compute(th))
rows,cols = resized_img.shape
for i in [1,2,3]:
M = cv2.getRotationMatrix2D((cols/2,rows/2),i*90,1)
dst = cv2.warpAffine(th,M,(cols,rows))
hog_descriptors.append(hog.compute(dst))
k = k+1
truePos = [0,0,0]
predictedPos = [0,0,0]
total = len(testLabel)
for (hog_des,label,i) in zip(hog_descriptors,testLabel,range(1,total+1)):
_,result = svm.predict(np.array(hog_des,np.float32).reshape(-1,3249))
idx = int(result[0][0])
if(idx == label):
truePos[label] = truePos[label]+1
predictedPos[idx] = predictedPos[idx]+1
for i in range(len(truePos)):
precision = truePos[i]/float(predictedPos[i])
recall = truePos[i]/float((total/3))
print("{} \nprecision :{:.3f}\trecall :{:.3f}".format(i,precision,recall,))
print ("{}\t{}".format(truePos[i],total/3))