diff --git a/python/tabby-eval/.gitignore b/python/tabby-eval/.gitignore new file mode 100644 index 000000000000..32491554bbf3 --- /dev/null +++ b/python/tabby-eval/.gitignore @@ -0,0 +1,3 @@ +tmp* +tabby_data_pipeline.egg-info +log.txt \ No newline at end of file diff --git a/python/tabby-eval/README.md b/python/tabby-eval/README.md new file mode 100644 index 000000000000..235285854ba3 --- /dev/null +++ b/python/tabby-eval/README.md @@ -0,0 +1,48 @@ +# tabby_data_pipeline + +This is a [Dagster](https://dagster.io/) project scaffolded with [`dagster project scaffold`](https://docs.dagster.io/getting-started/create-new-project). + +## Getting started + +First, install your Dagster code location as a Python package. By using the --editable flag, pip will install your Python package in ["editable mode"](https://pip.pypa.io/en/latest/topics/local-project-installs/#editable-installs) so that as you develop, local code changes will automatically apply. + +```bash +pip install -e ".[dev]" +``` + +Then, start the Dagster UI web server: + +```bash +dagster dev +``` + +Open http://localhost:3000 with your browser to see the project. + +You can start writing assets in `tabby_data_pipeline/assets.py`. The assets are automatically loaded into the Dagster code location as you define them. + +## Development + + +### Adding new Python dependencies + +You can specify new Python dependencies in `setup.py`. + +### Unit testing + +Tests are in the `tabby_data_pipeline_tests` directory and you can run tests using `pytest`: + +```bash +pytest tabby_data_pipeline_tests +``` + +### Schedules and sensors + +If you want to enable Dagster [Schedules](https://docs.dagster.io/concepts/partitions-schedules-sensors/schedules) or [Sensors](https://docs.dagster.io/concepts/partitions-schedules-sensors/sensors) for your jobs, the [Dagster Daemon](https://docs.dagster.io/deployment/dagster-daemon) process must be running. This is done automatically when you run `dagster dev`. + +Once your Dagster Daemon is running, you can start turning on schedules and sensors for your jobs. + +## Deploy on Dagster Cloud + +The easiest way to deploy your Dagster project is to use Dagster Cloud. + +Check out the [Dagster Cloud Documentation](https://docs.dagster.cloud) to learn more. diff --git a/python/tabby-eval/edit_distance_analysis.ipynb b/python/tabby-eval/edit_distance_analysis.ipynb new file mode 100644 index 000000000000..9981b444df62 --- /dev/null +++ b/python/tabby-eval/edit_distance_analysis.ipynb @@ -0,0 +1,452 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 20, + "id": "e868ee64-bc4b-4e19-ba07-676a1edf8465", + "metadata": {}, + "outputs": [], + "source": [ + "import difflib\n", + "import json\n", + "import IPython\n", + "import os\n", + "import pandas as pd\n", + "import pylcs\n", + "import sys" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "7e3dfb48-f14c-4bb2-b4d5-6cf516f51e1c", + "metadata": {}, + "outputs": [], + "source": [ + "# set parameters \n", + "model = 'StarCoder-1B'\n", + "language = 'python' # ['python', 'java', 'csharp', 'typescript']\n", + "file = 'line_completion.jsonl' #['line_completion.jsonl, 'line_completion_rg1_bm25.jsonl', 'line_completion_oracle_bm25.jsonl']\n", + "\n", + "sort_asc = True #Sort DataFrame ASC by default\n", + "\n", + "whole_path_file = f\"./data/{model}/{language}/result_{file}\"" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "89407a65-c798-4bb8-94cc-4fc7691553e8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
raw_promptpredictionfirst_line_predictionfirst_line_groundtruthfirst_line_matchedfirst_statement_predictionfirst_statement_groundtruthfirst_statement_matchededit_distance
2568from classes import BaseModule, Response, MDEM...create_html_table(DetailedResults['Accounts'],...create_html_table(DetailedResults['Accounts'],...list_to_html_table(linked_accounts_list, escap...Falsecreate_html_table(DetailedResults['Accounts'],...list_to_html_table(linked_accounts_list, escap...False476.0
471import os\\nimport time\\n\\nimport torch as th\\n...ModelType.ModelType.ModelType.ModelType.ModelT...ModelType.ModelType.ModelType.ModelType.ModelT...DEIR and not self.use_model_rnn:FalseModelType.ModelType.ModelType.ModelType.ModelT...DEIR and not self.use_model_rnn:False441.0
2406import agents.utils.basicprompts as p\\n\\n\\nsys...ask_question(question=system_init, prompt=\"Wha...ask_question(question=system_init, prompt=\"Wha...prompting_utils + p.using_steps + reevaluateAt...Falseask_question(question=system_init, prompt=\"Wha...prompting_utils + p.using_steps + reevaluateAt...False424.0
2332import openai\\nfrom .backend import Backend\\n\\...model_name, max_length=self.max_length, temper...model_name, max_length=self.max_length, temper...model_name)['data'][0]['embedding']Falsemodel_name, max_length=self.max_length, temper...model_name)['data'][0]['embedding']False385.0
807\\nimport os\\nfrom argparse import ArgumentPars...num_joints, data_module.num_joints, data_modul...num_joints, data_module.num_joints, data_modul...skeleton, window, 1.0 / frequency,batch_size=b...Falsenum_joints, data_module.num_joints, data_modul...skeleton, window, 1.0 / frequency,batch_size=b...False382.0
..............................
213#! /usr/bin/env python\\n# coding=utf8\\n\\nimpor...add_GrpcServiceServicer_to_server(TestService(...add_GrpcServiceServicer_to_server(TestService(...add_GrpcServiceServicer_to_server(TestService(...Falseadd_GrpcServiceServicer_to_server(TestService(...add_GrpcServiceServicer_to_server(TestService(...False1.0
1978\"\"\"A package for decoding and encoding each it...get_buffer())\\n self.file_desc.clos...get_buffer())getbuffer())Falseget_buffer())getbuffer())False1.0
1319import threading\\nimport time\\nfrom agency.pro...process()\\n\\n self.__thread = threading...process()_process()Falseprocess()_process()False1.0
826import asyncio\\nimport sys\\nimport os\\nsys.pat...delete_old_resources_snapshots(time)\\n\\n ...delete_old_resources_snapshots(time)delete_old_resource_snapshots(time)Falsedelete_old_resources_snapshots(time)delete_old_resource_snapshots(time)False1.0
1984from functools import lru_cache\\nfrom typing i...headers, **kwargs)\\n return [completion...headers, **kwargs)_headers, **kwargs)Falseheaders, **kwargs)_headers, **kwargs)False1.0
\n", + "

2635 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " raw_prompt \\\n", + "2568 from classes import BaseModule, Response, MDEM... \n", + "471 import os\\nimport time\\n\\nimport torch as th\\n... \n", + "2406 import agents.utils.basicprompts as p\\n\\n\\nsys... \n", + "2332 import openai\\nfrom .backend import Backend\\n\\... \n", + "807 \\nimport os\\nfrom argparse import ArgumentPars... \n", + "... ... \n", + "213 #! /usr/bin/env python\\n# coding=utf8\\n\\nimpor... \n", + "1978 \"\"\"A package for decoding and encoding each it... \n", + "1319 import threading\\nimport time\\nfrom agency.pro... \n", + "826 import asyncio\\nimport sys\\nimport os\\nsys.pat... \n", + "1984 from functools import lru_cache\\nfrom typing i... \n", + "\n", + " prediction \\\n", + "2568 create_html_table(DetailedResults['Accounts'],... \n", + "471 ModelType.ModelType.ModelType.ModelType.ModelT... \n", + "2406 ask_question(question=system_init, prompt=\"Wha... \n", + "2332 model_name, max_length=self.max_length, temper... \n", + "807 num_joints, data_module.num_joints, data_modul... \n", + "... ... \n", + "213 add_GrpcServiceServicer_to_server(TestService(... \n", + "1978 get_buffer())\\n self.file_desc.clos... \n", + "1319 process()\\n\\n self.__thread = threading... \n", + "826 delete_old_resources_snapshots(time)\\n\\n ... \n", + "1984 headers, **kwargs)\\n return [completion... \n", + "\n", + " first_line_prediction \\\n", + "2568 create_html_table(DetailedResults['Accounts'],... \n", + "471 ModelType.ModelType.ModelType.ModelType.ModelT... \n", + "2406 ask_question(question=system_init, prompt=\"Wha... \n", + "2332 model_name, max_length=self.max_length, temper... \n", + "807 num_joints, data_module.num_joints, data_modul... \n", + "... ... \n", + "213 add_GrpcServiceServicer_to_server(TestService(... \n", + "1978 get_buffer()) \n", + "1319 process() \n", + "826 delete_old_resources_snapshots(time) \n", + "1984 headers, **kwargs) \n", + "\n", + " first_line_groundtruth first_line_matched \\\n", + "2568 list_to_html_table(linked_accounts_list, escap... False \n", + "471 DEIR and not self.use_model_rnn: False \n", + "2406 prompting_utils + p.using_steps + reevaluateAt... False \n", + "2332 model_name)['data'][0]['embedding'] False \n", + "807 skeleton, window, 1.0 / frequency,batch_size=b... False \n", + "... ... ... \n", + "213 add_GrpcServiceServicer_to_server(TestService(... False \n", + "1978 getbuffer()) False \n", + "1319 _process() False \n", + "826 delete_old_resource_snapshots(time) False \n", + "1984 _headers, **kwargs) False \n", + "\n", + " first_statement_prediction \\\n", + "2568 create_html_table(DetailedResults['Accounts'],... \n", + "471 ModelType.ModelType.ModelType.ModelType.ModelT... \n", + "2406 ask_question(question=system_init, prompt=\"Wha... \n", + "2332 model_name, max_length=self.max_length, temper... \n", + "807 num_joints, data_module.num_joints, data_modul... \n", + "... ... \n", + "213 add_GrpcServiceServicer_to_server(TestService(... \n", + "1978 get_buffer()) \n", + "1319 process() \n", + "826 delete_old_resources_snapshots(time) \n", + "1984 headers, **kwargs) \n", + "\n", + " first_statement_groundtruth \\\n", + "2568 list_to_html_table(linked_accounts_list, escap... \n", + "471 DEIR and not self.use_model_rnn: \n", + "2406 prompting_utils + p.using_steps + reevaluateAt... \n", + "2332 model_name)['data'][0]['embedding'] \n", + "807 skeleton, window, 1.0 / frequency,batch_size=b... \n", + "... ... \n", + "213 add_GrpcServiceServicer_to_server(TestService(... \n", + "1978 getbuffer()) \n", + "1319 _process() \n", + "826 delete_old_resource_snapshots(time) \n", + "1984 _headers, **kwargs) \n", + "\n", + " first_statement_matched edit_distance \n", + "2568 False 476.0 \n", + "471 False 441.0 \n", + "2406 False 424.0 \n", + "2332 False 385.0 \n", + "807 False 382.0 \n", + "... ... ... \n", + "213 False 1.0 \n", + "1978 False 1.0 \n", + "1319 False 1.0 \n", + "826 False 1.0 \n", + "1984 False 1.0 \n", + "\n", + "[2635 rows x 9 columns]" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#get tabby_eval data from file to DataFrame\n", + "objs=[]\n", + "with open(whole_path_file) as f:\n", + " for line in f:\n", + " obj = json.loads(line)\n", + " objs.append(obj['tabby_eval'])\n", + "\n", + "df = pd.DataFrame(objs)\n", + "\n", + "#filter df by unmatched prediction and groundtruth\n", + "tabby_eval_df = df[df['first_line_matched']==False].copy()\n", + "\n", + "#add 'edit_distance' column to DataFrame\n", + "for index, row in tabby_eval_df.iterrows():\n", + " lcs_sequence_len = pylcs.lcs_sequence_length(row['first_line_prediction'], row['first_line_groundtruth'])\n", + " tabby_eval_df.loc[index, 'edit_distance'] = int((len(row['first_line_prediction'])-lcs_sequence_len) + (len(row['first_line_groundtruth'])-lcs_sequence_len))\n", + "\n", + "#sort df by edit_distance\n", + "tabby_eval_df.sort_values('edit_distance',ascending=sort_asc)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "360d08e4-868f-4719-849f-8207443cd223", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

Prompt

import faiss
import numpy as np
import json
from .device import Device
import os
from pathlib import Path

class VectorIndexedDB(Device):
def __init__(self, embedding_backend, **kwargs):
super().__init__(**kwargs)
self.embedding_backend = embedding_backend
self.index = faiss.IndexFlatL2(embedding_backend.dim)
self.embeddings = []
self.texts = []

async def asyncAdd(self, text, caller):
\"\"\"
Adds text to the database, which can be queried later.
\"\"\"
embedding = await self.embedding_backend.asyncRequest(caller, text)
embedding = np.array(embedding)[None]
self.embeddings.append(embedding)
self.texts.append(text)
self.index.add(embedding)
return f\"Added a new item to {self.

\n", + "\n", + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
t1        return f\"Added a new item to {self.<end of prompt>name}.\"t1        return f\"Added a new item to {self.<end of prompt>name}. \"
\n", + " \n", + " \n", + " \n", + " \n", + "
Legends
\n", + " \n", + " \n", + " \n", + " \n", + "
Colors
 Added 
Changed
Deleted
\n", + " \n", + " \n", + " \n", + " \n", + "
Links
(f)irst change
(n)ext change
(t)op
\n", + "\n", + "\n", + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#set index of the DataFrame\n", + "index = 2336\n", + "\n", + "#get prompt, first_line_prediction, first_line_groundtruth\n", + "prompt = df.iloc[index]['raw_prompt']\n", + "prediction = prompt.split(\"\\n\")[-1]+f\"\"+df.iloc[index]['first_line_prediction']\n", + "groundtruth = prompt.split(\"\\n\")[-1]+f\"\"+df.iloc[index]['first_line_groundtruth']\n", + "list_prediction = prediction.split('\\n')\n", + "list_groundtruth = groundtruth.split('\\n')\n", + "\n", + "#show difference between first_line_prediction and first_line_groundtruth\n", + "prompt = prompt.replace(\"\\n\", \"
\")\n", + "html_file = difflib.HtmlDiff().make_file(list_prediction, list_groundtruth)\n", + "prompt_part = f\"

Prompt

{prompt}

\"\n", + "html_file = prompt_part + html_file\n", + "IPython.display.HTML(data=html_file)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "659dbd07-1cdf-44be-9aa9-e025e1a476e9", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/python/tabby-eval/pyproject.toml b/python/tabby-eval/pyproject.toml new file mode 100644 index 000000000000..abe8303c76f4 --- /dev/null +++ b/python/tabby-eval/pyproject.toml @@ -0,0 +1,6 @@ +[build-system] +requires = ["setuptools"] +build-backend = "setuptools.build_meta" + +[tool.dagster] +module_name = "tabby_data_pipeline" diff --git a/python/tabby-eval/setup.cfg b/python/tabby-eval/setup.cfg new file mode 100644 index 000000000000..5df12ba8b1e4 --- /dev/null +++ b/python/tabby-eval/setup.cfg @@ -0,0 +1,2 @@ +[metadata] +name = tabby_data_pipeline diff --git a/python/tabby-eval/setup.py b/python/tabby-eval/setup.py new file mode 100644 index 000000000000..22b3230dac2a --- /dev/null +++ b/python/tabby-eval/setup.py @@ -0,0 +1,17 @@ +from setuptools import find_packages, setup + +setup( + name="tabby_data_pipeline", + packages=find_packages(exclude=["tabby_data_pipeline_tests"]), + install_requires=[ + "dagster", + "dagster-cloud", + "dagstermill", + "papermill-origami>=0.0.8", + "pandas", + "matplotlib", + "seaborn", + "scikit-learn", + ], + extras_require={"dev": ["dagster-webserver", "pytest"]}, +) diff --git a/python/tabby-eval/tabby_data_pipeline/__init__.py b/python/tabby-eval/tabby_data_pipeline/__init__.py new file mode 100644 index 000000000000..09b810fff658 --- /dev/null +++ b/python/tabby-eval/tabby_data_pipeline/__init__.py @@ -0,0 +1,17 @@ +from dagster import Definitions, load_assets_from_modules + +from dagstermill import ConfigurableLocalOutputNotebookIOManager + + +from . import assets, create_csv + +all_assets = load_assets_from_modules([assets, create_csv]) + +defs = Definitions( + assets=all_assets, + resources = { + "output_notebook_io_manager": ConfigurableLocalOutputNotebookIOManager() + } +) + + diff --git a/python/tabby-eval/tabby_data_pipeline/analyze.py b/python/tabby-eval/tabby_data_pipeline/analyze.py new file mode 100644 index 000000000000..f7f80aa48a7d --- /dev/null +++ b/python/tabby-eval/tabby_data_pipeline/analyze.py @@ -0,0 +1,78 @@ +import json + + +def get_bracket_lang_statement(completion): + end_idx = None + for i in range(len(completion)): + if completion[i] in [";", "{", "}"]: + end_idx = i + break + return completion[:end_idx+1] if end_idx else completion + + +def postprocess_code_lines(prompt, target, language): + try: + if language in ["java", "csharp", "typescript"]: + return get_bracket_lang_statement(target) + elif language == "python": + return target.split("\n")[0] + except Exception: + return target + + +def analyze(model, language, file): + + line_match = 0 + statement_match = 0 + + input_file = f"./data/{model}/{language}/{file}" + output_file = f"./data/{model}/{language}/result_{file}" + + with open(output_file, 'w') as fout: + with open(input_file) as fin: + for line in fin: + obj = json.loads(line) + result = {} + prediction = "" + + for k in obj.keys(): + if k == "prediction": + prediction = str(obj[k]) + break + elif k == "error": + break + else: + result[k] = obj[k] + + tabby_eval = {} + if file == "line_completion.jsonl": + tabby_eval["raw_prompt"] = obj["prompt"] + else: + tabby_eval["raw_prompt"] = obj["crossfile_context"]["text"] + obj["prompt"] + + tabby_eval["prediction"] = prediction + + groundtruth = obj["groundtruth"] + + tabby_eval["first_line_prediction"] = prediction.split("\n")[0] + tabby_eval["first_line_groundtruth"] = groundtruth.split("\n")[0] + if tabby_eval["first_line_prediction"] == tabby_eval["first_line_groundtruth"]: + tabby_eval["first_line_matched"] = True + line_match += 1 + else: + tabby_eval["first_line_matched"] = False + + tabby_eval["first_statement_prediction"] = postprocess_code_lines(tabby_eval["raw_prompt"], prediction, language) + tabby_eval["first_statement_groundtruth"] = postprocess_code_lines(tabby_eval["raw_prompt"], groundtruth, language) + if tabby_eval["first_statement_prediction"] == tabby_eval["first_statement_groundtruth"]: + tabby_eval["first_statement_matched"] = True + statement_match += 1 + else: + tabby_eval["first_statement_matched"] = False + + result["tabby_eval"] = tabby_eval + + json.dump(result, fout) + fout.write("\n") + + diff --git a/python/tabby-eval/tabby_data_pipeline/assets.py b/python/tabby-eval/tabby_data_pipeline/assets.py new file mode 100644 index 000000000000..5ebceb4896bd --- /dev/null +++ b/python/tabby-eval/tabby_data_pipeline/assets.py @@ -0,0 +1,145 @@ +import os +import subprocess + +from dagster import ( + AssetExecutionContext, + MetadataValue, + asset, + StaticPartitionsDefinition, + MultiPartitionsDefinition, +) +from . import analyze + + +@asset +def baseline() -> str: + return "line_completion.jsonl" + +@asset +def bm25() -> str: + return "line_completion_rg1_bm25.jsonl" + +@asset +def oracle() -> str: + return "line_completion_oracle_bm25.jsonl" + +@asset( + partitions_def=MultiPartitionsDefinition( + { + "model_id" : StaticPartitionsDefinition(['TabbyML/StarCoder-1B', 'TabbyML/StarCoder-3B', 'TabbyML/StarCoder-7B', 'TabbyML/WizardCoder-1B', 'TabbyML/WizardCoder-3B', 'TabbyML/CodeLlama-7B', 'TabbyML/CodeLlama-13B']), + "language" : StaticPartitionsDefinition(["python", "java", "csharp", "typescript"]), + + } + )) +def predict_baseline(context: AssetExecutionContext, baseline: str) -> None: + model_id = context.partition_key.keys_by_dimension["model_id"] + language = context.partition_key.keys_by_dimension["language"] + + my_env = os.environ.copy() + my_env["MODEL_ID"] = model_id + + context.add_output_metadata(metadata={"model_id": MetadataValue.md(model_id)}) + + files = baseline + + p = subprocess.Popen(["modal", "run", "./modal/predict.py","--language", language, "--files", files], env=my_env) + p.wait() + context.add_output_metadata(metadata={'modal run': MetadataValue.md("success!")}) + +@asset( + partitions_def=MultiPartitionsDefinition( + { + "model_id" : StaticPartitionsDefinition(['TabbyML/StarCoder-1B', 'TabbyML/StarCoder-3B', 'TabbyML/StarCoder-7B', 'TabbyML/WizardCoder-1B', 'TabbyML/WizardCoder-3B', 'TabbyML/CodeLlama-7B', 'TabbyML/CodeLlama-13B']), + "language" : StaticPartitionsDefinition(["python", "java", "csharp", "typescript"]), + + } + )) +def predict_bm25(context: AssetExecutionContext, bm25: str) -> None: + model_id = context.partition_key.keys_by_dimension["model_id"] + language = context.partition_key.keys_by_dimension["language"] + + my_env = os.environ.copy() + my_env["MODEL_ID"] = model_id + + context.add_output_metadata(metadata={"model_id": MetadataValue.md(model_id)}) + + files = bm25 + + p = subprocess.Popen(["modal", "run", "./modal/predict.py","--language", language, "--files", files], env=my_env) + p.wait() + context.add_output_metadata(metadata={'modal run': MetadataValue.md("success!")}) + + +@asset( + partitions_def=MultiPartitionsDefinition( + { + "model_id" : StaticPartitionsDefinition(['TabbyML/StarCoder-1B', 'TabbyML/StarCoder-3B', 'TabbyML/StarCoder-7B', 'TabbyML/WizardCoder-1B', 'TabbyML/WizardCoder-3B', 'TabbyML/CodeLlama-7B', 'TabbyML/CodeLlama-13B']), + "language" : StaticPartitionsDefinition(["python", "java", "csharp", "typescript"]), + + } + )) +def predict_oracle(context: AssetExecutionContext, oracle: str) -> None: + model_id = context.partition_key.keys_by_dimension["model_id"] + language = context.partition_key.keys_by_dimension["language"] + + my_env = os.environ.copy() + my_env["MODEL_ID"] = model_id + + context.add_output_metadata(metadata={"model_id": MetadataValue.md(model_id)}) + + files = oracle + + p = subprocess.Popen(["modal", "run", "./modal/predict.py","--language", language, "--files", files], env=my_env) + p.wait() + context.add_output_metadata(metadata={'modal run': MetadataValue.md("success!")}) + + + +@asset( + partitions_def=MultiPartitionsDefinition( + { + "model_id" : StaticPartitionsDefinition(['TabbyML/StarCoder-1B', 'TabbyML/StarCoder-3B', 'TabbyML/StarCoder-7B', 'TabbyML/WizardCoder-1B', 'TabbyML/WizardCoder-3B', 'TabbyML/CodeLlama-7B', 'TabbyML/CodeLlama-13B']), + "language" : StaticPartitionsDefinition(["python", "java", "csharp", "typescript"]), + } + ), deps=[predict_baseline]) +def matching_baseline(context) -> None: + model_id = context.partition_key.keys_by_dimension["model_id"] + language = context.partition_key.keys_by_dimension["language"] + + + model = model_id.split("/")[-1] + analyze.analyze(model, language, 'line_completion.jsonl') + + + +@asset( + partitions_def=MultiPartitionsDefinition( + { + "model_id" : StaticPartitionsDefinition(['TabbyML/StarCoder-1B', 'TabbyML/StarCoder-3B', 'TabbyML/StarCoder-7B', 'TabbyML/WizardCoder-1B', 'TabbyML/WizardCoder-3B', 'TabbyML/CodeLlama-7B', 'TabbyML/CodeLlama-13B']), + "language" : StaticPartitionsDefinition(["python", "java", "csharp", "typescript"]), + } + ), deps=[predict_bm25]) +def matching_bm25(context) -> None: + model_id = context.partition_key.keys_by_dimension["model_id"] + language = context.partition_key.keys_by_dimension["language"] + + + model = model_id.split("/")[-1] + analyze.analyze(model, language, 'line_completion_rg1_bm25.jsonl') + + + +@asset( + partitions_def=MultiPartitionsDefinition( + { + "model_id" : StaticPartitionsDefinition(['TabbyML/StarCoder-1B', 'TabbyML/StarCoder-3B', 'TabbyML/StarCoder-7B', 'TabbyML/WizardCoder-1B', 'TabbyML/WizardCoder-3B', 'TabbyML/CodeLlama-7B', 'TabbyML/CodeLlama-13B']), + "language" : StaticPartitionsDefinition(["python", "java", "csharp", "typescript"]), + } + ), deps=[predict_oracle]) +def matching_oracle(context) -> None: + model_id = context.partition_key.keys_by_dimension["model_id"] + language = context.partition_key.keys_by_dimension["language"] + + + model = model_id.split("/")[-1] + analyze.analyze(model, language, 'line_completion_oracle_bm25.jsonl') \ No newline at end of file diff --git a/python/tabby-eval/tabby_data_pipeline/create_csv.py b/python/tabby-eval/tabby_data_pipeline/create_csv.py new file mode 100644 index 000000000000..10b46cde71b8 --- /dev/null +++ b/python/tabby-eval/tabby_data_pipeline/create_csv.py @@ -0,0 +1,55 @@ +import json +import pandas as pd + +from dagster import ( + asset, + AssetIn, + file_relative_path + ) +from dagstermill import define_dagstermill_asset + + + +models = ["StarCoder-1B", "StarCoder-3B", "StarCoder-7B", "CodeLlama-7B", "CodeLlama-13B", "WizardCoder-1B", "WizardCoder-3B", "DeepseekCoder-1.3B", "DeepseekCoder-6.7B"] +languages = {"csharp": "C#", "java": "Java", "python": "Python", "typescript": "Typescript"} +files = ["line_completion.jsonl", 'line_completion_rg1_bm25.jsonl', 'line_completion_oracle_bm25.jsonl'] +total_records = {'python': 2665, 'java': 2139, 'typescript': 3356, 'csharp': 1768} + +headers = ['Model', 'Dataset', 'Records', 'baseline', 'bm25', 'oracle'] + +stat = [] +def get_match(model, language, file): + count = 0 + with open(f"./data/{model}/{language}/result_{file}") as f: + for line in f: + obj = json.loads(line) + if obj["tabby_eval"]["first_line_matched"]: + count += 1 + + return count + +@asset +def create_csv(): + for model in models: + for language in languages.keys(): + x = [model, languages[language], total_records[language]] + for f in files: + x.append(get_match(model, language, f)) + + stat.append(x) + + df = pd.DataFrame(stat, columns=headers) + print(df) + + df.to_csv('./tabby_data_pipeline/tabby.csv', index=False) + + +@asset(deps=[create_csv]) +def tabby_dataset(): + return pd.read_csv(file_relative_path(__file__,'tabby.csv')) + +tabby_jupyter_notebook = define_dagstermill_asset( + name = 'tabby_jupyter', + notebook_path = file_relative_path(__file__, "tabby_eval.ipynb"), + ins={"df": AssetIn("tabby_dataset")}, +) diff --git a/python/tabby-eval/tabby_data_pipeline/tabby.csv b/python/tabby-eval/tabby_data_pipeline/tabby.csv new file mode 100644 index 000000000000..998ff3b7063e --- /dev/null +++ b/python/tabby-eval/tabby_data_pipeline/tabby.csv @@ -0,0 +1,37 @@ +Model,Dataset,Records,baseline,bm25,oracle +StarCoder-1B,C#,1768,31,100,138 +StarCoder-1B,Java,2139,17,81,98 +StarCoder-1B,Python,2665,30,237,338 +StarCoder-1B,Typescript,3356,144,270,342 +StarCoder-3B,C#,1768,51,118,165 +StarCoder-3B,Java,2139,39,93,114 +StarCoder-3B,Python,2665,130,322,445 +StarCoder-3B,Typescript,3356,229,351,422 +StarCoder-7B,C#,1768,64,134,170 +StarCoder-7B,Java,2139,60,116,138 +StarCoder-7B,Python,2665,176,376,494 +StarCoder-7B,Typescript,3356,267,391,457 +CodeLlama-7B,C#,1768,63,133,181 +CodeLlama-7B,Java,2139,82,150,175 +CodeLlama-7B,Python,2665,193,394,488 +CodeLlama-7B,Typescript,3356,483,689,766 +CodeLlama-13B,C#,1768,84,152,197 +CodeLlama-13B,Java,2139,99,154,182 +CodeLlama-13B,Python,2665,208,411,538 +CodeLlama-13B,Typescript,3356,525,733,869 +WizardCoder-1B,C#,1768,30,87,138 +WizardCoder-1B,Java,2139,25,77,99 +WizardCoder-1B,Python,2665,37,218,343 +WizardCoder-1B,Typescript,3356,159,264,338 +WizardCoder-3B,C#,1768,51,118,165 +WizardCoder-3B,Java,2139,39,93,114 +WizardCoder-3B,Python,2665,142,334,446 +WizardCoder-3B,Typescript,3356,234,348,422 +DeepseekCoder-1.3B,C#,1768,58,121,166 +DeepseekCoder-1.3B,Java,2139,54,115,136 +DeepseekCoder-1.3B,Python,2665,149,332,433 +DeepseekCoder-1.3B,Typescript,3356,437,590,708 +DeepseekCoder-6.7B,C#,1768,87,166,198 +DeepseekCoder-6.7B,Java,2139,83,150,165 +DeepseekCoder-6.7B,Python,2665,247,436,571 +DeepseekCoder-6.7B,Typescript,3356,555,740,857 diff --git a/python/tabby-eval/tabby_data_pipeline/tabby_eval.ipynb b/python/tabby-eval/tabby_data_pipeline/tabby_eval.ipynb new file mode 100644 index 000000000000..f9f5155416e7 --- /dev/null +++ b/python/tabby-eval/tabby_data_pipeline/tabby_eval.ipynb @@ -0,0 +1,370 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from matplotlib import pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [ + "parameters" + ] + }, + "outputs": [], + "source": [ + "df = pd.read_csv('tabby.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "df['baseline_percent'] = round(df[\"baseline\"]/df[\"Records\"]*100, 2)\n", + "df['bm25_percent'] = round(df[\"bm25\"]/df[\"Records\"]*100, 2)\n", + "df['oracle_percent'] = round(df['oracle']/df[\"Records\"]*100, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ModelDatasetRecordsbaselinebm25oraclebaseline_percentbm25_percentoracle_percent
0StarCoder-1BC#1768311001381.755.667.81
1StarCoder-1BJava21391781980.793.794.58
2StarCoder-1BPython2665302373381.138.8912.68
3StarCoder-1BTypescript33561442703424.298.0510.19
4StarCoder-3BC#1768511181652.886.679.33
\n", + "
" + ], + "text/plain": [ + " Model Dataset Records baseline bm25 oracle \\\n", + "0 StarCoder-1B C# 1768 31 100 138 \n", + "1 StarCoder-1B Java 2139 17 81 98 \n", + "2 StarCoder-1B Python 2665 30 237 338 \n", + "3 StarCoder-1B Typescript 3356 144 270 342 \n", + "4 StarCoder-3B C# 1768 51 118 165 \n", + "\n", + " baseline_percent bm25_percent oracle_percent \n", + "0 1.75 5.66 7.81 \n", + "1 0.79 3.79 4.58 \n", + "2 1.13 8.89 12.68 \n", + "3 4.29 8.05 10.19 \n", + "4 2.88 6.67 9.33 " + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAGzCAYAAAA8D5+GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7xklEQVR4nO3deXgN5///8edJQhIiCUoShCCJxJIQUTS1U7GkdqWIXUvVvn76EbvYqbaWllpabVHrp6itopbaRZXUEku0QrQqEUuQ5PeHX+bb01hCQxxej+s615Uzc8/MeyaO88p97rmPKTU1NRUREREREQtkldUFiIiIiIg8KYVZEREREbFYCrMiIiIiYrEUZkVERETEYinMioiIiIjFUpgVEREREYulMCsiIiIiFkthVkREREQslsKsiIiIiFgshVkRERERsVgKsyIi8lyKjo7mnXfeoVixYtjZ2eHo6EhQUBAffvghN2/evO82TZo0oXXr1gCkpqaSO3duFixY8AyrFpFnzSarCxAREfmntWvX0qJFC2xtbQkNDaV06dLcvn2bHTt2MHDgQI4ePcqnn36abru9e/cyaNAgAKKiorh69SqVKlV61uWLyDOkMCsiIs+VM2fO0KpVK4oUKcIPP/yAm5ubse69997j1KlTrF27Nt12v/32GxcuXDDC608//YSTkxMlSpR4ZrWLyLOnMCsiIs+ViRMnkpiYyLx588yCbBpPT0969+4NQFJSEteuXQNg69atZMuWDXd3d/744w9+/PFH/Pz8+PPPPwHIkycPVlYaXSfyojGlpqamZnURIiIiaQoVKoStrS3R0dGPbLtgwQI6duyYof2eOXMGDw+Pf1mdiDxv1DMrIiLPjYSEBH7//XcaNWqUofZ169Zl06ZNAHTp0oVq1arRrl07/vjjD1q3bs2MGTPw9fUFwNXV9anVLSJZR2FWRESeGwkJCQDkypUrQ+3d3Nxwc3Pj6tWrnD9/njZt2lC7dm2+/fZb7Ozs6NatG7a2tk+zZBHJYgqzIiLy3HB0dAQwxsE+zJ07d4iPjwdgw4YNWFlZ4ePjwx9//MGGDRsoV64c165d49q1azg5OZEtW7anWruIZA2NmRURkedKwYIFsbe359SpUw9tFxERQY0aNTK0z61bt1K9evVMqE5Enje6rVNERJ4rDRs2JDo6mp9++umh7fz9/dm0aRObNm3C09OTtm3bsmnTJr799lsAPvzwQ2O9v7//syhdRLKAemZFROS5Eh0djb+/vzHPrIuLS7r13333nTE9161bt3BycmLJkiU0btyY77//noYNGxIfH0/OnDmz4hRE5BnSmFkREXmuFC9enK+++oq33noLX19fs28A27VrF8uWLaNDhw5G+/3793P79m1ee+01AHbt2oWfn5+CrMhLQmFWRESeO2+++SY///wzkyZNYvXq1cyaNQtbW1v8/PyYMmUKXbt2Ndru3LmT4sWLkz9/fuDeN3+lBVsRefFpmIGIiIiIWCzdACYiIiIiFkthVkREREQslsKsiIiIiFgshVkRERERsVgKsyIiIiJisRRmRURERMRiaZ5ZeaGlpKRw4cIFcuXKhclkyupyREREJANSU1O5du0aBQoUwMrq4X2vCrPyQrtw4QLu7u5ZXYaIiIg8gfPnz1OoUKGHtlGYlRdarly5gHsvBkdHxyyuRkRERDIiISEBd3d34338YRRm5YWWNrTA0dFRYVZERMTCZGSIoG4AExERERGLpTArIiIiIhZLYVZERERELJbCrIiIiIhYLIVZEREREbFYCrMiIiIiYrEUZkVERETEYmmeWXkpVPqqEtb21lldhoiIyAvlSPsjWV2CemZFRERExHIpzIqIiIiIxVKYFRERERGLpTArIiIiIhZLYfYZMplMrFq1KkuO3aFDBxo3bpwlxxYRERF5WrI0zHbo0AGTyYTJZCJbtmy4uLhQp04dPv/8c1JSUrKytCxz6tQpOnbsSKFChbC1taVo0aK0bt2a/fv3Z3VpD5SUlMQHH3xAkSJFsLW1xcPDg88///yB7RcsWGD83v/5iIuLu28bBwcHypcvz4oVK57VaYmIiIgFyPKpuYKDg5k/fz7JyclcunSJ77//nt69e/Ptt9+yZs0abGyyvMRnZv/+/dSqVYvSpUszZ84cfHx8uHbtGqtXr6Z///5s27Yty2pLTU0lOTn5vr+Pli1bcunSJebNm4enpyexsbEP/WPkrbfeIjg42GxZhw4duHXrFvnz5zeWOTo6cvz4cQCuXbvG/PnzadmyJUePHqVEiRKPVf/uc7/haGt6rG1EROQlMyI+qyuQJ5DlwwxsbW1xdXWlYMGCBAQE8J///IfVq1ezfv16FixYAMDVq1fp0qUL+fLlw9HRkZo1a3L48GGz/axevZqAgADs7OwoVqwYI0eO5O7du8Z6k8nErFmzqFevHvb29hQrVoxvv/3WWH/79m169uyJm5sbdnZ2FClShPDwcGN9ZtTwT8OHD8fNzY2ff/6Z1NRUOnTogJeXF9u3b6dBgwYUL16csmXLMnz4cFavXm1sd+TIEWrWrIm9vT158+alW7duJCYmGuuTk5Pp168fzs7O5M2bl0GDBpGammp27JSUFMLDwylatCj29vb4+/ubXY+IiAhMJhPr16+nfPny2NrasmPHjnTn8P3337Nt2zbWrVtH7dq18fDwoHLlygQFBT3wvO3t7XF1dTUe1tbW/PDDD3Tu3NmsnclkMtp4eXkxZswYrKys+Pnnnx+4bxEREXm5ZHmYvZ+aNWvi7+9vfKTcokUL4uLiWL9+PQcOHCAgIIBatWpx5coVALZv305oaCi9e/fm2LFjzJkzhwULFjB27Fiz/Q4bNoxmzZpx+PBh2rRpQ6tWrYiKigJgxowZrFmzhqVLl3L8+HEWL16Mh4eHsW1m1QD3ejnff/99Fi1axPbt2/Hz8yMyMpKjR4/Sv39/rKzS/1qcnZ0BuH79OnXr1iV37tzs27ePZcuWsXnzZnr27Gm0nTJlCgsWLODzzz9nx44dXLlyhZUrV5rtLzw8nEWLFjF79myOHj1K3759adu2bbre3yFDhjB+/HiioqLw8/NLV9eaNWsIDAxk4sSJFCxYEG9vbwYMGMDNmzfv+7u9n0WLFpEjRw6aN2/+wDbJycksXLgQgICAgAe2S0pKIiEhwewhIiIiL67n9jN8Hx8ffv75Z3bs2MHevXuJi4vD1tYWgMmTJ7Nq1Sq+/fZbunXrxsiRIxkyZAjt27cHoFixYowePZpBgwYxfPhwY58tWrSgS5cuAIwePZpNmzbx0UcfMXPmTGJiYvDy8uL111/HZDJRpEgRY7vMrOHu3bu0bduWQ4cOsWPHDgoWLAjAyZMnjfN+mK+++opbt26xaNEicubMCcDHH39MSEgIEyZMwMXFhenTpzN06FCaNm0KwOzZs9mwYYOxj6SkJMaNG8fmzZupXLmyUe+OHTuYM2cO1apVM9qOGjWKOnXqPLCe06dPs2PHDuzs7Fi5ciV//PEHPXr04M8//2T+/PkPPZc08+bN4+2338be3t5seXx8PA4ODgDcvHmTbNmy8emnn1K8ePEH7is8PJyRI0dm6LgiIiJi+Z7bMJuamorJZOLw4cMkJiaSN29es/U3b94kOjoagMOHD7Nz506zXtDk5GRu3brFjRs3yJEjB4AR3NJUrlyZyMhI4N6YzTp16lCiRAmCg4Np2LAhb7zxhrH/zKqhb9++2Nrasnv3bl555RWz882IqKgo/P39jSALEBQUREpKCsePH8fOzo7Y2FgqVqxorLexsSEwMNA4xqlTp7hx40a6kHr79m3KlStntiwwMND4OS1YArRt25bZs2eTkpKCyWRi8eLFODk5ATB16lSaN2/OzJkz0wXUf/rpp5+Iioriiy++SLcuV65cHDx4EIAbN26wefNm3n33XfLmzUtISMh99zd06FD69etnPE9ISMDd3f2hNYiIiIjlem7DbFRUFEWLFiUxMRE3NzciIiLStUn76D0xMZGRI0caPZF/Z2dnl6HjBQQEcObMGdavX8/mzZtp2bIltWvX5ttvv83UGurUqcPXX3/Nhg0baNOmjbHc29sbgF9//TVdoMxsaeNr165da/QMp0nreU7z99CcFvzh3s1ZAG5ubhQsWNAIsgC+vr6kpqby22+/4eXl9dBa5s6dS9myZSlfvny6dVZWVnh6ehrP/fz82LhxIxMmTHhgmLW1tU13DiIiIvLiei7D7A8//MCRI0fo27cvhQoV4uLFi9jY2JiNYf27gIAAjh8/bhZ87mf37t2EhoaaPf97cHR0dOStt97irbfeonnz5gQHB3PlyhUCAgIyrYY333yTkJAQ3n77baytrWnVqhUAZcuWpWTJkkyZMoW33nor3bjZq1ev4uzsjK+vLwsWLOD69etG0Ny5cydWVlaUKFECJycn3Nzc2LNnD1WrVgXuDW1IG+cLULJkSWxtbYmJiTEbUvAo9zu3oKAgli1bRmJiotFze+LECaysrChUqNBD95eYmMjSpUvNbrR7FGtr68cajysiIiIvtiwPs0lJSVy8eNFsaq7w8HAaNmxIaGgoVlZWVK5cmcaNGzNx4kS8vb25cOECa9eupUmTJgQGBhIWFkbDhg0pXLgwzZs3x8rKisOHD/PLL78wZswY41jLli0jMDCQ119/ncWLF7N3717mzZsH3Pto3M3NjXLlymFlZcWyZctwdXXF2dmZ2rVrZ1oNAE2aNOGLL76gXbt22NjY0Lx5c0wmE/Pnz6d27dpUqVKFDz74AB8fHxITE/nf//7Hxo0b2bZtG23atGH48OG0b9+eESNGcPnyZd5//33atWuHi4sLAL1792b8+PF4eXnh4+PD1KlTuXr1qnH8XLlyMWDAAPr27UtKSgqvv/468fHx7Ny5E0dHR2Pcb0a8/fbbjB49mo4dOzJy5Ej++OMPBg4cSKdOnYwhBitXrmTo0KH8+uuvZtsuWbLEGEN8P6mpqVy8eBG4N6Rj06ZNbNiwgbCwsAzXl6b0rXlYpeZ47O1EXnZnxzfI6hJERB4qy8Ps999/j5ubGzY2NuTOnRt/f39mzJhB+/btjd7JdevW8cEHH9CxY0cuX76Mq6srVatWNcJb3bp1+e677xg1ahQTJkwgW7Zs+Pj4GDd7pRk5ciTffPMNPXr0wM3Nja+//pqSJUsC9wLexIkTOXnyJNbW1lSoUIF169Zleg1pmjdvTkpKCu3atcPKyoqmTZvy6quvsn//fsaOHUvXrl35448/cHNz47XXXmP69OkA5MiRgw0bNtC7d28qVKhAjhw5aNasGVOnTjX23b9/f2JjY41r2KlTJ5o0aUJ8/P/Nnzd69Gjy5ctHeHg4p0+fxtnZ2Zga7XE4ODiwadMm3n//fQIDA8mbNy8tW7Y0C/Dx8fHGfLF/N2/ePJo2bWoM1finhIQE3NzcgHvDB4oUKcKoUaMYPHjwY9UoIiIiLy5TakbvPLJwJpOJlStX6itdXzIJCQk4OTnh3mcpVrbqmRV5XOqZFZGskPb+HR8fb9yn8yDP5TyzIiIiIiIZoTArIiIiIhYry8fMPisvyWgKERERkZfKSxNm5eX2y8i6jxxzIyIiIpZHwwxERERExGIpzIqIiIiIxVKYFRERERGLpTArIiIiIhZLYVZERERELJbCrIiIiIhYLIVZEREREbFYCrMiIiIiYrEUZkVERETEYinMioiIiIjFUpgVEREREYulMCsiIiIiFkthVkREREQslsKsiIiIiFgshVkRERERsVgKsyIiIiJisRRmRURERMRiKcyKiIiIiMVSmBURERERi6UwKyIiIiIWyyarCxB5Fip9VQlre+usLkNERJ5jR9ofyeoS5AmoZ1ZERERELJbCrIiIiIhYLIVZEREREbFYCrMiIiIiYrEUZp8hk8nEqlWrsuTYHTp0oHHjxllybBEREZGnJUvDbIcOHTCZTJhMJrJly4aLiwt16tTh888/JyUlJStLyzKnTp2iY8eOFCpUCFtbW4oWLUrr1q3Zv39/Vpd2X7Gxsbz99tt4e3tjZWVFnz59HrnNn3/+SXBwMAUKFMDW1hZ3d3d69uxJQkKC0WbBggXGvw2TyYSDgwPly5dnxYoVT/FsRERExNJk+dRcwcHBzJ8/n+TkZC5dusT3339P7969+fbbb1mzZg02Nlle4jOzf/9+atWqRenSpZkzZw4+Pj5cu3aN1atX079/f7Zt25ZltaWmppKcnJzu95GUlES+fPn473//y7Rp0zK0LysrKxo1asSYMWPIly8fp06d4r333uPKlSt89dVXRjtHR0eOHz8OwLVr15g/fz4tW7bk6NGjlChR4rHq333uNxxtTY+1jYhIphgRn9UViLzQsnyYga2tLa6urhQsWJCAgAD+85//sHr1atavX8+CBQsAuHr1Kl26dCFfvnw4OjpSs2ZNDh8+bLaf1atXExAQgJ2dHcWKFWPkyJHcvXvXWG8ymZg1axb16tXD3t6eYsWK8e233xrrb9++Tc+ePXFzc8POzo4iRYoQHh5urM+MGv5p+PDhuLm58fPPP5OamkqHDh3w8vJi+/btNGjQgOLFi1O2bFmGDx/O6tWrje2OHDlCzZo1sbe3J2/evHTr1o3ExERjfXJyMv369cPZ2Zm8efMyaNAgUlNTzY6dkpJCeHg4RYsWxd7eHn9/f7PrERERgclkYv369ZQvXx5bW1t27NiR7hw8PDz48MMPCQ0NxcnJ6YHn+ne5c+eme/fuBAYGUqRIEWrVqkWPHj3Yvn27WTuTyYSrqyuurq54eXkxZswYrKys+PnnnzN0HBEREXnxZXmYvZ+aNWvi7+9vfKTcokUL4uLiWL9+PQcOHCAgIIBatWpx5coVALZv305oaCi9e/fm2LFjzJkzhwULFjB27Fiz/Q4bNoxmzZpx+PBh2rRpQ6tWrYiKigJgxowZrFmzhqVLl3L8+HEWL16Mh4eHsW1m1QD3ejnff/99Fi1axPbt2/Hz8yMyMpKjR4/Sv39/rKzS/1qcnZ0BuH79OnXr1iV37tzs27ePZcuWsXnzZnr27Gm0nTJlCgsWLODzzz9nx44dXLlyhZUrV5rtLzw8nEWLFjF79myOHj1K3759adu2bbre3yFDhjB+/HiioqLw8/PLyK/vsV24cIEVK1ZQrVq1B7ZJTk5m4cKFAAQEBDywXVJSEgkJCWYPEREReXE9l2EWwMfHh7Nnz7Jjxw727t3LsmXLCAwMxMvLi8mTJ+Ps7Gz0JI4cOZIhQ4bQvn17ihUrRp06dRg9ejRz5swx22eLFi3o0qUL3t7ejB49msDAQD766CMAYmJi8PLy4vXXX6dIkSK8/vrrtG7dGiBTa7h79y5t27Zly5Yt7NixA09PTwBOnjxpnPfDfPXVV9y6dYtFixZRunRpatasyccff8wXX3zBpUuXAJg+fTpDhw6ladOm+Pr6Mnv2bLNe06SkJMaNG8fnn39O3bp1KVasGB06dKBt27bp6h01ahR16tShePHi5MmTJ+O/wAxo3bo1OXLkoGDBgjg6OjJ37lyz9fHx8Tg4OODg4ED27Nnp3r07n376KcWLF3/gPsPDw3FycjIe7u7umVqziIiIPF+e2wGpqampmEwmDh8+TGJiInnz5jVbf/PmTaKjowE4fPgwO3fuNOsFTU5O5tatW9y4cYMcOXIAULlyZbN9VK5cmcjISODezWh16tShRIkSBAcH07BhQ9544w1j/5lVQ9++fbG1tWX37t288sorZuebEVFRUfj7+5MzZ05jWVBQECkpKRw/fhw7OztiY2OpWLGisd7GxobAwEDjGKdOneLGjRvUqVPHbN+3b9+mXLlyZssCAwONnx0cHIyf27Zty+zZszNU84NMmzaN4cOHc+LECYYOHUq/fv2YOXOmsT5XrlwcPHgQgBs3brB582beffdd8ubNS0hIyH33mbafNAkJCQq0IiIiL7DnNsxGRUVRtGhREhMTcXNzIyIiIl2btI/eExMTGTlyJE2bNk3Xxs7OLkPHCwgI4MyZM6xfv57NmzfTsmVLateuzbfffpupNdSpU4evv/6aDRs20KZNG2O5t7c3AL/++mu6QJnZ0sbXrl27loIFC5qts7W1NXv+99CcFvzh3s1Z/1baeFgfHx/y5MlDlSpVGDZsGG5ubsC9G8XSeq4B/Pz82LhxIxMmTHhgmLW1tU13DiIiIvLiei7D7A8//MCRI0fo27cvhQoV4uLFi9jY2JiNYf27gIAAjh8/bhZ87mf37t2EhoaaPf97cHR0dOStt97irbfeonnz5gQHB3PlyhUCAgIyrYY333yTkJAQ3n77baytrWnVqhUAZcuWpWTJkkyZMoW33nor3bjZq1ev4uzsjK+vLwsWLOD69etG0Ny5cydWVlaUKFECJycn3Nzc2LNnD1WrVgXuDW1IG+cLULJkSWxtbYmJiXnoONV/etS5/RtpU7ElJSU9tJ21tTU3b958anWIiIiIZcnyMJuUlMTFixfNpuYKDw+nYcOGhIaGYmVlReXKlWncuDETJ07E29ubCxcusHbtWpo0aUJgYCBhYWE0bNiQwoUL07x5c6ysrDh8+DC//PILY8aMMY6VNub19ddfZ/Hixezdu5d58+YBMHXqVNzc3ChXrhxWVlYsW7YMV1dXnJ2dqV27dqbVANCkSRO++OIL2rVrh42NDc2bN8dkMjF//nxq165NlSpV+OCDD/Dx8SExMZH//e9/bNy4kW3bttGmTRuGDx9O+/btGTFiBJcvX+b999+nXbt2uLi4ANC7d2/Gjx+Pl5cXPj4+TJ06latXrxrHz5UrFwMGDKBv376kpKTw+uuvEx8fz86dO3F0dKR9+/aP9TtM67FNTEzk8uXLREZGkj17dkqWLAnAypUrGTp0KL/++isA69at49KlS1SoUAEHBweOHj3KwIEDCQoKMvtjITU1lYsXLwL3hnRs2rSJDRs2EBYW9lj1AZS+NQ+r1ByPvZ28PM6Ob5DVJYiIyBPI8jD7/fff4+bmho2NDblz58bf358ZM2bQvn17o3dy3bp1fPDBB3Ts2JHLly/j6upK1apVjfBWt25dvvvuO0aNGsWECRPIli0bPj4+dOnSxexYI0eO5JtvvqFHjx64ubnx9ddfG4ErV65cTJw4kZMnT2JtbU2FChVYt25dpteQpnnz5qSkpNCuXTusrKxo2rQpr776Kvv372fs2LF07dqVP/74Azc3N1577TWmT58OQI4cOdiwYQO9e/emQoUK5MiRg2bNmjF16lRj3/379yc2Nta4hp06daJJkybEx//fXIejR48mX758hIeHc/r0aZydnY2p0R7X33u3Dxw4wFdffUWRIkU4e/YscO9GrrT5YgHs7e357LPP6Nu3L0lJSbi7u9O0aVOGDBlitt+EhARjyIGtrS1FihRh1KhRDB48+LFrFBERkReTKTWjdx5ZOJPJxMqVK/WVri+ZhISEe7Ma9FmKla16ZuXB1DMrIvL8SHv/jo+Pf+R9Os/t1FwiIiIiIo+iMCsiIiIiFivLx8w+Ky/JaAoRERGRl4p6ZkVERETEYr00PbPycvtlZN1M+aIHEREReb6oZ1ZERERELJbCrIiIiIhYLIVZEREREbFYCrMiIiIiYrEUZkVERETEYinMioiIiIjFUpgVEREREYulMCsiIiIiFkthVkREREQslsKsiIiIiFgshVkRERERsVgKsyIiIiJisRRmRURERMRiKcyKiIiIiMVSmBURERERi6UwKyIiIiIWS2FWRERERCyWwqyIiIiIWCyFWRERERGxWDZZXYDIs1Dpq0pY21tndRkiIvIcOtL+SFaXIP+CemZFRERExGIpzIqIiIiIxVKYFRERERGLpTArIiIiIhZLYfYJREREYDKZuHr16jM/toeHB9OnT38mx6pevTp9+vR5JscSEREReRIvfZidPXs2uXLl4u7du8ayxMREsmXLRvXq1c3apoVYNzc3YmNjcXJyesbV3t+hQ4do0aIFLi4u2NnZ4eXlRdeuXTlx4kRWl3ZfK1asIDAwEGdnZ3LmzEnZsmX54osvzNpUr14dk8lkPFxcXGjRogXnzp3LoqpFRETkefTST81Vo0YNEhMT2b9/P5UqVQJg+/btuLq6smfPHm7duoWdnR0AW7dupXDhwpQoUeKp1pScnIzJZMLK6tF/a3z33Xc0a9aMunXrsnjxYooXL05cXBzLli1j2LBhLFmy5KnW+jAPOo88efLwwQcf4OPjQ/bs2fnuu+/o2LEj+fPnp27duka7rl27MmrUKFJTUzl37hx9+vShbdu2bN++/bFr2X3uNxxtTf/6nERE0hkRn9UViLzUXvqe2RIlSuDm5kZERISxLCIigkaNGlG0aFF2795ttrxGjRrphhn8sxcx7XH27FkApk6dSpkyZciZMyfu7u706NGDxMREY78LFizA2dmZNWvWULJkSWxtbYmJiSEuLo6QkBDs7e0pWrQoixcvNqv9xo0bdOzYkfr167NmzRpq165N0aJFqVixIpMnT2bOnDlG223btvHqq69ia2uLm5sbQ4YMMeuNvn79OqGhoTg4OODm5saUKVPSXaukpCQGDBhAwYIFyZkzJxUrVjS7bg86j3+qXr06TZo0wdfXl+LFi9O7d2/8/PzYsWOHWbscOXLg6uqKm5sblSpVomfPnhw8ePDBv0wRERF56bz0YRbu9c5u3brVeL5161aqV69OtWrVjOU3b95kz5491KhRI932K1asIDY21ng0bdqUEiVK4OLiAoCVlRUzZszg6NGjLFy4kB9++IFBgwaZ7ePGjRtMmDCBuXPncvToUfLnz0+HDh04f/48W7du5dtvv2XmzJnExcUZ22zYsIE//vgj3b7SODs7A/D7779Tv359KlSowOHDh5k1axbz5s1jzJgxRtuBAweybds2Vq9ezcaNG4mIiEgXHHv27MlPP/3EN998w88//0yLFi0IDg7m5MmTDz2Ph0lNTWXLli0cP36cqlWrPrDdlStXWLp0KRUrVnzo/pKSkkhISDB7iIiIyIvrpR9mAPfCbJ8+fbh79y43b97k0KFDVKtWjTt37jB79mwAfvrpJ5KSkqhRowanT5822z5PnjzGz9OmTeOHH35gz5492NvbA5jdROXh4cGYMWN49913mTlzprH8zp07zJw5E39/fwBOnDjB+vXr2bt3LxUqVABg3rx5+Pr6GtukhUgfH5+Hnt/MmTNxd3fn448/xmQy4ePjw4ULFxg8eDBhYWHcuHGDefPm8eWXX1KrVi0AFi5cSKFChYx9xMTEMH/+fGJiYihQoAAAAwYM4Pvvv2f+/PmMGzfuvufxIPHx8RQsWJCkpCSsra2ZOXMmderUSVf33LlzSU1N5caNG3h7e7Nhw4aH7jc8PJyRI0c+tI2IiIi8ONQzy72Pva9fv86+ffvYvn073t7e5MuXj2rVqhnjZiMiIihWrBiFCxd+4H7Wr1/PkCFDWLJkCd7e3sbyzZs3U6tWLQoWLEiuXLlo164df/75Jzdu3DDaZM+eHT8/P+N5VFQUNjY2lC9f3ljm4+Nj9LbCvV7NjIiKiqJy5cqYTP83ZjQoKIjExER+++03oqOjuX37tlmvZ548eczGBh85coTk5GS8vb1xcHAwHtu2bSM6Ovq+5xETE2PWNi3wAuTKlYvIyEj27dvH2LFj6devn9mQBYA2bdoQGRnJ4cOH2bFjB56enrzxxhtcu3btgec6dOhQ4uPjjcf58+czdI1ERETEMqlnFvD09KRQoUJs3bqVv/76i2rVqgFQoEAB3N3d2bVrF1u3bqVmzZoP3MexY8do1aoV48eP54033jCWnz17loYNG9K9e3fGjh1Lnjx52LFjB507d+b27dvkyJEDAHt7e7OwmRFpgfnXX3+lcuXKj3vajyUxMRFra2sOHDiAtbW12ToHBwfj57+fR4ECBYiMjDTW/b0H28rKCk9PTwDKli1LVFQU4eHhZjNIODk5GW08PT2ZN28ebm5uLFmyhC5duty3TltbW2xtbf/VuYqIiIjlUM/s/5d2Y1dERIRZoKpatarxcf/9xssC/PHHH4SEhNCsWTP69u1rtu7AgQOkpKQwZcoUKlWqhLe3NxcuXHhkPT4+Pty9e5cDBw4Yy44fP242t+0bb7zBK6+8wsSJE++7j7S2vr6+/PTTT2Y9uTt37iRXrlwUKlSI4sWLky1bNvbs2WOs/+uvv8ym9ipXrhzJycnExcXh6elp9nB1db3v8W1sbMza/T3M/lNKSgpJSUkPvSZpIfrmzZsPbSciIiIvD/XM/n81atTgvffe486dO0bPLEC1atXo2bMnt2/ffmCYbdasGTly5GDEiBFcvHjRWJ4vXz48PT25c+cOH330ESEhIezcudMYh/swJUqUIDg4mHfeeYdZs2ZhY2NDnz59jHG4ADlz5mTu3Lm0aNGCN998k169euHp6ckff/zB0qVLiYmJ4ZtvvqFHjx5Mnz6d999/n549e3L8+HGGDx9Ov379sLKywsHBgc6dOzNw4EDy5s1L/vz5+eCDD8ym1PL29qZNmzaEhoYyZcoUypUrx+XLl9myZQt+fn40aNAgw9c6PDycwMBAihcvTlJSEuvWreOLL75g1qxZZu1u3LhhXM9Lly4xevRo7OzszHq+M6r0rXlYpeZ47O3Ecpwdn/F/gyIi8uJQz+z/V6NGDW7evImnp6cxCwHcC7PXrl0zpvC6nx9//JFffvmFIkWK4ObmZjzOnz+Pv78/U6dOZcKECZQuXZrFixcTHh6eoZrmz59PgQIFqFatGk2bNqVbt27pZgdo1KgRu3btIlu2bLz99tv4+PjQunVr4uPjjdkKChYsyLp169i7dy/+/v68++67dO7cmf/+97/GfiZNmkSVKlUICQmhdu3avP7662bjddPqCQ0NpX///pQoUYLGjRuzb9++h44jvp/r16/To0cPSpUqRVBQEMuXL+fLL79MN3Tgs88+M65ljRo1+OOPP1i3bt1Tn+dXRERELIcpNaN3EYlYoISEBJycnHDvsxQrW/XMvsjUMysi8uJIe/+Oj4/H0dHxoW3VMysiIiIiFkthVkREREQslsKsiIiIiFgshVkRERERsViamkteCr+MrPvIAeQiIiJiedQzKyIiIiIWS2FWRERERCyWwqyIiIiIWCyFWRERERGxWAqzIiIiImKxFGZFRERExGIpzIqIiIiIxVKYFRERERGLpTArIiIiIhZLYVZERERELJbCrIiIiIhYLIVZEREREbFYCrMiIiIiYrEUZkVERETEYinMioiIiIjFUpgVEREREYulMCsiIiIiFkthVkREREQslsKsiIiIiFgsm6wuQORZqPRVJaztrbO6DBGR59KR9keyugSRJ6aeWRERERGxWAqzIiIiImKxFGZFRERExGIpzIqIiIiIxVKYFRERERGLpTD7BCIiIjCZTFy9evWZH9vDw4Pp06c/k2NVr16dPn36PJNjiYiIiDyJl35qrtmzZzNw4ED++usvbGzuXY7ExERy585NUFAQERERRtuIiAhq1KjBr7/+SmxsLE5OTllUtblDhw4xbtw4fvzxR+Lj43F3d6d69eoMHDgQb2/vrC4vnaNHjxIWFsaBAwc4d+4c06ZNSxeaO3TowMKFC43nefLkoUKFCkycOBE/P7/HPubuc7/haGv6t6WLvHxGxGd1BSIiD/XS98zWqFGDxMRE9u/fbyzbvn07rq6u7Nmzh1u3bhnLt27dSuHChSlRogSurq6YTE8nHCUnJ5OSkpKhtt999x2VKlUiKSmJxYsXExUVxZdffomTkxPDhg17KvVl1IPO48aNGxQrVozx48fj6ur6wO2Dg4OJjY0lNjaWLVu2YGNjQ8OGDZ9mySIiImJhXvowW6JECdzc3NL1wDZq1IiiRYuye/dus+U1atRIN8ygevXqmEymdI+zZ88CMHXqVMqUKUPOnDlxd3enR48eJCYmGvtdsGABzs7OrFmzhpIlS2Jra0tMTAxxcXGEhIRgb29P0aJFWbx4sVntN27coGPHjtSvX581a9ZQu3ZtihYtSsWKFZk8eTJz5swx2m7bto1XX30VW1tb3NzcGDJkCHfv3jXWX79+ndDQUBwcHHBzc2PKlCnprlVSUhIDBgygYMGC5MyZk4oVK5pdtwedxz9VqFCBSZMm0apVK2xtbR/4u7G1tcXV1RVXV1fKli3LkCFDOH/+PJcvX37gNklJSSQkJJg9RERE5MX10odZuNc7u3XrVuP51q1bqV69OtWqVTOW37x5kz179lCjRo10269YscLoQYyNjaVp06aUKFECFxcXAKysrJgxYwZHjx5l4cKF/PDDDwwaNMhsHzdu3GDChAnMnTuXo0ePkj9/fjp06MD58+fZunUr3377LTNnziQuLs7YZsOGDfzxxx/p9pXG2dkZgN9//5369etToUIFDh8+zKxZs5g3bx5jxowx2g4cOJBt27axevVqNm7cSEREBAcPHjTbX8+ePfnpp5/45ptv+Pnnn2nRogXBwcGcPHnyoeeRGRITE/nyyy/x9PQkb968D2wXHh6Ok5OT8XB3d8+U44uIiMjz6aUfMwv3wmyfPn24e/cuN2/e5NChQ1SrVo07d+4we/ZsAH766SeSkpKoUaMGp0+fNts+T548xs/Tpk3jhx9+YM+ePdjb2wOYjQf18PBgzJgxvPvuu8ycOdNYfufOHWbOnIm/vz8AJ06cYP369ezdu5cKFSoAMG/ePHx9fY1t0kKkj4/PQ89v5syZuLu78/HHH2MymfDx8eHChQsMHjyYsLAwbty4wbx58/jyyy+pVasWAAsXLqRQoULGPmJiYpg/fz4xMTEUKFAAgAEDBvD9998zf/58xo0bd9/z+De+++47HBwcgHs9x25ubnz33XdYWT34b7ChQ4fSr18/43lCQoICrYiIyAtMPbPcGyZw/fp19u3bx/bt2/H29iZfvnxUq1bNGDcbERFBsWLFKFy48AP3s379eoYMGcKSJUvMbrzavHkztWrVomDBguTKlYt27drx559/cuPGDaNN9uzZzW5sioqKwsbGhvLlyxvLfHx8jN5WgNTU1AydX1RUFJUrVzYb4xsUFERiYiK//fYb0dHR3L59m4oVKxrr8+TJQ4kSJYznR44cITk5GW9vbxwcHIzHtm3biI6Ovu95xMTEmLVNC7wZVaNGDSIjI4mMjGTv3r3UrVuXevXqce7cuQduY2tri6Ojo9lDREREXlzqmQU8PT0pVKgQW7du5a+//qJatWoAFChQAHd3d3bt2sXWrVupWbPmA/dx7NgxWrVqxfjx43njjTeM5WfPnqVhw4Z0796dsWPHkidPHnbs2EHnzp25ffs2OXLkAMDe3v6xbyhLC8y//vorlStXftzTfiyJiYlYW1tz4MABrK2tzdal9Z6C+XkUKFCAyMhIY93fe7AzImfOnHh6ehrP586di5OTE5999pnZEAkRERF5eSnM/n9pN3b99ddfDBw40FhetWpV4+P+7t2733fbP/74g5CQEJo1a0bfvn3N1h04cICUlBSmTJlifDy+dOnSR9bj4+PD3bt3OXDggDHM4Pjx42Zz277xxhu88sorTJw4kZUrV6bbx9WrV3F2dsbX15fly5eTmppqBM2dO3eSK1cuChUqRJ48eciWLRt79uwxep7/+usvTpw4YQT7cuXKkZycTFxcHFWqVHlk/QA2NjZmYfTfMplMWFlZcfPmzcfetvSteVil5si0Wl4kZ8c3yOoSREREnpjC7P9Xo0YN3nvvPe7cuWMEOIBq1arRs2dPbt++fd+bvwCaNWtGjhw5GDFiBBcvXjSW58uXD09PT+7cucNHH31ESEgIO3fuNMbhPkyJEiUIDg7mnXfeYdasWdjY2NCnTx9jHC7c67mcO3cuLVq04M0336RXr154enryxx9/sHTpUmJiYvjmm2/o0aMH06dP5/3336dnz54cP36c4cOH069fP6ysrHBwcKBz584MHDiQvHnzkj9/fj744AOzsane3t60adOG0NBQpkyZQrly5bh8+TJbtmzBz8+PBg0yHohu377NsWPHjJ9///13IiMjcXBwMAu/SUlJxvX866+/+Pjjj0lMTCQkJCTDxxIREZEXm8bM/n81atTg5s2beHp6GrMQwL0we+3aNWMKr/v58ccf+eWXXyhSpAhubm7G4/z58/j7+zN16lQmTJhA6dKlWbx4MeHh4Rmqaf78+RQoUIBq1arRtGlTunXrlm52gEaNGrFr1y6yZcvG22+/jY+PD61btyY+Pt74KL5gwYKsW7eOvXv34u/vz7vvvkvnzp3573//a+xn0qRJVKlShZCQEGrXrs3rr79uNl43rZ7Q0FD69+9PiRIlaNy4Mfv27XvoOOL7uXDhAuXKlaNcuXLExsYyefJkypUrR5cuXczaff/998a1rFixIvv27WPZsmVUr179sY4nIiIiLy5TakbvIhKxQAkJCfem6OqzFCtbDTO4Hw0zEBGR503a+3d8fPwjb+ZWz6yIiIiIWCyFWRERERGxWAqzIiIiImKxNJuBvBR+GVlXX6AgIiLyAlLPrIiIiIhYLIVZEREREbFYCrMiIiIiYrEUZkVERETEYinMioiIiIjFUpgVEREREYulMCsiIiIiFkthVkREREQslsKsiIiIiFgshVkRERERsVgKsyIiIiJisRRmRURERMRiKcyKiIiIiMWyyWjDGTNmZHinvXr1eqJiREREREQehyk1NTU1Iw2LFi2asR2aTJw+ffpfFSWSWRISEnByciI+Ph5HR8esLkdEREQy4HHevzPcM3vmzJl/XZiIiIiISGb6V2Nmb9++zfHjx7l7925m1SMiIiIikmFPFGZv3LhB586dyZEjB6VKlSImJgaA999/n/Hjx2dqgSIiIiIiD/JEYXbo0KEcPnyYiIgI7OzsjOW1a9dmyZIlmVaciIiIiMjDZHjM7N+tWrWKJUuWUKlSJUwmk7G8VKlSREdHZ1pxIpml0leVsLa3zuoyRERELN6R9keyugQzT9Qze/nyZfLnz59u+fXr183CrYiIiIjI0/REYTYwMJC1a9caz9MC7Ny5c6lcuXLmVCYiIiIi8ghPNMxg3Lhx1KtXj2PHjnH37l0+/PBDjh07xq5du9i2bVtm1ygiIiIicl9P1DP7+uuvExkZyd27dylTpgwbN24kf/78/PTTT5QvXz6zaxQRERERua8n6pkFKF68OJ999llm1iIiIiIi8lgy3DObkJCQ4YeYGzFiBGXLls20/S1YsABnZ+dM25+IiIiIpcpwz6yzs3OGZypITk5+4oKy2sWLFxk7dixr167l999/J3/+/JQtW5Y+ffpQq1atZ1aHyWRi5cqVNG7c+JkdM7OsWLGC2bNnc+DAAa5cucKhQ4fShfl33nmHzZs3c+HCBRwcHHjttdeYMGECPj4+AJw9e5aiRYsa7bNly0bhwoXp0KEDH3zwwWPPmrH73G842mqmDRGR59aI+KyuQCxUhsPs1q1bjZ/Pnj3LkCFD6NChgzF7wU8//cTChQsJDw/P/CqfkbNnzxIUFISzszOTJk2iTJky3Llzhw0bNvDee+/x66+/ZnWJFuH69eu8/vrrtGzZkq5du963Tfny5WnTpg2FCxfmypUrjBgxgjfeeIMzZ85gbf1/88Fu3ryZUqVKkZSUxI4dO+jSpQtubm507tz5WZ2OiIiIPMcyPMygWrVqxmPRokVMnTqV8PBw3nzzTd58803Cw8OZPHky8+fPf5r1PlU9evTAZDKxd+9emjVrhre3N6VKlaJfv37s3r0bgJiYGBo1aoSDgwOOjo60bNmSS5cume1n/PjxuLi4kCtXLjp37sytW7fSHWvu3Ln4+vpiZ2eHj48PM2fOfOK6o6OjadSoES4uLjg4OFChQgU2b95s1sbDw4MxY8YQGhqKg4MDRYoUYc2aNVy+fNk4Hz8/P/bv329s8+eff9K6dWsKFixIjhw5KFOmDF9//fUj62nXrh1hYWHUrl37gW26detG1apV8fDwICAggDFjxnD+/HnOnj1r1i5v3ry4urpSpEgR2rRpQ1BQEAcPHnzgfpOSkjTsRURE5CXyRLMZ/PTTTwQGBqZbHhgYyN69e/91UVnhypUrfP/997z33nvkzJkz3XpnZ2dSUlJo1KgRV65cYdu2bWzatInTp0/z1ltvGe2WLl3KiBEjGDduHPv378fNzS1dUF28eDFhYWGMHTuWqKgoxo0bx7Bhw1i4cOET1Z6YmEj9+vXZsmULhw4dIjg4mJCQEGJiYszaTZs2jaCgIA4dOkSDBg1o164doaGhtG3bloMHD1K8eHFCQ0NJTU0F4NatW5QvX561a9fyyy+/0K1bN9q1a5fpv+Pr168zf/58ihYtiru7+wPb7d+/nwMHDlCxYsUHtgkPD8fJycl4PGx/IiIiYvmeKMy6u7vfdyaDuXPnWmx4OHXqFKmpqcaYzfvZsmULR44c4auvvqJ8+fJUrFiRRYsWsW3bNvbt2wfA9OnT6dy5M507d6ZEiRKMGTOGkiVLmu1n+PDhTJkyhaZNm1K0aFGaNm1K3759mTNnzhPV7u/vzzvvvEPp0qXx8vJi9OjRFC9enDVr1pi1q1+/Pu+88w5eXl6EhYWRkJBAhQoVaNGiBd7e3gwePJioqCijp7lgwYIMGDCAsmXLUqxYMd5//32Cg4NZunTpE9X5TzNnzsTBwQEHBwfWr1/Ppk2byJ49u1mb1157DQcHB7Jnz06FChVo2bIloaGhD9zn0KFDiY+PNx7nz5/PlFpFRETk+fREYXbatGl89NFHlClThi5dutClSxf8/Pz46KOPmDZtWmbX+Eyk9UY+TFRUFO7u7maBvWTJkjg7OxMVFWW0+WfP4d+/Fe369etER0fTuXNnI8g5ODgwZswYoqOjn6j2xMREBgwYgK+vL87Ozjg4OBAVFZWuZ9bPz8/42cXFBYAyZcqkWxYXFwfcu5Fv9OjRlClThjx58uDg4MCGDRuM/S5evNjsHLZv3/5Ydbdp04ZDhw6xbds2vL29admyZbohGUuWLCEyMpLDhw+zdOlSVq9ezZAhQx64T1tbWxwdHc0eIiIi8uJ6onlm69evz8mTJ5k5c6ZxU1RISAjvvvuuxfbMenl5YTKZnvpNXomJiQB89tln6ULv3298ehwDBgxg06ZNTJ48GU9PT+zt7WnevDm3b982a5ctWzbj57TZAO63LCUlBYBJkybx4YcfMn36dMqUKUPOnDnp06ePsd8333zT7BwKFiz4WHWnDQXw8vKiUqVK5M6dm5UrV9K6dWujjbu7O56engD4+voSHR3NsGHDGDFiBHZ2do91PBEREXnxPPGXJhQqVIhx48ZlZi1ZKk+ePNStW5dPPvmEXr16pRs3e/XqVXx9fTl//jznz583QvuxY8e4evWqMZTA19eXPXv2mH0UnnbzGNzr/SxQoACnT5+mTZs2mVL7zp076dChA02aNAHuBeZ/3kj1pPtt1KgRbdu2Be6F3BMnThjnmitXLnLlyvWvjwP3esZTU1NJSkp6aDtra2vu3r3L7du3HyvMlr41D6vUHP+2TJEXztnxDbK6BBGRf+WJw+zVq1eZN2+e8fF6qVKl6NSpE05OTplW3LP2ySefEBQUxKuvvsqoUaPw8/Pj7t27bNq0iVmzZnHs2DHKlClDmzZtmD59Onfv3qVHjx5Uq1bNuCGud+/edOjQgcDAQIKCgli8eDFHjx6lWLFixnFGjhxJr169cHJyIjg4mKSkJPbv389ff/1Fv379jHZnzpwhMjLSrEYvL690dXt5ebFixQpCQkIwmUwMGzbM6F39N7y8vPj222/ZtWsXuXPnZurUqVy6dCndGOB/unLlCjExMVy4cAGA48ePA+Dq6oqrqyunT59myZIlvPHGG+TLl4/ffvuN8ePHY29vT/369c329eeff3Lx4kXu3r3LkSNH+PDDD6lRo4aGD4iIiAjwhGF2//791K1bF3t7e1599VUApk6dytixY9m4cSMBAQGZWuSzUqxYMQ4ePMjYsWPp378/sbGx5MuXj/LlyzNr1ixMJhOrV6/m/fffp2rVqlhZWREcHMxHH31k7OOtt94iOjqaQYMGcevWLZo1a0b37t3ZsGGD0aZLly7kyJGDSZMmMXDgQHLmzEmZMmXo06ePWT1/D7Zp7jcuderUqXTq1InXXnuNV155hcGDB2fKlFT//e9/OX36NHXr1iVHjhx069aNxo0bEx//8Imt16xZQ8eOHY3nrVq1Au7d+JY2PGD79u1Mnz6dv/76CxcXF6pWrcquXbvInz+/2b7SpveytrbGzc2N+vXrM3bs2H99biIiIvJiMKVm5M6nf6hSpQqenp589tln2Njcy8N3796lS5cunD59mh9//DHTCxV5EgkJCfem6OqzFCtbDTMQ+ScNMxCR51Ha+3d8fPwjP4194p7ZvwdZABsbGwYNGnTf+WdFRERERJ6GJ5qay9HRMd20TwDnz5/PtBuCREREREQe5YnC7FtvvUXnzp1ZsmSJcXf/N998Q5cuXcymVRIREREReZqeaJjB5MmTMZlMhIaGcvfuXVJTU8mePTvdu3dn/PjxmV2jyL/2y8i6mgFBRETkBfREN4CluXHjhvGtVcWLFydHDt1gI8+XxxlALiIiIs+Hp3YDWKdOnTLU7vPPP3+c3YqIiIiIPJHHCrMLFiygSJEilCtXjn/RoSsiIiIikikeK8x2796dr7/+mjNnztCxY0fatm1Lnjx5nlZtIiIiIiIP9VizGXzyySfExsYyaNAg/ve//+Hu7k7Lli3ZsGGDempFRERE5Jn7VzeAnTt3jgULFrBo0SLu3r3L0aNHcXBwyMz6RP4V3QAmIiJieR7n/fuJ5pk1NraywmQykZqaSnJy8r/ZlYiIiIjIY3vsMJuUlMTXX39NnTp18Pb25siRI3z88cfExMSoV1ZEREREnqnHugGsR48efPPNN7i7u9OpUye+/vprXnnlladVm4iIiIjIQz3WmFkrKysKFy5MuXLlMJlMD2y3YsWKTClO5N/SmFkRERHL89S+NCE0NPShIVZERERE5Fl67C9NEBERERF5Xvyr2QxERERERLKSwqyIiIiIWCyFWRERERGxWAqzIiIiImKxFGZFRERExGIpzIqIiIiIxVKYFRERERGL9VjzzIpYqkpfVcLa3jqryxAREcmwI+2PZHUJFkE9syIiIiJisRRmRURERMRiKcyKiIiIiMVSmBURERERi6UwKyIiIiIWS2H2OTFixAjKli2baftbsGABzs7OmbY/ERERkeeRpuZ6AhcvXmTs2LGsXbuW33//nfz581O2bFn69OlDrVq1nlkdJpOJlStX0rhx42d2zMxiMpnuu3zixIkMHDgwXRtra2sKFChA8+bNCQ8Px9bW9rGOt/vcbzja3v+YIiIvlBHxWV2ByDOlMPuYzp49S1BQEM7OzkyaNIkyZcpw584dNmzYwHvvvcevv/6a1SVahNjYWLPn69evp3PnzjRr1sxs+fz58wkODubOnTscPnyYjh07kjNnTkaPHv0syxUREZHnlIYZPKYePXpgMpnYu3cvzZo1w9vbm1KlStGvXz92794NQExMDI0aNcLBwQFHR0datmzJpUuXzPYzfvx4XFxcyJUrF507d+bWrVvpjjV37lx8fX2xs7PDx8eHmTNnPnHd0dHRNGrUCBcXFxwcHKhQoQKbN282a+Ph4cGYMWMIDQ3FwcGBIkWKsGbNGi5fvmycj5+fH/v37ze2+fPPP2ndujUFCxYkR44clClThq+//vqR9bi6upo9Vq9eTY0aNShWrJhZO2dnZ1xdXXF3d6dhw4Y0atSIgwcPPvF1EBERkReLwuxjuHLlCt9//z3vvfceOXPmTLfe2dmZlJQUGjVqxJUrV9i2bRubNm3i9OnTvPXWW0a7pUuXMmLECMaNG8f+/ftxc3NLF1QXL15MWFgYY8eOJSoqinHjxjFs2DAWLlz4RLUnJiZSv359tmzZwqFDhwgODiYkJISYmBizdtOmTSMoKIhDhw7RoEED2rVrR2hoKG3btuXgwYMUL16c0NBQUlNTAbh16xbly5dn7dq1/PLLL3Tr1o127dqxd+/eDNd26dIl1q5dS+fOnR/a7sSJE/zwww9UrFjxgW2SkpJISEgwe4iIiMiLy5Salkrkkfbu3UvFihVZsWIFTZo0uW+bTZs2Ua9ePc6cOYO7uzsAx44do1SpUuzdu5cKFSrw2muvUa5cOT755BNju0qVKnHr1i0iIyMB8PT0ZPTo0bRu3dpoM2bMGNatW8euXbuAh4+ZXbBgAX369OHq1asPPJ/SpUvz7rvv0rNnT+Bez2yVKlX44osvgHtjg93c3Bg2bBijRo0CYPfu3VSuXJnY2FhcXV3vu9+GDRvi4+PD5MmTH3jsv5s4cSLjx4/nwoUL2NnZGctNJhN2dnZYW1tz9+5dkpKSaNiwIStWrCBbtmz33deIESMYOXJkuuXxQ3JpzKyIvBw0ZlZeAAkJCTg5OREfH4+jo+ND26pn9jFkJPdHRUXh7u5uBFmAkiVL4uzsTFRUlNHmn72LlStXNn6+fv060dHRdO7cGQcHB+MxZswYoqOjn6j2xMREBgwYgK+vL87Ozjg4OBAVFZWuZ9bPz8/42cXFBYAyZcqkWxYXFwdAcnIyo0ePpkyZMuTJkwcHBwc2bNhg7Hfx4sVm57B9+/Z0tX3++ee0adPGLMimmTZtGpGRkRw+fJjvvvuOEydO0K5duwee59ChQ4mPjzce58+fz+glEhEREQukG8Aeg5eXFyaT6anf5JWYmAjAZ599li70WltbP9E+BwwYwKZNm5g8eTKenp7Y29vTvHlzbt++bdbu7z2eabMJ3G9ZSkoKAJMmTeLDDz9k+vTplClThpw5c9KnTx9jv2+++abZORQsWNDseNu3b+f48eMsWbLkvnW7urri6ekJQIkSJbh27RqtW7dmzJgxxvK/s7W1feyZDkRERMRyKcw+hjx58lC3bl0++eQTevXqlW7c7NWrV/H19eX8+fOcP3/ebJjB1atXKVmyJAC+vr7s2bOH0NBQY9u0m8fgXu9ngQIFOH36NG3atMmU2nfu3EmHDh2M4RGJiYmcPXs2U/bbqFEj2rZtC9wLuSdOnDDONVeuXOTKleuB28+bN4/y5cvj7++foeOlhfmbN28+Vp2lb83DKjXHY20j8jBnxzfI6hJERASF2cf2ySefEBQUxKuvvsqoUaPw8/Pj7t27bNq0iVmzZnHs2DHKlClDmzZtmD59Onfv3qVHjx5Uq1aNwMBAAHr37k2HDh0IDAwkKCiIxYsXc/ToUbM7+UeOHEmvXr1wcnIiODiYpKQk9u/fz19//UW/fv2MdmfOnDHG2abx8vJKV7eXlxcrVqwgJCQEk8nEsGHDjN7Vf8PLy4tvv/2WXbt2kTt3bqZOncqlS5eMMPswCQkJLFu2jClTpjywzdWrV7l48SIpKSmcPHmSUaNG4e3tja+v77+uXURERCyfwuxjKlasGAcPHmTs2LH079+f2NhY8uXLR/ny5Zk1axYmk4nVq1fz/vvvU7VqVaysrAgODuajjz4y9vHWW28RHR3NoEGDuHXrFs2aNaN79+5s2LDBaNOlSxdy5MjBpEmTGDhwIDlz5qRMmTL06dPHrJ6/B9s09xuXOnXqVDp16sRrr73GK6+8wuDBgzPlTv///ve/nD59mrp165IjRw66detG48aNiY9/9A0I33zzDampqWY3uf1Tx44dgXvDG1xdXalatSrjxo3Dxkb/dEVERESzGcgLLu1uSPc+S7Gy1TADyTwaZiAi8vRoNgMREREReSkozIqIiIiIxVKYFRERERGLpbto5KXwy8i6jxxzIyIiIpZHPbMiIiIiYrEUZkVERETEYinMioiIiIjFUpgVEREREYulMCsiIiIiFkthVkREREQslsKsiIiIiFgshVkRERERsVgKsyIiIiJisRRmRURERMRiKcyKiIiIiMVSmBURERERi6UwKyIiIiIWS2FWRERERCyWwqyIiIiIWCyFWRERERGxWAqzIiIiImKxFGZFRERExGIpzIqIiIiIxbLJ6gJEnoVKX1XC2t46q8sQEZEXwJH2R7K6BPkb9cyKiIiIiMVSmBURERERi6UwKyIiIiIWS2FWRERERCyWwqyIiIiIWCyFWXkoDw8Ppk+fntVliIiIiNyXpuZ6Ci5fvkxYWBhr167l0qVL5M6dG39/f8LCwggKCsJkMrFy5UoaN26cacfcunUrkyZNYs+ePdy8eRMPDw/q1atHv379KFiwYKYdJ7N4eHhw7ty5dMt79OjBJ598kq6NlZUVLi4u1KtXj8mTJ5M7d+7HOt7uc7/haGv694WLiFiSEfFZXYHIU6ee2aegWbNmHDp0iIULF3LixAnWrFlD9erV+fPPPzP1OLdv3wZgzpw51K5dG1dXV5YvX86xY8eYPXs28fHxTJkyJVOP+aQ1/tO+ffuIjY01Hps2bQKgRYsWZu1GjRpFbGwsMTExLF68mB9//JFevXo99bpFRETEMijMZrKrV6+yfft2JkyYQI0aNShSpAivvvoqQ4cO5c0338TDwwOAJk2aYDKZjOfR0dE0atQIFxcXHBwcqFChAps3bzbbt4eHB6NHjyY0NBRHR0e6devGb7/9Rq9evejVqxeff/451atXx8PDg6pVqzJ37lzCwsKM7ZcvX06pUqWwtbXFw8MjXdCNi4sjJCQEe3t7ihYtyuLFi+97fl26dCFfvnw4OjpSs2ZNDh8+bKwfMWIEZcuWZe7cuRQtWhQ7O7v7Xqd8+fLh6upqPL777juKFy9OtWrVzNrlypULV1dXChYsSI0aNWjfvj0HDx7M8O9DREREXmwKs5nMwcEBBwcHVq1aRVJSUrr1+/btA2D+/PnExsYazxMTE6lfvz5btmzh0KFDBAcHExISQkxMjNn2kydPxt/fn0OHDjFs2DCWLVvG7du3GTRo0H3rcXZ2BuDAgQO0bNmSVq1aceTIEUaMGMGwYcNYsGCB0bZDhw6cP3+erVu38u233zJz5kzi4uLM9teiRQvi4uJYv349Bw4cICAggFq1anHlyhWjzalTp1i+fDkrVqwgMjLykdfs9u3bfPnll3Tq1AmT6cFDAX7//Xf+97//UbFixQe2SUpKIiEhwewhIiIiLy5TampqalYX8aJZvnw5Xbt25ebNmwQEBFCtWjVatWqFn58fQIbHzJYuXZp3332Xnj17Avd6ZsuVK8fKlSuNNj169GDx4sXExz98XFSbNm24fPkyGzduNJYNGjSItWvXcvToUU6cOEGJEiXYu3cvFSpUAODXX3/F19eXadOm0adPH3bs2EGDBg2Ii4vD1tbW2I+npyeDBg2iW7dujBgxgnHjxvH777+TL1++DF2vpUuX8vbbbxMTE0OBAgWM5R4eHsTGxpItWzaSk5O5desWFStW5PvvvzdC+j+NGDGCkSNHplsePySXxsyKyMtHY2bFQiUkJODk5ER8fDyOjo4Pbaue2aegWbNmXLhwgTVr1hAcHExERAQBAQFmvaD/lJiYyIABA/D19cXZ2RkHBweioqLS9cwGBgaaPU9NTX1ob2aaqKgogoKCzJYFBQVx8uRJkpOTiYqKwsbGhvLlyxvrfXx8zELj4cOHSUxMJG/evEYPtIODA2fOnCE6OtpoV6RIESPIbt++3azt/YYuzJs3j3r16pkF2TQDBw4kMjKSn3/+mS1btgDQoEEDkpOT73ueQ4cOJT4+3nicP3/+kddGRERELJdmM3hK7OzsqFOnDnXq1GHYsGF06dKF4cOH06FDh/u2HzBgAJs2bWLy5Ml4enpib29P8+bN091AlTNnTrPn3t7exMfHExsbi5ub29M6HeBe4HZzcyMiIiLdur+H3r/XGBgYaDbUwMXFxWy7c+fOsXnzZlasWHHfY77yyit4enoC4OXlxfTp06lcuTJbt26ldu3a6drb2tqa9RqLiIjIi01h9hkpWbIkq1atAjA+Nv+7nTt30qFDB5o0aQLcC45nz5595H6bN2/OkCFDmDhxItOmTUu3/urVqzg7O+Pr68vOnTvTHdPb2xtra2t8fHy4e/cuBw4cMIYZHD9+nKtXrxrtAwICuHjxIjY2NsaNa49ib29vhNH7mT9/Pvnz56dBgwYZ2p+1tTUAN2/ezFD7NKVvzcMqNcdjbSOSUWfHZ+zfr4iIZD6F2Uz2559/0qJFCzp16oSfnx+5cuVi//79TJw4kUaNGgH3xoJu2bKFoKAgbG1tyZ07N15eXqxYsYKQkBBMJhPDhg0jJSXlkcdzd3dn2rRp9OzZk4SEBEJDQ/Hw8OC3335j0aJFODg4MGXKFPr370+FChUYPXo0b731Fj/99BMff/wxM2fOBKBEiRIEBwfzzjvvMGvWLGxsbOjTpw/29vbGsWrXrk3lypVp3LgxEydOxNvbmwsXLrB27VqaNGmSbgjEo6SkpDB//nzat2+Pjc39/yleu3aNixcvkpqayvnz5xk0aBD58uXjtddee6xjiYiIyItJY2YzmYODAxUrVmTatGlUrVqV0qVLM2zYMLp27crHH38MwJQpU9i0aRPu7u6UK1cOgKlTp5I7d25ee+01QkJCqFu3LgEBARk6Zo8ePdi4cSO///47TZo0wcfHhy5duuDo6MiAAQOAe72qS5cu5ZtvvqF06dKEhYUxatQos2EP8+fPp0CBAlSrVo2mTZvSrVs38ufPb6w3mUysW7eOqlWr0rFjR7y9vWnVqhXnzp1LN3wgIzZv3kxMTAydOnV6YJuwsDDc3NwoUKAADRs2JGfOnGzcuJG8efM+9vFERETkxaPZDOSFlnY3pHufpVjZapiBPB0aZiAikrk0m4GIiIiIvBQUZkVERETEYinMioiIiIjF0mwG8lL4ZWTdR465EREREcujnlkRERERsVgKsyIiIiJisRRmRURERMRiKcyKiIiIiMVSmBURERERi6UwKyIiIiIWS2FWRERERCyWwqyIiIiIWCyFWRERERGxWAqzIiIiImKxFGZFRERExGIpzIqIiIiIxVKYFRERERGLpTArIiIiIhZLYVZERERELJbCrIiIiIhYLJusLkBERESevuTkZO7cuZPVZYgAkC1bNqytrTNlXwqzIiIiL7DU1FQuXrzI1atXs7oUETPOzs64urpiMpn+1X4UZkVERF5gaUE2f/785MiR418HB5F/KzU1lRs3bhAXFweAm5vbv9qfwqy8FCp9VQlr+8z5OENExFLYWdkx2ns0BVwKcDH1IlzP6oqeT6VeKZXVJbx07O3tAYiLiyN//vz/asiBbgATERF5QTnZOGFjZYMpu3pj5fmTI0cOgH89llthVkRE5AVlhRUmTKAsK8+hzBryojArIiIiIhZLYVZERESeOx0adWD8B+Oz7vgdOtC4cWPjefXq1enTp0+W1SMPphvAREREXjINJp99psdbO8DjmR7vaVixYgXZsmXL6jIshoeHB3369HkmfwCoZ1YeysPDg+nTp2d1GSIiIlkqT5485MqVK6vL+FdSU1O5e/duVpeR6dQz+xRcvnyZsLAw1q5dy6VLl8idOzf+/v6EhYURFBSEyWRi5cqVZh9f/Ftbt25l0qRJ7Nmzh5s3b+Lh4UG9evXo168fBQsWzLTjZJZZs2Yxa9Yszp49C0CpUqUICwujXr16RhsPDw/OnTsHgJWVFS4uLtSrV4/JkyeTO3fuxzre7nO/4WirOyBE5CkYEZ/VFTzQrVu3OHPmDEVzF8XOzu5va84+0zqeZOqrnNly4pTNiVkjZvHFF1+QLVs2unfvzqhRozCZTHzxxRd8+OGHHD9+nJw5c1KzZk2mT59O/vz5Afjrr7/o2bMnGzduJDExkUKFCvGf//yHjh07AnD+/Hn69+/Pxo0bsbKyokqVKnz44Yd4eHjct57q1atTtmxZo4PHw8ODbt26cerUKZYtW0bu3Ln573//S7du3YxtHvcYf9ehQweuXr1KuXLl+Pjjj0lKSuLtt99mxowZZM+eHYCUlBQmTJjAp59+ysWLF/H29mbYsGE0b94cgIiICGrUqMG6dev473//y5EjR9i4cSNVq1Zl8uTJfPrpp5w/fx4XFxfeeecdPvjggwzVnVbb66+/zpQpU7h9+zatWrVi+vTpZMuWjerVq3Pu3Dn69u1L3759gXtB+mlRz+xT0KxZMw4dOsTChQs5ceIEa9asoXr16vz555+Zepzbt28DMGfOHGrXro2rqyvLly/n2LFjzJ49m/j4eKZMmZKpx3zSGv+pUKFCjB8/ngMHDrB//35q1qxJo0aNOHr0qFm7UaNGERsbS0xMDIsXL+bHH3+kV69ez6J0ERHJYgsXLsTGxoa9e/fy4YcfMnXqVObOnQvcm85p9OjRHD58mFWrVnH27Fk6dOhgbDts2DCOHTvG+vXriYqKYtasWbzyyivGtnXr1iVXrlxs376dnTt34uDgQHBw8APft+5nypQpBAYGcujQIXr06EH37t05fvx4ph1jy5YtREVFERERwddff82KFSsYOXKksT48PJxFixYxe/Zsjh49St++fWnbti3btm0z28+QIUMYP348UVFR+Pn5MXToUMaPH29co6+++goXF5fHqnvr1q1ER0ezdetWFi5cyIIFC1iwYAFwb0hGoUKFjPfw2NjYDF/TJ6Ge2Ux29epVtm/fTkREBNWqVQOgSJEivPrqqwDGXzVNmjQx1p09e5bo6Gj69evH7t27uX79Or6+voSHh1O7dm1j3x4eHnTu3JmTJ0+yatUqmjZtypgxY+jVqxe9evVi2rRpZm2rVq1q9vWFy5cvJywsjFOnTuHm5sb7779P//79jfVxcXF07tyZzZs34+rqypgxY+57fgMGDGD16tUkJSURGBjItGnT8Pf3B2DEiBGsWrWKnj17MnbsWM6dO0dKSkq6/YSEhJg9Hzt2LLNmzWL37t2UKvV/f8HnypULV1dXAAoWLEj79u35+uuvH/2LEBERi+fu7s60adMwmUyUKFGCI0eOMG3aNLp27UqnTp2MdsWKFWPGjBlUqFCBxMREHBwciImJoVy5cgQGBgKY9YYuWbKElJQU5s6da0wPNX/+fJydnYmIiOCNN97IUH3169enR48eAAwePJhp06axdetWSpQokSnHyJ49O59//jk5cuSgVKlSjBo1ioEDBzJ69Gju3LnDuHHj2Lx5M5UrVzauw44dO5gzZ46RQeBex1CdOnUAuHbtGh9++CEff/wx7du3B6B48eK8/vrrj3VtcufOzccff4y1tTU+Pj40aNCALVu20LVrV/LkyYO1tbXZe/jTpDCbyRwcHHBwcGDVqlVUqlQJW1tbs/X79u0jf/78zJ8/n+DgYOMbLxITE6lfvz5jx47F1taWRYsWERISwvHjxylcuLCx/eTJkwkLC2P48OEALFu2jNu3bzNo0KD71uPs7AzAgQMHaNmyJSNGjOCtt95i165d9OjRg7x58xp/yXbo0IELFy6wdetWsmXLRq9evYyvmkvTokUL7O3tWb9+PU5OTsyZM4datWpx4sQJ8uTJA8CpU6dYvnw5K1asyNA3eiQnJ7Ns2TKuX79uvCDv5/fff+d///sfFStWfGCbpKQkkpKSjOcJCQmPPL6IiDyfKlWqZDYXaeXKlZkyZQrJyclERkYyYsQIDh8+zF9//WV0nMTExFCyZEm6d+9Os2bNOHjwIG+88QaNGzfmtddeA+Dw4cOcOnUq3RjYW7duER0dneH6/Pz8jJ9NJhOurq7G+2ZmHMPf39/4YoG0809MTOT8+fMkJiZy48YNI6SmuX37NuXKlTNblhboAaKiokhKSqJWrVr3PWZG6y5VqpTZe7ybmxtHjhzJ0HllNoXZTGZjY8OCBQvo2rUrs2fPJiAggGrVqtGqVSv8/PzIly8fcC9k/v2vFX9/f6N3E2D06NGsXLmSNWvW0LNnT2N5zZo1zXpTT548iaOj4yO/13jq1KnUqlWLYcOGAeDt7c2xY8eYNGkSHTp04MSJE6xfv569e/dSoUIFAObNm4evr6+xjx07drB3717i4uKMkD558mRWrVrFt99+a4wTun37NosWLTLO9UGOHDlC5cqVuXXrFg4ODqxcuZKSJUuatRk8eDD//e9/SU5O5tatW1SsWJGpU6c+cJ/h4eFmH8GIiMiL59atW9StW5e6deuyePFi8uXLR0xMDHXr1jU+Cq9Xrx7nzp1j3bp1bNq0iVq1avHee+8xefJkEhMTKV++PIsXL06370e9d/3dP2c3MJlMRqjOrGM8SGJiIgBr165Nd2/MPzvScubMafyc9jWyD9tvRup+2Lk/axoz+xQ0a9aMCxcusGbNGoKDg4mIiCAgIMAYS3I/iYmJDBgwAF9fX5ydnXFwcCAqKoqYmBizdn//6wruDajOyDdoREVFERQUZLYsKCiIkydPkpycTFRUFDY2NpQvX95Y7+PjY/Tswr2/1hITE8mbN6/RA+3g4MCZM2fM/lorUqSI8Q9++/btZm3//uIoUaIEkZGR7Nmzh+7du9O+fXuOHTtmVuPAgQOJjIzk559/ZsuWLQA0aNCA5OTk+57n0KFDiY+PNx7nz59/5LUREZHn0549e8ye7969Gy8vL3799Vf+/PNPxo8fT5UqVfDx8Un3SSLcC1/t27fnyy+/ZPr06Xz66acABAQEcPLkSfLnz4+np6fZw8nJKVNqz4xjHD58mJs3b5qdv4ODA+7u7pQsWRJbW1tiYmLS7d/d3f2B+/Ty8sLe3t54T30adcO9IRIPeq/ObAqzT4mdnR116tRh2LBh7Nq1iw4dOhhDA+5nwIABrFy5knHjxrF9+3YiIyMpU6ZMukHif//rCu71sMbHxz/1wdVwL3C7ubkRGRlp9jh+/DgDBw68b42BgYFmbd98801jXfbs2fH09KR8+fKEh4fj7+/Phx9+aHbMV155BU9PT7y8vIw7VXft2sXWrVvvW6OtrS2Ojo5mDxERsUwxMTH069eP48eP8/XXX/PRRx/Ru3dvChcuTPbs2fnoo484ffo0a9asYfTo0WbbhoWFsXr1ak6dOsXRo0f57rvvjE8b27RpwyuvvEKjRo3Yvn07Z86cISIigl69evHbb79lSu2ZcYzbt2/TuXNnjh07xrp16xg+fDg9e/bEysqKXLlyMWDAAPr27cvChQuJjo7m4MGDfPTRRyxcuPCB+7Szs2Pw4MEMGjSIRYsWER0dze7du5k3b16mXhsPDw9+/PFHfv/9d/74448Mb/ckNMzgGSlZsiSrVq0C7nXN//OvlZ07d9KhQwfjxrDExERj2qqHad68OUOGDGHixIlmN4CluXr1Ks7Ozvj6+rJz5850x/T29jYGb9+9e5cDBw4YwwyOHz9udgNZQEAAFy9exMbGJkPTisC9jzM8PT0z1DYlJcVsvOv9pI3P+ftfqhlR+tY8rFJzPLqhWKyz4xtkdQkiFsNSXi+hoaHcvHmTV199FWtra3r37k23bt0wmUwsWLCA//znP8yYMYOAgAAmT56crsNk6NChnD17Fnt7e6pUqcI333wDQI4cOfjxxx8ZPHgwTZs25dq1axQsWJBatWplWidIZhyjVq1aeHl5UbVqVZKSkmjdujUjRoww1o8ePZp8+fIRHh7O6dOncXZ2JiAggP/85z8P3e+wYcOwsbEhLCyMCxcu4ObmxrvvvptpdcO9m87eeecdihcvTlJS0lOdmsuU+jT3/hL6888/adGiBZ06dcLPz49cuXKxf/9+3n//fRo0aMC8efPw9vamdu3ahIWFYWtrS+7cuWnatClnzpxh/vz5mEwmhg0bRkREBJ06dTKb0+5+36Yxc+ZMevbsSceOHQkNDcXDw4PffvuNRYsW4eDgwJQpUzh48CAVKlQwbgD76aef6N69OzNnzjRuAKtXrx6XLl1i1qxZ2NjY0KdPHw4cOMC4cePo06cPqampVK1alWvXrjFx4kS8vb25cOECa9eupUmTJgQGBhqzGURGRj70Og0dOpR69epRuHBhrl27xldffcWECRPYsGGDMZg9bfaGrl27kpqayvnz5xk0aBDHjh0jKiqKvHnzPvL3kZCQgJOTE+59lmJlqzD7IrOUN2eRZ8mYZ7boP+eZledd2lyuaR1hL6KH/ftMe/+Oj49/ZIjWMINM5uDgQMWKFZk2bRpVq1aldOnSDBs2jK5du/Lxxx8D9+al27RpE+7u7sYdh1OnTiV37ty89tprhISEULduXQICAjJ0zB49erBx40Z+//13mjRpgo+PD126dMHR0ZEBAwYA93pVly5dyjfffEPp0qUJCwtj1KhRZnPyzZ8/nwIFClCtWjWaNm1Kt27djMmn4d7g7nXr1lG1alU6duyIt7c3rVq14ty5c8b8dBkVFxdHaGgoJUqUoFatWuzbt88syKYJCwvDzc2NAgUK0LBhQ3LmzMnGjRszFGRFRETkxaeeWXmhqWf25aGeWZH01DP7/HJwcHjguvXr1zNv3jz1zGawZ1ZjZkVERESesYcNxytYsCBVqlR5dsVYOIVZERERkWcsozdHy6NpzKyIiIiIWCz1zMpL4ZeRdTXnrIiIyAtIPbMiIiIiYrEUZkVERETEYinMioiIiIjFUpgVERGR50716tXTfeOlyP3oBjAREZGXzQinZ3y8+Gd7vAeIiIhg2rRp7N27l4SEBLy8vBg4cCBt2rQx2ixYsICOHTuabWdra8utW7eedbnP3NmzZylatCiHDh2ibNmyWV1OhinMioiIyEth165d+Pn5MXjwYFxcXPjuu+8IDQ3FycmJhg0bGu0cHR05fvy48dxkMmVFuYbbt2+TPXv2LK3heaZhBiIiIvJcunv3Lj179sTJyYlXXnmFYcOGkZqaCoCHhwdjxowhNDQUBwcHihQpwpo1a7h8+TKNGjXCwcEBPz8/9u/fb+zvP//5D6NHj+a1116jePHi9O7dm+DgYFasWGF2XJPJhKurq/FwcXHJcM0eHh6MHj2a1q1bkzNnTgoWLMgnn3xi1ubq1at06dKFfPny4ejoSM2aNTl8+LCxfsSIEZQtW5a5c+eafdXr1atXeeedd3BxccHOzo7SpUvz3XffGdvt2LGDKlWqYG9vj7u7O7169eL69etmtY0bN45OnTqRK1cuChcuzKeffmqsL1q0KADlypXDZDJRvXr1DJ93VlKYFRERkefSwoULsbGxYe/evXz44YdMnTqVuXPnGuunTZtGUFAQhw4dokGDBrRr147Q0FDatm3LwYMHKV68OKGhoUYAvp/4+Hjy5MljtiwxMZEiRYrg7u5Oo0aNOHr06GPVPWnSJPz9/Tl06BBDhgyhd+/ebNq0yVjfokUL4uLiWL9+PQcOHCAgIIBatWpx5coVo82pU6dYvnw5K1asIDIykpSUFOrVq8fOnTv58ssvOXbsGOPHj8fa2hqA6OhogoODadasGT///DNLlixhx44d9OzZ06y2KVOmEBgYyKFDh+jRowfdu3c3eqH37t0LwObNm4mNjU0X8p9XptSH/YZFLFxCQgJOTk7Ex8frSxNE5KVz69Ytzpw5Y9a7B1jEmNnq1asTFxfH0aNHjY/5hwwZwpo1azh27BgeHh5UqVKFL774AoCLFy/i5ubGsGHDGDVqFAC7d++mcuXKxMbG4urqmu4YS5cupV27dhw8eJBSpUoB8NNPP3Hy5En8/PyIj49n8uTJ/Pjjjxw9epRChQo9sm4PDw98fX1Zv369saxVq1YkJCSwbt06duzYQYMGDYiLi8PW1tZo4+npyaBBg+jWrRsjRoxg3Lhx/P777+TLlw+AjRs3Uq9ePaKiovD29k533C5dumBtbc2cOXOMZTt27KBatWpcv34dOzu7dNcsNTUVV1dXRo4cybvvvvvMx8w+8N8nj/f+rZ5ZEREReS5VqlTJbLxq5cqVOXnyJMnJyQD4+fkZ69KGApQpUybdsri4uHT73rp1Kx07duSzzz4zgmzaMUJDQylbtizVqlVjxYoV5MuXzywkPkrlypXTPY+KigLg8OHDJCYmkjdvXhwcHIzHmTNniI6ONrYpUqSIEWQBIiMjKVSo0H2DbNp+FyxYYLbPunXrkpKSwpkzZ4x2f79macMp7nd9LIluABMRERGLlC1bNuPntNB7v2UpKSlm223bto2QkBCmTZtGaGjoI49Rrlw5Tp06lSk1JyYm4ubmRkRERLp1zs7Oxs85c+Y0W2dvb//I/b7zzjv06tUr3brChQsbP//9+sC9a/TP62NpFGZFRETkubRnzx6z57t378bLy8sYJ/okIiIiaNiwIRMmTKBbt26PbJ+cnMyRI0eoX79+ho+xe/fudM99fX0BCAgI4OLFi9jY2ODh4ZHhffr5+fHbb79x4sSJ+/bOBgQEcOzYMTw9PTO8z39KmzEhrefbUmiYgYiIiDyXYmJi6NevH8ePH+frr7/mo48+onfv3k+8v61bt9KgQQN69epFs2bNuHjxIhcvXjS78WrUqFFs3LiR06dPc/DgQdq2bcu5c+fo0qVLho+zc+dOJk6cyIkTJ/jkk09YtmyZUXft2rWpXLkyjRs3ZuPGjZw9e5Zdu3bxwQcfmM288E/VqlWjatWqNGvWjE2bNnHmzBnWr1/P999/D8DgwYPZtWsXPXv2JDIykpMnT7J69ep0N4A9TP78+bG3t+f777/n0qVLxMc/H/MDP4rCrIiIiDyXQkNDuXnzJq+++irvvfcevXv3zlBv6oMsXLiQGzduEB4ejpubm/Fo2rSp0eavv/6ia9eu+Pr6Ur9+fRISEti1axclS5bM8HH69+/P/v37KVeuHGPGjGHq1KnUrVsXuPex/rp166hatSodO3bE29ubVq1ace7cuUdOAbZ8+XIqVKhA69atKVmyJIMGDTIbP7xt2zZOnDhBlSpVKFeuHGFhYRQoUCDDddvY2DBjxgzmzJlDgQIFaNSoUYa3zUqazUBeaJrNQEReZg+7W1yeDg8PD/r06aOv4s0AzWYgIiIiIi89hVkRERGRDNi+fbvZ1Ff/fEjW0GwGIiIiIhkQGBhIZGTkQ9ucPXv2mdQi/0dhVkRERCQD7O3t/9XUV/J0KMzKS6HSV5Wwtn/yeQlFRCyRW3Y3BnsO5u5fd7HK9uCRhaVeKfXAdSLPO42ZFRERERGLpTArIiIiIhZLYVZERERELJbCrIiIiIhYLIVZERERESAiIgKTycTVq1ezuhR5DJrNQB5KX8snIvLiabW21TM93pH2R57p8eTfO3v2LEWLFuXQoUOULVs2q8t5KIXZp+Dy5cuEhYWxdu1aLl26RO7cufH39ycsLIygoCBMJhMrV66kcePGmXbMrVu3MmnSJPbs2cPNmzfx8PCgXr169OvXj4IFC2bacTLLjz/+yKRJkzhw4ACxsbH3vR7Vq1dn27ZtxvP8+fNTtWpVJk+eTJEiRR7reLvP/YajrSkzSheRZ2VEfFZXYPFu3brFmTNnKJq7KHZ2dlldzlOTmppKcnIyNjYvfqy5ffs22bNnz+oynisaZvAUNGvWjEOHDrFw4UJOnDjBmjVrqF69On/++WemHuf27dsAzJkzh9q1a+Pq6sry5cs5duwYs2fPJj4+nilTpmTqMZ+0xn+6fv06/v7+fPLJJw/dvmvXrsTGxnLhwgVWr17N+fPnadu27dMoVUREniNJSUn06tWL/PnzY2dnx+uvv86+ffuA/xsOsH79esqXL4+trS07duwgOjqaRo0a4eLigoODAxUqVGDz5s3p9jt48GDc3d2xtbXF09OTefPmPbCOHTt2UKVKFezt7XF3d6dXr15cv349Q+fg4eHB6NGjad26NTlz5qRgwYLp3veuXr1Kly5dyJcvH46OjtSsWZPDhw8b60eMGEHZsmWZO3cuRYv+3x8lV69e5Z133sHFxQU7OztKly7Nd999l+G6PTw8GDduHJ06dSJXrlwULlyYTz/91FhftGhRAMqVK4fJZKJ69eoZOuesoDCbya5evcr27duZMGECNWrUoEiRIrz66qsMHTqUN998Ew8PDwCaNGmCyWQynmfkBZj2oggNDcXR0ZFu3brx22+/0atXL3r16sXnn39O9erV8fDwoGrVqsydO5ewsDBj++XLl1OqVClsbW3x8PBIF3Tj4uIICQnB3t6eokWLsnjx4vue35O86P6pXr16jBkzhiZNmjz0eubIkQNXV1fc3NyoVKkSPXv25ODBgw/dRkRELN+gQYNYvnw5Cxcu5ODBg3h6elK3bl2uXLlitBkyZAjjx48nKioKPz8/EhMTqV+/Plu2bOHQoUMEBwcTEhJCTEyMsU1oaChff/01M2bMICoqijlz5uDg4HDfGqKjowkODqZZs2b8/PPPLFmyhB07dtCzZ88Mn8ekSZPw9/fn0KFDDBkyhN69e7Np0yZjfYsWLYiLi2P9+vUcOHCAgIAAatWqZXaep06dYvny5axYsYLIyEhSUlKoV68eO3fu5Msvv+TYsWOMHz8ea2vrx6p7ypQpBAYGcujQIXr06EH37t05fvw4AHv37gVg8+bNxMbGsmLFigyf87P24vfHP2MODg44ODiwatUqKlWqhK2trdn6ffv2kT9/fubPn09wcLDxDy/tBTh27FhsbW1ZtGgRISEhHD9+nMKFCxvbT548mbCwMIYPHw7AsmXLuH37NoMGDbpvPc7OzgAcOHCAli1bMmLECN566y127dpFjx49yJs3Lx06dACgQ4cOXLhwga1bt5ItWzZ69epFXFyc2f5atGiBvb0969evx8nJiTlz5lCrVi1OnDhBnjx5APMXXdr5ZYYrV66wdOlSKlas+MA2SUlJJCUlGc8TEhIy7fgiIvJsXL9+nVmzZrFgwQLq1asHwGeffcamTZuYN28eFSpUAGDUqFHUqVPH2C5Pnjz4+/sbz0ePHs3KlStZs2YNPXv25MSJEyxdupRNmzZRu3ZtAIoVK/bAOsLDw2nTpo1x34iXlxczZsygWrVqzJo1K0NDN4KCghgyZAgA3t7e7Ny5k2nTplGnTh127NjB3r17iYuLM/LC5MmTWbVqFd9++y3dunUD7n3KuWjRIvLlywfAxo0b2bt3L1FRUXh7e6c7j4zWXb9+fXr06AHA4MGDmTZtGlu3bqVEiRLGsfLmzYurq+sjzzMrKcxmMhsbGxYsWEDXrl2ZPXs2AQEBVKtWjVatWuHn52f843B2djb7x+Hv7//QF2CamjVr0r9/f+P5yZMncXR0xM3N7aF1TZ06lVq1ajFs2DDg3gvq2LFjTJo0iQ4dOnDixAnWr1/P3r17jf8k5s2bh6+vr7GPJ33R/RszZ85k7ty5pKamcuPGDby9vdmwYcMD24eHhzNy5Mh/fVwREck60dHR3Llzh6CgIGNZtmzZePXVV4mKijLepwIDA822S0xMZMSIEaxdu5bY2Fju3r3LzZs3jZ7ZyMhIrK2tqVatWobqOHz4MD///LPZJ5WpqamkpKRw5swZs/fIB6lcuXK659OnTzf2n5iYSN68ec3a3Lx5k+joaON5kSJFzN5TIyMjKVSokBFkn7RuPz8/Y73JZMLV1TVdJ5Yl0DCDp6BZs2ZcuHCBNWvWEBwcTEREBAEBASxYsOCB2yQmJjJgwAB8fX1xdnbGwcGBqKgos49GIP0LNzU1FZPp0Tc2RUVFmf2nAPf+Wjx58iTJyclERUVhY2ND+fLljfU+Pj5Gzy6Yv+jSeqAdHBw4c+bMA19027dvN2t7v6ELD9OmTRsiIyM5fPgwO3bswNPTkzfeeINr167dt/3QoUOJj483HufPn3+s44mIiOXImTOn2fMBAwawcuVKxo0bx/bt24mMjKRMmTLG/Rv29vaPtf/ExETeeecdIiMjjcfhw4c5efIkxYsX/9f1JyYm4ubmZrb/yMhIjh8/zsCBAx94no86j4zWnS1bNrPtTCYTKSkp//q8njX1zD4ldnZ21KlThzp16jBs2DC6dOnC8OHDjY/0/2nAgAFs2rSJyZMn4+npib29Pc2bN093A9U//0F7e3sTHx9PbGzsI3tn/620F11ERES6dX8PvX+vMTAwkMjISOO5i4vLYx3TyckJT09PAGOQvpubG0uWLKFLly7p2tva2qYb2iEiIpalePHiZM+enZ07dxqz19y5c4d9+/Y9dKrInTt30qFDB+N+jMTERM6ePWusL1OmDCkpKWzbts0YZvAwAQEBHDt2zHgfehK7d+9O9zytZzQgIICLFy9iY2Nj3EOTEX5+fvz222+cOHHivr2zmVF32owJycnJT7yPZ0Vh9hkpWbIkq1atAu79JfTPfxyPegE+SPPmzRkyZAgTJ05k2rRp6dZfvXoVZ2dnfH192blzZ7pjent7Y21tjY+PD3fv3uXAgQPGxzfHjx83mzj6SV509vb2/+rF9E9pY3Bv3rz5WNuVvjUPq9QcmVbHi+js+AZZXYKICHCvU6R79+4MHDiQPHnyULhwYSZOnMiNGzfo3Lmz2Y3Hf+fl5cWKFSsICQnBZDIxbNgws55GDw8P2rdvT6dOnZgxYwb+/v6cO3eOuLg4WrZsmW5/gwcPNm4+7tKlCzlz5uTYsWNs2rSJjz/+OEPnsnPnTiZOnEjjxo3ZtGkTy5YtY+3atQDUrl2bypUr07hxYyZOnIi3tzcXLlxg7dq1NGnSJN2nsWmqVatG1apVadasGVOnTsXT05Nff/0Vk8lEcHBwptSdP39+7O3t+f777ylUqBB2dnY4OTllaNtnTcMMMtmff/5JzZo1+fLLL/n55585c+YMy5YtY+LEiTRq1Ai492LasmULFy9e5K+//gL+7wWY9lHA22+/naGufnd3d6ZNm8aHH35I586d2bZtG+fOnWPnzp288847jB49GoD+/fuzZcsWRo8ezYkTJ1i4cCEff/wxAwYMAKBEiRIEBwfzzjvvsGfPHg4cOECXLl3MPsr4+4tu48aNnD17ll27dvHBBx+wf//+x7pOiYmJxkcfAGfOnCEyMjLdsIobN25w8eJFLl68yOHDh+nevTt2dna88cYbj3U8ERGxLOPHj6dZs2a0a9eOgIAATp06xYYNG8idO/cDt5k6dSq5c+fmtddeIyQkhLp16xIQEGDWZtasWTRv3pwePXrg4+ND165dHzjVlp+fH9u2bePEiRNUqVKFcuXKERYWRoECBTJ8Hv3792f//v2UK1eOMWPGMHXqVOrWrQvc+1h/3bp1VK1alY4dO+Lt7U2rVq04d+7cIz/JXL58ORUqVKB169aULFmSQYMGGR1lmVG3jY0NM2bMYM6cORQoUMDIMM8jU2pqampWF/EiSUpKYsSIEWzcuNEYwO7u7k6LFi34z3/+g729Pf/73//o168fZ8+epWDBgpw9e5azZ8/SqVMndu/ezSuvvMLgwYNZtmwZZcuWNQaKP+zbuDZv3szkyZPZu3ev8aUJDRs2pF+/fsbwg+XLlxMWFsbJkydxc3Pj/fffN8IswMWLF+nSpQubN2/GxcWFMWPGMGzYMLNjXrt2jQ8++IDly5dz+fJlXF1dqVq1KuHh4bi7uzNixAhWrVplNrTgfiIiIqhRo0a65e3btzfGFv/zSxNy586Nn58fw4cPv++295OQkICTkxPufZZiZaue2YdRz6zIi8f40oSHTJUoT4++RfPhHvbvM+39Oz4+HkdHx4fuR2FWXmgKsxmnMCvy4lGYzVoKsw+XWWFWwwxEREREHtM/Z+v550OeHd0AJiIiIvKY/jlbz/1k5EZu+fcUZkVEREQeU2bP1iNPTmFWXgq/jKz7yDE3IiIiYnk0ZlZEROQFZ4nf6iQvvsz6d6meWRERkRdU9uzZsbKy4sKFC+TLl4/s2bNn6CvQRZ6m1NRUbt++zeXLl7GysjK+bexJKcyKiIi8oKysrChatCixsbFcuHAhq8sRMZMjRw4KFy6MldW/GyigMCsiIvICy549O4ULF+bu3bvpvkpdJKtYW1tjY2OTKZ8UKMyKiIi84EwmE9myZSNbtmxZXYpIptMNYCIiIiJisRRmRURERMRiKcyKiIiIiMXSmFl5oaWmpgKQkJCQxZWIiIhIRqW9b6e9jz+Mwqy80P78808A3N3ds7gSEREReVzXrl3DycnpoW0UZuWFlidPHgBiYmIe+WKQjElISMDd3Z3z58/rK4Izga5n5tL1zHy6pplL1zNjUlNTuXbtGgUKFHhkW4VZeaGlTcTs5OSk/zQymaOjo65pJtL1zFy6nplP1zRz6Xo+WkY7oXQDmIiIiIhYLIVZEREREbFYCrPyQrO1tWX48OHY2tpmdSkvDF3TzKXrmbl0PTOfrmnm0vXMfKbUjMx5ICIiIiLyHFLPrIiIiIhYLIVZEREREbFYCrMiIiIiYrEUZkVERETEYinMioiIiIjFUpiVF9onn3yCh4cHdnZ2VKxYkb1792Z1SRYpPDycChUqkCtXLvLnz0/jxo05fvx4Vpf1whg/fjwmk4k+ffpkdSkW7ffff6dt27bkzZsXe3t7ypQpw/79+7O6LIuUnJzMsGHDKFq0KPb29hQvXpzRo0ejCZAy7scffyQkJIQCBQpgMplYtWqV2frU1FTCwsJwc3PD3t6e2rVrc/Lkyawp1sIpzMoLa8mSJfTr14/hw4dz8OBB/P39qVu3LnFxcVldmsXZtm0b7733Hrt372bTpk3cuXOHN954g+vXr2d1aRZv3759zJkzBz8/v6wuxaL99ddfBAUFkS1bNtavX8+xY8eYMmUKuXPnzurSLNKECROYNWsWH3/8MVFRUUyYMIGJEyfy0UcfZXVpFuP69ev4+/vzySef3Hf9xIkTmTFjBrNnz2bPnj3kzJmTunXrcuvWrWdcqeXTPLPywqpYsSIVKlTg448/BiAlJQV3d3fef/99hgwZksXVWbbLly+TP39+tm3bRtWqVbO6HIuVmJhIQEAAM2fOZMyYMZQtW5bp06dndVkWaciQIezcuZPt27dndSkvhIYNG+Li4sK8efOMZc2aNcPe3p4vv/wyCyuzTCaTiZUrV9K4cWPgXq9sgQIF6N+/PwMGDAAgPj4eFxcXFixYQKtWrbKwWsujnll5Id2+fZsDBw5Qu3ZtY5mVlRW1a9fmp59+ysLKXgzx8fEA5MmTJ4srsWzvvfceDRo0MPt3Kk9mzZo1BAYG0qJFC/Lnz0+5cuX47LPPsrosi/Xaa6+xZcsWTpw4AcDhw4fZsWMH9erVy+LKXgxnzpzh4sWLZq99JycnKlasqPeoJ2CT1QWIPA1//PEHycnJuLi4mC13cXHh119/zaKqXgwpKSn06dOHoKAgSpcundXlWKxvvvmGgwcPsm/fvqwu5YVw+vRpZs2aRb9+/fjPf/7Dvn376NWrF9mzZ6d9+/ZZXZ7FGTJkCAkJCfj4+GBtbU1ycjJjx46lTZs2WV3aC+HixYsA932PSlsnGacwKyKP5b333uOXX35hx44dWV2KxTp//jy9e/dm06ZN2NnZZXU5L4SUlBQCAwMZN24cAOXKleOXX35h9uzZCrNPYOnSpSxevJivvvqKUqVKERkZSZ8+fShQoICupzx3NMxAXkivvPIK1tbWXLp0yWz5pUuXcHV1zaKqLF/Pnj357rvv2Lp1K4UKFcrqcizWgQMHiIuLIyAgABsbG2xsbNi2bRszZszAxsaG5OTkrC7R4ri5uVGyZEmzZb6+vsTExGRRRZZt4MCBDBkyhFatWlGmTBnatWtH3759CQ8Pz+rSXghp70N6j8ocCrPyQsqePTvly5dny5YtxrKUlBS2bNlC5cqVs7Ayy5SamkrPnj1ZuXIlP/zwA0WLFs3qkixarVq1OHLkCJGRkcYjMDCQNm3aEBkZibW1dVaXaHGCgoLSTRd34sQJihQpkkUVWbYbN25gZWUeEaytrUlJScmiil4sRYsWxdXV1ew9KiEhgT179ug96glomIG8sPr160f79u0JDAzk1VdfZfr06Vy/fp2OHTtmdWkW57333uOrr75i9erV5MqVyxjT5eTkhL29fRZXZ3ly5cqVbrxxzpw5yZs3r8YhP6G+ffvy2muvMW7cOFq2bMnevXv59NNP+fTTT7O6NIsUEhLC2LFjKVy4MKVKleLQoUNMnTqVTp06ZXVpFiMxMZFTp04Zz8+cOUNkZCR58uShcOHC9OnThzFjxuDl5UXRokUZNmwYBQoUMGY8kMeQKvIC++ijj1ILFy6cmj179tRXX301dffu3VldkkUC7vuYP39+Vpf2wqhWrVpq7969s7oMi/a///0vtXTp0qm2trapPj4+qZ9++mlWl2SxEhISUnv37p1auHDhVDs7u9RixYqlfvDBB6lJSUlZXZrF2Lp1633/32zfvn1qampqakpKSuqwYcNSXVxcUm1tbVNr1aqVevz48awt2kJpnlkRERERsVgaMysiIiIiFkthVkREREQslsKsiIiIiFgshVkRERERsVgKsyIiIiJisRRmRURERMRiKcyKiIiIiMVSmBURERERi6UwKyIiIiIWS2FWRERERCyWwqyIiIiIWKz/B76Sd4ASXoQpAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAGzCAYAAAA8D5+GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8zklEQVR4nO3deXhNV//+8fdJQhIiCUoShCAiMQQRRdVMxZCapyLGaqmax6ePmMVMWzW01NBqax6eoqaKGmoWVVIz0QrRqkQMQZLfH37Z357GEITjxP26rnNdzt5rr/3ZJ4ncWWftdUzJycnJiIiIiIhYIRtLFyAiIiIi8rQUZkVERETEainMioiIiIjVUpgVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIjFzJ8/H5PJxP79+y1diohYKYVZEREREbFaCrMiIiIiYrUUZkVE5KXxyy+/0KFDBwoVKoSDgwPu7u506tSJv/76y2izbNkyTCYT27ZtS3X87NmzMZlM/Prrr2nuT0Ssm52lCxAREUmxadMmzpw5Q8eOHXF3d+fo0aN8/vnnHD16lN27d2Mymahfvz5OTk4sWbKEqlWrmh2/ePFiihcvTokSJdLcn4hYN1NycnKypYsQEZFX0/z58+nYsSP79u0jMDCQW7du4ejoaNbmu+++o3Xr1vz0009UrlwZgHfeeYctW7Zw8eJFbG1tAbh06RJ58+Zl+PDhDB06FCDN/YmI9dI0AxEReWn8M3jevn2bP//8kwoVKgBw8OBBY1/Lli2JiYkhPDzc2LZs2TKSkpJo2bLlE/cnItZLYVZERF4aV69epVevXri5ueHo6EiuXLkoWLAgALGxsUa7oKAgXFxcWLx4sbFt8eLFlC5dGh8fnyfuT0Ssl+bMiojIS6NFixbs2rWLAQMGULp0aZycnEhKSiIoKIikpCSjnb29PY0aNWLlypXMmDGDy5cvs3PnTsaOHftU/YmI9VKYFRGRl8Lff//Nli1bGDFiBKGhocb2kydPPrB9y5YtWbBgAVu2bCEyMpLk5GSzKQZP2p+IWCeFWREReSmk3Mj17/uSp02b9sD2tWrVIkeOHCxevJjIyEhef/11YwrB0/QnItZJYVZERF4Kzs7OVKlShQkTJnD37l3y5s3Lxo0bOXv27APbZ8qUiSZNmvDdd99x48YNJk2a9Ez9iYh10g1gIiJiMSmjpimjqN988w116tThs88+Y8iQIWTKlIn169c/9PiWLVsSHx8P3J8f+29P2p+IWB+tMysiIhbzySef0KtXL06dOkXhwoUtXY6IWCGNzIqIiMXs27ePrFmzUqBAAUuXIiJWSnNmRUTkhVu+fDnh4eEsWrSILl26YGenX0ci8nQ0zUBERF64ggULcv36dRo3bsy0adPImjWrpUsSESulMCsiIiIiVktzZkVERETEainMioiIiIjV0ox7ydCSkpK4ePEi2bJlw2QyWbocERERSYPk5GSuX79Onjx5sLF59NirwqxkaBcvXsTT09PSZYiIiMhTuHDhAvny5XtkG4VZydCyZcsG3P9hcHZ2tnA1IiIikhZxcXF4enoav8cfRWFWMrSUqQXOzs4KsyIiIlYmLVMEdQOYiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWS+vMyiuhwjcVsHW0tXQZIiIiD3Wk/RFLl2CVNDIrIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMvkMlkYtWqVRY5d4cOHWjUqJFFzi0iIiLyvFg0zHbo0AGTyYTJZCJTpky4ublRu3ZtvvzyS5KSkixZmsWcOnWKjh07ki9fPuzt7SlYsCCtW7dm//79li7toRISEvjoo48oUKAA9vb2eHl58eWXXz60/fz5842v+78fMTExD2zj5ORE2bJlWbFixYu6LBEREbECFl+aKygoiHnz5pGYmMjly5f54Ycf6NWrF8uWLWPNmjXY2Vm8xBdm//791KxZkxIlSjB79mx8fX25fv06q1evpl+/fmzbts1itSUnJ5OYmPjAr0eLFi24fPkyc+fOxdvbm+jo6Ef+MdKyZUuCgoLMtnXo0IHbt2+TO3duY5uzszPHjx8H4Pr168ybN48WLVpw9OhRihYt+kT17z7/O872pic6RkREMqDhsZauQNKZxacZ2Nvb4+7uTt68eQkICOA///kPq1evZv369cyfPx+Aa9eu0aVLF3LlyoWzszM1atTg8OHDZv2sXr2agIAAHBwcKFSoECNGjODevXvGfpPJxMyZM6lbty6Ojo4UKlSIZcuWGfvv3LlDjx498PDwwMHBgQIFChAWFmbsT48a/m3YsGF4eHjwyy+/kJycTIcOHShSpAjbt2+nfv36FC5cmNKlSzNs2DBWr15tHHfkyBFq1KiBo6MjOXPmpGvXrsTHxxv7ExMT6du3L66uruTMmZOBAweSnJxsdu6kpCTCwsIoWLAgjo6OlCpVyuz1CA8Px2QysX79esqWLYu9vT07duxIdQ0//PAD27ZtY926ddSqVQsvLy8qVqxIpUqVHnrdjo6OuLu7Gw9bW1t+/PFHOnfubNbOZDIZbYoUKcLo0aOxsbHhl19+eWjfIiIi8mqxeJh9kBo1alCqVCnjLeXmzZsTExPD+vXrOXDgAAEBAdSsWZOrV68CsH37dkJCQujVqxfHjh1j9uzZzJ8/nzFjxpj1O3ToUJo2bcrhw4dp06YNrVq1IjIyEoBPPvmENWvWsGTJEo4fP86iRYvw8vIyjk2vGuD+KOeHH37IwoUL2b59O/7+/kRERHD06FH69euHjU3qL4urqysAN27coE6dOmTPnp19+/axdOlSNm/eTI8ePYy2kydPZv78+Xz55Zfs2LGDq1evsnLlSrP+wsLCWLhwIbNmzeLo0aP06dOHtm3bphr9HTx4MOPGjSMyMhJ/f/9Uda1Zs4bAwEAmTJhA3rx58fHxoX///ty6deuBX9sHWbhwIVmyZKFZs2YPbZOYmMiCBQsACAgIeGi7hIQE4uLizB4iIiKScb207+H7+vryyy+/sGPHDvbu3UtMTAz29vYATJo0iVWrVrFs2TK6du3KiBEjGDx4MO3btwegUKFCjBo1ioEDBzJs2DCjz+bNm9OlSxcARo0axaZNm/j000+ZMWMGUVFRFClShDfffBOTyUSBAgWM49Kzhnv37tG2bVsOHTrEjh07yJs3LwAnT540rvtRvvnmG27fvs3ChQvJmjUrANOnTyc4OJjx48fj5ubGtGnTGDJkCE2aNAFg1qxZbNiwwegjISGBsWPHsnnzZipWrGjUu2PHDmbPnk3VqlWNtiNHjqR27doPrefMmTPs2LEDBwcHVq5cyZ9//kn37t3566+/mDdv3iOvJcXcuXN55513cHR0NNseGxuLk5MTALdu3SJTpkx8/vnnFC5c+KF9hYWFMWLEiDSdV0RERKzfSxtmk5OTMZlMHD58mPj4eHLmzGm2/9atW5w+fRqAw4cPs3PnTrNR0MTERG7fvs3NmzfJkiULgBHcUlSsWJGIiAjg/pzN2rVrU7RoUYKCgmjQoAFvvfWW0X961dCnTx/s7e3ZvXs3r732mtn1pkVkZCSlSpUygixApUqVSEpK4vjx4zg4OBAdHU358uWN/XZ2dgQGBhrnOHXqFDdv3kwVUu/cuUOZMmXMtgUGBhr/TgmWAG3btmXWrFkkJSVhMplYtGgRLi4uAEyZMoVmzZoxY8aMVAH1337++WciIyP56quvUu3Lli0bBw8eBODmzZts3ryZ999/n5w5cxIcHPzA/oYMGULfvn2N53FxcXh6ej6yBhEREbFeL22YjYyMpGDBgsTHx+Ph4UF4eHiqNilvvcfHxzNixAhjJPKfHBwc0nS+gIAAzp49y/r169m8eTMtWrSgVq1aLFu2LF1rqF27Nt9++y0bNmygTZs2xnYfHx8Afvvtt1SBMr2lzK9du3atMTKcImXkOcU/Q3NK8If7N2cBeHh4kDdvXiPIAvj5+ZGcnMzvv/9OkSJFHlnLnDlzKF26NGXLlk21z8bGBm9vb+O5v78/GzduZPz48Q8Ns/b29qmuQURERDKulzLM/vjjjxw5coQ+ffqQL18+Ll26hJ2dndkc1n8KCAjg+PHjZsHnQXbv3k1ISIjZ838GR2dnZ1q2bEnLli1p1qwZQUFBXL16lYCAgHSr4e233yY4OJh33nkHW1tbWrVqBUDp0qUpVqwYkydPpmXLlqnmzV67dg1XV1f8/PyYP38+N27cMILmzp07sbGxoWjRori4uODh4cGePXuoUqUKcH9qQ8o8X4BixYphb29PVFSU2ZSCx3nQtVWqVImlS5cSHx9vjNyeOHECGxsb8uXL98j+4uPjWbJkidmNdo9ja2v7RPNxRUREJGOzeJhNSEjg0qVLZktzhYWF0aBBA0JCQrCxsaFixYo0atSICRMm4OPjw8WLF1m7di2NGzcmMDCQ0NBQGjRoQP78+WnWrBk2NjYcPnyYX3/9ldGjRxvnWrp0KYGBgbz55pssWrSIvXv3MnfuXOD+W+MeHh6UKVMGGxsbli5diru7O66urtSqVSvdagBo3LgxX331Fe3atcPOzo5mzZphMpmYN28etWrVonLlynz00Uf4+voSHx/P//73PzZu3Mi2bdto06YNw4YNo3379gwfPpwrV67w4Ycf0q5dO9zc3ADo1asX48aNo0iRIvj6+jJlyhSuXbtmnD9btmz079+fPn36kJSUxJtvvklsbCw7d+7E2dnZmPebFu+88w6jRo2iY8eOjBgxgj///JMBAwbQqVMnY4rBypUrGTJkCL/99pvZsYsXLzbmED9IcnIyly5dAu5P6di0aRMbNmwgNDQ0zfWlKHF7LjbJWZ74OBF5tHPj6lu6BBF5xVk8zP7www94eHhgZ2dH9uzZKVWqFJ988gnt27c3RifXrVvHRx99RMeOHbly5Qru7u5UqVLFCG916tTh+++/Z+TIkYwfP55MmTLh6+tr3OyVYsSIEXz33Xd0794dDw8Pvv32W4oVKwbcD3gTJkzg5MmT2NraUq5cOdatW5fuNaRo1qwZSUlJtGvXDhsbG5o0acLrr7/O/v37GTNmDO+++y5//vknHh4evPHGG0ybNg2ALFmysGHDBnr16kW5cuXIkiULTZs2ZcqUKUbf/fr1Izo62ngNO3XqROPGjYmN/b+19UaNGkWuXLkICwvjzJkzuLq6GkujPQknJyc2bdrEhx9+SGBgIDlz5qRFixZmAT42NtZYL/af5s6dS5MmTYypGv8WFxeHh4cHcH/6QIECBRg5ciSDBg16ohpFREQk4zIlp/XOIytnMplYuXKlPtL1FRMXF4eLiwuevZdgY6+RWZH0ppFZEXkeUn5/x8bGGvfpPMxLuc6siIiIiEhaKMyKiIiIiNWy+JzZF+UVmU0hIiIi8kp5ZcKsvNp+HVHnsXNuRERExPpomoGIiIiIWC2FWRERERGxWgqzIiIiImK1FGZFRERExGopzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVUpgVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRq2Vm6AJEXocI3FbB1tLV0GSIir5wj7Y9YugTJ4DQyKyIiIiJWS2FWRERERKyWwqyIiIiIWC2FWRERERGxWgqzL5DJZGLVqlUWOXeHDh1o1KiRRc4tIiIi8rxYNMx26NABk8mEyWQiU6ZMuLm5Ubt2bb788kuSkpIsWZrFnDp1io4dO5IvXz7s7e0pWLAgrVu3Zv/+/ZYu7YGio6N555138PHxwcbGht69ez/2mL/++ougoCDy5MmDvb09np6e9OjRg7i4OKPN/Pnzje8Nk8mEk5MTZcuWZcWKFc/xakRERMTaWHxprqCgIObNm0diYiKXL1/mhx9+oFevXixbtow1a9ZgZ2fxEl+Y/fv3U7NmTUqUKMHs2bPx9fXl+vXrrF69mn79+rFt2zaL1ZacnExiYmKqr0dCQgK5cuXiv//9L1OnTk1TXzY2NjRs2JDRo0eTK1cuTp06xQcffMDVq1f55ptvjHbOzs4cP34cgOvXrzNv3jxatGjB0aNHKVq06BPVv/v87zjbm57oGBGRF2p4rKUrELFKFp9mYG9vj7u7O3nz5iUgIID//Oc/rF69mvXr1zN//nwArl27RpcuXciVKxfOzs7UqFGDw4cPm/WzevVqAgICcHBwoFChQowYMYJ79+4Z+00mEzNnzqRu3bo4OjpSqFAhli1bZuy/c+cOPXr0wMPDAwcHBwoUKEBYWJixPz1q+Ldhw4bh4eHBL7/8QnJyMh06dKBIkSJs376d+vXrU7hwYUqXLs2wYcNYvXq1cdyRI0eoUaMGjo6O5MyZk65duxIfH2/sT0xMpG/fvri6upIzZ04GDhxIcnKy2bmTkpIICwujYMGCODo6UqpUKbPXIzw8HJPJxPr16ylbtiz29vbs2LEj1TV4eXnx8ccfExISgouLy0Ov9Z+yZ89Ot27dCAwMpECBAtSsWZPu3buzfft2s3Ymkwl3d3fc3d0pUqQIo0ePxsbGhl9++SVN5xEREZGMz+Jh9kFq1KhBqVKljLeUmzdvTkxMDOvXr+fAgQMEBARQs2ZNrl69CsD27dsJCQmhV69eHDt2jNmzZzN//nzGjBlj1u/QoUNp2rQphw8fpk2bNrRq1YrIyEgAPvnkE9asWcOSJUs4fvw4ixYtwsvLyzg2vWqA+6OcH374IQsXLmT79u34+/sTERHB0aNH6devHzY2qb8srq6uANy4cYM6deqQPXt29u3bx9KlS9m8eTM9evQw2k6ePJn58+fz5ZdfsmPHDq5evcrKlSvN+gsLC2PhwoXMmjWLo0eP0qdPH9q2bZtq9Hfw4MGMGzeOyMhI/P390/Lle2IXL15kxYoVVK1a9aFtEhMTWbBgAQABAQEPbZeQkEBcXJzZQ0RERDKulzLMAvj6+nLu3Dl27NjB3r17Wbp0KYGBgRQpUoRJkybh6upqjCSOGDGCwYMH0759ewoVKkTt2rUZNWoUs2fPNuuzefPmdOnSBR8fH0aNGkVgYCCffvopAFFRURQpUoQ333yTAgUK8Oabb9K6dWuAdK3h3r17tG3bli1btrBjxw68vb0BOHnypHHdj/LNN99w+/ZtFi5cSIkSJahRowbTp0/nq6++4vLlywBMmzaNIUOG0KRJE/z8/Jg1a5bZqGlCQgJjx47lyy+/pE6dOhQqVIgOHTrQtm3bVPWOHDmS2rVrU7hwYXLkyJH2L2AatG7dmixZspA3b16cnZ2ZM2eO2f7Y2FicnJxwcnIic+bMdOvWjc8//5zChQs/tM+wsDBcXFyMh6enZ7rWLCIiIi+Xl3ZCanJyMiaTicOHDxMfH0/OnDnN9t+6dYvTp08DcPjwYXbu3Gk2CpqYmMjt27e5efMmWbJkAaBixYpmfVSsWJGIiAjg/s1otWvXpmjRogQFBdGgQQPeeusto//0qqFPnz7Y29uze/duXnvtNbPrTYvIyEhKlSpF1qxZjW2VKlUiKSmJ48eP4+DgQHR0NOXLlzf229nZERgYaJzj1KlT3Lx5k9q1a5v1fefOHcqUKWO2LTAw0Pi3k5OT8e+2bdsya9asNNX8MFOnTmXYsGGcOHGCIUOG0LdvX2bMmGHsz5YtGwcPHgTg5s2bbN68mffff5+cOXMSHBz8wD5T+kkRFxenQCsiIpKBvbRhNjIykoIFCxIfH4+Hhwfh4eGp2qS89R4fH8+IESNo0qRJqjYODg5pOl9AQABnz55l/fr1bN68mRYtWlCrVi2WLVuWrjXUrl2bb7/9lg0bNtCmTRtju4+PDwC//fZbqkCZ3lLm165du5a8efOa7bO3tzd7/s/QnBL84f7NWc8qZT6sr68vOXLkoHLlygwdOhQPDw/g/o1iKSPXAP7+/mzcuJHx48c/NMza29unugYRERHJuF7KMPvjjz9y5MgR+vTpQ758+bh06RJ2dnZmc1j/KSAggOPHj5sFnwfZvXs3ISEhZs//GRydnZ1p2bIlLVu2pFmzZgQFBXH16lUCAgLSrYa3336b4OBg3nnnHWxtbWnVqhUApUuXplixYkyePJmWLVummjd77do1XF1d8fPzY/78+dy4ccMImjt37sTGxoaiRYvi4uKCh4cHe/bsoUqVKsD9qQ0p83wBihUrhr29PVFRUY+cp/pvj7u2Z5GyFFtCQsIj29na2nLr1q3nVoeIiIhYF4uH2YSEBC5dumS2NFdYWBgNGjQgJCQEGxsbKlasSKNGjZgwYQI+Pj5cvHiRtWvX0rhxYwIDAwkNDaVBgwbkz5+fZs2aYWNjw+HDh/n1118ZPXq0ca6UOa9vvvkmixYtYu/evcydOxeAKVOm4OHhQZkyZbCxsWHp0qW4u7vj6upKrVq10q0GgMaNG/PVV1/Rrl077OzsaNasGSaTiXnz5lGrVi0qV67MRx99hK+vL/Hx8fzvf/9j48aNbNu2jTZt2jBs2DDat2/P8OHDuXLlCh9++CHt2rXDzc0NgF69ejFu3DiKFCmCr68vU6ZM4dq1a8b5s2XLRv/+/enTpw9JSUm8+eabxMbGsnPnTpydnWnfvv0TfQ1TRmzj4+O5cuUKERERZM6cmWLFigGwcuVKhgwZwm+//QbAunXruHz5MuXKlcPJyYmjR48yYMAAKlWqZPbHQnJyMpcuXQLuT+nYtGkTGzZsIDQ09InqAyhxey42yVme+Dh59ZwbV9/SJYiIyBOweJj94Ycf8PDwwM7OjuzZs1OqVCk++eQT2rdvb4xOrlu3jo8++oiOHTty5coV3N3dqVKlihHe6tSpw/fff8/IkSMZP348mTJlwtfXly5dupida8SIEXz33Xd0794dDw8Pvv32WyNwZcuWjQkTJnDy5ElsbW0pV64c69atS/caUjRr1oykpCTatWuHjY0NTZo04fXXX2f//v2MGTOGd999lz///BMPDw/eeOMNpk2bBkCWLFnYsGEDvXr1oly5cmTJkoWmTZsyZcoUo+9+/foRHR1tvIadOnWicePGxMb+3xqGo0aNIleuXISFhXHmzBlcXV2NpdGe1D9Htw8cOMA333xDgQIFOHfuHHD/Rq6U9WIBHB0d+eKLL+jTpw8JCQl4enrSpEkTBg8ebNZvXFycMeXA3t6eAgUKMHLkSAYNGvTENYqIiEjGZEpO651HVs5kMrFy5Up9pOsrJi4u7v6qBr2XYGOvkVl5PI3MiohYXsrv79jY2Mfep/PSLs0lIiIiIvI4CrMiIiIiYrUsPmf2RXlFZlOIiIiIvFI0MisiIiIiVuuVGZmVV9uvI+qkywc9iIiIyMtFI7MiIiIiYrUUZkVERETEainMioiIiIjVUpgVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWS2FWRERERKyWwqyIiIiIWC2FWRERERGxWgqzIiIiImK1FGZFRERExGopzIqIiIiI1bKzdAEiL0KFbypg62hr6TJERMwcaX/E0iWIWD2NzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYVZERERErJbC7FMIDw/HZDJx7dq1F35uLy8vpk2b9kLOVa1aNXr37v1CziUiIiLyNF75MDtr1iyyZcvGvXv3jG3x8fFkypSJatWqmbVNCbEeHh5ER0fj4uLygqt9sEOHDtG8eXPc3NxwcHCgSJEivPvuu5w4ccLSpT3QihUrCAwMxNXVlaxZs1K6dGm++uorszbVqlXDZDIZDzc3N5o3b8758+ctVLWIiIi8jF75pbmqV69OfHw8+/fvp0KFCgBs374dd3d39uzZw+3bt3FwcABg69at5M+fn6JFiz7XmhITEzGZTNjYPP5vje+//56mTZtSp04dFi1aROHChYmJiWHp0qUMHTqUxYsXP9daH+Vh15EjRw4++ugjfH19yZw5M99//z0dO3Ykd+7c1KlTx2j37rvvMnLkSJKTkzl//jy9e/embdu2bN++/Ylr2X3+d5ztTc98TSJiIcNjLV2BiLykXvmR2aJFi+Lh4UF4eLixLTw8nIYNG1KwYEF2795ttr169eqpphn8exQx5XHu3DkApkyZQsmSJcmaNSuenp50796d+Ph4o9/58+fj6urKmjVrKFasGPb29kRFRRETE0NwcDCOjo4ULFiQRYsWmdV+8+ZNOnbsSL169VizZg21atWiYMGClC9fnkmTJjF79myj7bZt23j99dext7fHw8ODwYMHm41G37hxg5CQEJycnPDw8GDy5MmpXquEhAT69+9P3rx5yZo1K+XLlzd73R52Hf9WrVo1GjdujJ+fH4ULF6ZXr174+/uzY8cOs3ZZsmTB3d0dDw8PKlSoQI8ePTh48ODDv5giIiLyynnlwyzcH53dunWr8Xzr1q1Uq1aNqlWrGttv3brFnj17qF69eqrjV6xYQXR0tPFo0qQJRYsWxc3NDQAbGxs++eQTjh49yoIFC/jxxx8ZOHCgWR83b95k/PjxzJkzh6NHj5I7d246dOjAhQsX2Lp1K8uWLWPGjBnExMQYx2zYsIE///wzVV8pXF1dAfjjjz+oV68e5cqV4/Dhw8ycOZO5c+cyevRoo+2AAQPYtm0bq1evZuPGjYSHh6cKjj169ODnn3/mu+++45dffqF58+YEBQVx8uTJR17HoyQnJ7NlyxaOHz9OlSpVHtru6tWrLFmyhPLlyz+yv4SEBOLi4sweIiIiknG98tMM4H6Y7d27N/fu3ePWrVscOnSIqlWrcvfuXWbNmgXAzz//TEJCAtWrV+fMmTNmx+fIkcP499SpU/nxxx/Zs2cPjo6OAGY3UXl5eTF69Gjef/99ZsyYYWy/e/cuM2bMoFSpUgCcOHGC9evXs3fvXsqVKwfA3Llz8fPzM45JCZG+vr6PvL4ZM2bg6enJ9OnTMZlM+Pr6cvHiRQYNGkRoaCg3b95k7ty5fP3119SsWROABQsWkC9fPqOPqKgo5s2bR1RUFHny5AGgf//+/PDDD8ybN4+xY8c+8DoeJjY2lrx585KQkICtrS0zZsygdu3aqeqeM2cOycnJ3Lx5Ex8fHzZs2PDIfsPCwhgxYsQj24iIiEjGoZFZ7r/tfePGDfbt28f27dvx8fEhV65cVK1a1Zg3Gx4eTqFChcifP/9D+1m/fj2DBw9m8eLF+Pj4GNs3b95MzZo1yZs3L9myZaNdu3b89ddf3Lx502iTOXNm/P39jeeRkZHY2dlRtmxZY5uvr68x2gr3RzXTIjIykooVK2Iy/d+c0UqVKhEfH8/vv//O6dOnuXPnjtmoZ44cOczmBh85coTExER8fHxwcnIyHtu2beP06dMPvI6oqCiztimBFyBbtmxERESwb98+xowZQ9++fc2mLAC0adOGiIgIDh8+zI4dO/D29uatt97i+vXrD73WIUOGEBsbazwuXLiQptdIRERErJNGZgFvb2/y5cvH1q1b+fvvv6latSoAefLkwdPTk127drF161Zq1Kjx0D6OHTtGq1atGDduHG+99Zax/dy5czRo0IBu3boxZswYcuTIwY4dO+jcuTN37twhS5YsADg6OpqFzbRICcy//fYbFStWfNLLfiLx8fHY2tpy4MABbG1tzfY5OTkZ//7ndeTJk4eIiAhj3z9HsG1sbPD29gagdOnSREZGEhYWZraChIuLi9HG29ubuXPn4uHhweLFi+nSpcsD67S3t8fe3v6ZrlVERESsh0Zm/7+UG7vCw8PNAlWVKlWMt/sfNF8W4M8//yQ4OJimTZvSp08fs30HDhwgKSmJyZMnU6FCBXx8fLh48eJj6/H19eXevXscOHDA2Hb8+HGztW3feustXnvtNSZMmPDAPlLa+vn58fPPP5uN5O7cuZNs2bKRL18+ChcuTKZMmdizZ4+x/++//zZb2qtMmTIkJiYSExODt7e32cPd3f2B57ezszNr988w+29JSUkkJCQ88jVJCdG3bt16ZDsRERF5dWhk9v+rXr06H3zwAXfv3jVGZgGqVq1Kjx49uHPnzkPDbNOmTcmSJQvDhw/n0qVLxvZcuXLh7e3N3bt3+fTTTwkODmbnzp3GPNxHKVq0KEFBQbz33nvMnDkTOzs7evfubczDBciaNStz5syhefPmvP322/Ts2RNvb2/+/PNPlixZQlRUFN999x3du3dn2rRpfPjhh/To0YPjx48zbNgw+vbti42NDU5OTnTu3JkBAwaQM2dOcufOzUcffWS2pJaPjw9t2rQhJCSEyZMnU6ZMGa5cucKWLVvw9/enfv36aX6tw8LCCAwMpHDhwiQkJLBu3Tq++uorZs6cadbu5s2bxut5+fJlRo0ahYODg9nId1qVuD0Xm+QsT3ycPB/nxqX9+0VERORRNDL7/1WvXp1bt27h7e1trEIA98Ps9evXjSW8HuSnn37i119/pUCBAnh4eBiPCxcuUKpUKaZMmcL48eMpUaIEixYtIiwsLE01zZs3jzx58lC1alWaNGlC165dU60O0LBhQ3bt2kWmTJl455138PX1pXXr1sTGxhqrFeTNm5d169axd+9eSpUqxfvvv0/nzp3573//a/QzceJEKleuTHBwMLVq1eLNN980m6+bUk9ISAj9+vWjaNGiNGrUiH379j1yHvGD3Lhxg+7du1O8eHEqVarE8uXL+frrr1NNHfjiiy+M17J69er8+eefrFu37rmv8ysiIiLWw5Sc1ruIRKxQXFwcLi4uePZego29RmZfFhqZFRGRR0n5/R0bG4uzs/Mj22pkVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitbQ0l7wSfh1R57ETyEVERMT6aGRWRERERKyWwqyIiIiIWC2FWRERERGxWgqzIiIiImK1FGZFRERExGopzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVUpgVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVp2li5A5EWo8E0FbB1tLV2GiFjAkfZHLF2CiDxHGpkVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKs08hPDwck8nEtWvXXvi5vby8mDZt2gs5V7Vq1ejdu/cLOZeIiIjI03jll+aaNWsWAwYM4O+//8bO7v7LER8fT/bs2alUqRLh4eFG2/DwcKpXr85vv/1GdHQ0Li4uFqra3KFDhxg7diw//fQTsbGxeHp6Uq1aNQYMGICPj4+ly0vl6NGjhIaGcuDAAc6fP8/UqVNTheYOHTqwYMEC43mOHDkoV64cEyZMwN/f/4nPufv87zjbm561dJGMZ3ispSsQEXkmr/zIbPXq1YmPj2f//v3Gtu3bt+Pu7s6ePXu4ffu2sX3r1q3kz5+fokWL4u7ujsn0fMJRYmIiSUlJaWr7/fffU6FCBRISEli0aBGRkZF8/fXXuLi4MHTo0OdSX1o97Dpu3rxJoUKFGDduHO7u7g89PigoiOjoaKKjo9myZQt2dnY0aNDgeZYsIiIiVuaVD7NFixbFw8Mj1Qhsw4YNKViwILt37zbbXr169VTTDKpVq4bJZEr1OHfuHABTpkyhZMmSZM2aFU9PT7p37058fLzR7/z583F1dWXNmjUUK1YMe3t7oqKiiImJITg4GEdHRwoWLMiiRYvMar958yYdO3akXr16rFmzhlq1alGwYEHKly/PpEmTmD17ttF227ZtvP7669jb2+Ph4cHgwYO5d++esf/GjRuEhITg5OSEh4cHkydPTvVaJSQk0L9/f/LmzUvWrFkpX7682ev2sOv4t3LlyjFx4kRatWqFvb39Q7829vb2uLu74+7uTunSpRk8eDAXLlzgypUrDz0mISGBuLg4s4eIiIhkXK98mIX7o7Nbt241nm/dupVq1apRtWpVY/utW7fYs2cP1atXT3X8ihUrjBHE6OhomjRpQtGiRXFzcwPAxsaGTz75hKNHj7JgwQJ+/PFHBg4caNbHzZs3GT9+PHPmzOHo0aPkzp2bDh06cOHCBbZu3cqyZcuYMWMGMTExxjEbNmzgzz//TNVXCldXVwD++OMP6tWrR7ly5Th8+DAzZ85k7ty5jB492mg7YMAAtm3bxurVq9m4cSPh4eEcPHjQrL8ePXrw888/89133/HLL7/QvHlzgoKCOHny5COvIz3Ex8fz9ddf4+3tTc6cOR/aLiwsDBcXF+Ph6emZLucXERGRl9MrP2cW7ofZ3r17c+/ePW7dusWhQ4eoWrUqd+/eZdasWQD8/PPPJCQkUL16dc6cOWN2fI4cOYx/T506lR9//JE9e/bg6OgIYDYf1MvLi9GjR/P+++8zY8YMY/vdu3eZMWMGpUqVAuDEiROsX7+evXv3Uq5cOQDmzp2Ln5+fcUxKiPT19X3k9c2YMQNPT0+mT5+OyWTC19eXixcvMmjQIEJDQ7l58yZz587l66+/pmbNmgAsWLCAfPnyGX1ERUUxb948oqKiyJMnDwD9+/fnhx9+YN68eYwdO/aB1/Esvv/+e5ycnID7I8ceHh58//332Ng8/G+wIUOG0LdvX+N5XFycAq2IiEgGppFZ7k8TuHHjBvv27WP79u34+PiQK1cuqlatasybDQ8Pp1ChQuTPn/+h/axfv57BgwezePFisxuvNm/eTM2aNcmbNy/ZsmWjXbt2/PXXX9y8edNokzlzZrMbmyIjI7Gzs6Ns2bLGNl9fX2O0FSA5OTlN1xcZGUnFihXN5vhWqlSJ+Ph4fv/9d06fPs2dO3coX768sT9HjhwULVrUeH7kyBESExPx8fHBycnJeGzbto3Tp08/8DqioqLM2qYE3rSqXr06ERERREREsHfvXurUqUPdunU5f/78Q4+xt7fH2dnZ7CEiIiIZl0ZmAW9vb/Lly8fWrVv5+++/qVq1KgB58uTB09OTXbt2sXXrVmrUqPHQPo4dO0arVq0YN24cb731lrH93LlzNGjQgG7dujFmzBhy5MjBjh076Ny5M3fu3CFLliwAODo6PvENZSmB+bfffqNixYpPetlPJD4+HltbWw4cOICtra3ZvpTRUzC/jjx58hAREWHs++cIdlpkzZoVb29v4/mcOXNwcXHhiy++MJsiISIiIq8uhdn/L+XGrr///psBAwYY26tUqWK83d+tW7cHHvvnn38SHBxM06ZN6dOnj9m+AwcOkJSUxOTJk423x5csWfLYenx9fbl37x4HDhwwphkcP37cbG3bt956i9dee40JEyawcuXKVH1cu3YNV1dX/Pz8WL58OcnJyUbQ3LlzJ9myZSNfvnzkyJGDTJkysWfPHmPk+e+//+bEiRNGsC9TpgyJiYnExMRQuXLlx9YPYGdnZxZGn5XJZMLGxoZbt2498bElbs/FJjlLutVibc6Nq2/pEkRERJ4Lhdn/r3r16nzwwQfcvXvXCHAAVatWpUePHty5c+eBN38BNG3alCxZsjB8+HAuXbpkbM+VKxfe3t7cvXuXTz/9lODgYHbu3GnMw32UokWLEhQUxHvvvcfMmTOxs7Ojd+/exjxcuD9yOWfOHJo3b87bb79Nz5498fb25s8//2TJkiVERUXx3Xff0b17d6ZNm8aHH35Ijx49OH78OMOGDaNv377Y2Njg5ORE586dGTBgADlz5iR37tx89NFHZnNTfXx8aNOmDSEhIUyePJkyZcpw5coVtmzZgr+/P/Xrpz0s3blzh2PHjhn//uOPP4iIiMDJycks/CYkJBiv599//8306dOJj48nODg4zecSERGRjE1zZv+/6tWrc+vWLby9vY1VCOB+mL1+/bqxhNeD/PTTT/z6668UKFAADw8P43HhwgVKlSrFlClTGD9+PCVKlGDRokWEhYWlqaZ58+aRJ08eqlatSpMmTejatWuq1QEaNmzIrl27yJQpE++88w6+vr60bt2a2NhY4634vHnzsm7dOvbu3UupUqV4//336dy5M//973+NfiZOnEjlypUJDg6mVq1avPnmm2bzdVPqCQkJoV+/fhQtWpRGjRqxb9++R84jfpCLFy9SpkwZypQpQ3R0NJMmTaJMmTJ06dLFrN0PP/xgvJbly5dn3759LF26lGrVqj3R+URERCTjMiWn9S4iESsUFxd3f4mu3kuwsdc0AxEREWuQ8vs7Njb2sTdza2RWRERERKyWwqyIiIiIWC2FWRERERGxWlrNQF4Jv46oow9QEBERyYA0MisiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWS2FWRERERKyWwqyIiIiIWC2FWRERERGxWgqzIiIiImK17NLa8JNPPklzpz179nyqYkREREREnoQpOTk5OS0NCxYsmLYOTSbOnDnzTEWJpJe4uDhcXFyIjY3F2dnZ0uWIiIhIGjzJ7+80j8yePXv2mQsTEREREUlPzzRn9s6dOxw/fpx79+6lVz0iIiIiImn2VGH25s2bdO7cmSxZslC8eHGioqIA+PDDDxk3bly6FigiIiIi8jBPFWaHDBnC4cOHCQ8Px8HBwdheq1YtFi9enG7FiYiIiIg8SprnzP7TqlWrWLx4MRUqVMBkMhnbixcvzunTp9OtOJH0UuGbCtg62lq6DBERkQzlSPsjli7h6UZmr1y5Qu7cuVNtv3Hjhlm4FRERERF5np4qzAYGBrJ27VrjeUqAnTNnDhUrVkyfykREREREHuOpphmMHTuWunXrcuzYMe7du8fHH3/MsWPH2LVrF9u2bUvvGkVEREREHuipRmbffPNNIiIiuHfvHiVLlmTjxo3kzp2bn3/+mbJly6Z3jSIiIiIiD/RUI7MAhQsX5osvvkjPWkREREREnkiaR2bj4uLS/BBzw4cPp3Tp0unW3/z583F1dU23/kRERESsVZpHZl1dXdO8UkFiYuJTF2Rply5dYsyYMaxdu5Y//viD3LlzU7p0aXr37k3NmjVfWB0mk4mVK1fSqFGjF3bO9LJixQpmzZrFgQMHuHr1KocOHUoV5t977z02b97MxYsXcXJy4o033mD8+PH4+voCcO7cOQoWLGi0z5QpE/nz56dDhw589NFHT7xqxu7zv+Nsr5U2RETkCQyPtXQFkgZpDrNbt241/n3u3DkGDx5Mhw4djNULfv75ZxYsWEBYWFj6V/mCnDt3jkqVKuHq6srEiRMpWbIkd+/eZcOGDXzwwQf89ttvli7RKty4cYM333yTFi1a8O677z6wTdmyZWnTpg358+fn6tWrDB8+nLfeeouzZ89ia/t/68Fu3ryZ4sWLk5CQwI4dO+jSpQseHh507tz5RV2OiIiIvMTSPM2gatWqxmPhwoVMmTKFsLAw3n77bd5++23CwsKYNGkS8+bNe571Plfdu3fHZDKxd+9emjZtio+PD8WLF6dv377s3r0bgKioKBo2bIiTkxPOzs60aNGCy5cvm/Uzbtw43NzcyJYtG507d+b27dupzjVnzhz8/PxwcHDA19eXGTNmPHXdp0+fpmHDhri5ueHk5ES5cuXYvHmzWRsvLy9Gjx5NSEgITk5OFChQgDVr1nDlyhXjevz9/dm/f79xzF9//UXr1q3JmzcvWbJkoWTJknz77bePraddu3aEhoZSq1ath7bp2rUrVapUwcvLi4CAAEaPHs2FCxc4d+6cWbucOXPi7u5OgQIFaNOmDZUqVeLgwYMP7TchIUHTXkRERF4hT7Wawc8//0xgYGCq7YGBgezdu/eZi7KEq1ev8sMPP/DBBx+QNWvWVPtdXV1JSkqiYcOGXL16lW3btrFp0ybOnDlDy5YtjXZLlixh+PDhjB07lv379+Ph4ZEqqC5atIjQ0FDGjBlDZGQkY8eOZejQoSxYsOCpao+Pj6devXps2bKFQ4cOERQURHBwMFFRUWbtpk6dSqVKlTh06BD169enXbt2hISE0LZtWw4ePEjhwoUJCQkhOTkZgNu3b1O2bFnWrl3Lr7/+SteuXWnXrl26f41v3LjBvHnzKFiwIJ6eng9tt3//fg4cOED58uUf2iYsLAwXFxfj8aj+RERExPo9VZj19PR84EoGc+bMsdrwcOrUKZKTk405mw+yZcsWjhw5wjfffEPZsmUpX748CxcuZNu2bezbtw+AadOm0blzZzp37kzRokUZPXo0xYoVM+tn2LBhTJ48mSZNmlCwYEGaNGlCnz59mD179lPVXqpUKd577z1KlChBkSJFGDVqFIULF2bNmjVm7erVq8d7771HkSJFCA0NJS4ujnLlytG8eXN8fHwYNGgQkZGRxkhz3rx56d+/P6VLl6ZQoUJ8+OGHBAUFsWTJkqeq899mzJiBk5MTTk5OrF+/nk2bNpE5c2azNm+88QZOTk5kzpyZcuXK0aJFC0JCQh7a55AhQ4iNjTUeFy5cSJdaRURE5OX0VGF26tSpfPrpp5QsWZIuXbrQpUsX/P39+fTTT5k6dWp61/hCpIxGPkpkZCSenp5mgb1YsWK4uroSGRlptPn3yOE/PxXtxo0bnD59ms6dOxtBzsnJidGjR3P69Omnqj0+Pp7+/fvj5+eHq6srTk5OREZGphqZ9ff3N/7t5uYGQMmSJVNti4mJAe7fyDdq1ChKlixJjhw5cHJyYsOGDUa/ixYtMruG7du3P1Hdbdq04dChQ2zbtg0fHx9atGiRakrG4sWLiYiI4PDhwyxZsoTVq1czePDgh/Zpb2+Ps7Oz2UNEREQyrqdaZ7ZevXqcPHmSGTNmGDdFBQcH8/7771vtyGyRIkUwmUzP/Sav+Ph4AL744otUofefNz49if79+7Np0yYmTZqEt7c3jo6ONGvWjDt37pi1y5Qpk/HvlNUAHrQtKSkJgIkTJ/Lxxx8zbdo0SpYsSdasWendu7fR79tvv212DXnz5n2iulOmAhQpUoQKFSqQPXt2Vq5cSevWrY02np6eeHt7A+Dn58fp06cZOnQow4cPx8HB4YnOJyIiIhnPU39oQr58+Rg7dmx61mJROXLkoE6dOnz22Wf07Nkz1bzZa9eu4efnx4ULF7hw4YIR2o8dO8a1a9eMqQR+fn7s2bPH7K3wlJvH4P7oZ548eThz5gxt2rRJl9p37txJhw4daNy4MXA/MP/7Rqqn7bdhw4a0bdsWuB9yT5w4YVxrtmzZyJYt2zOfB+6PjCcnJ5OQkPDIdra2tty7d487d+48UZgtcXsuNslZnrVMEbFC58bVt3QJIvIcPXWYvXbtGnPnzjXeXi9evDidOnXCxcUl3Yp70T777DMqVarE66+/zsiRI/H39+fevXts2rSJmTNncuzYMUqWLEmbNm2YNm0a9+7do3v37lStWtW4Ia5Xr1506NCBwMBAKlWqxKJFizh69CiFChUyzjNixAh69uyJi4sLQUFBJCQksH//fv7++2/69u1rtDt79iwRERFmNRYpUiRV3UWKFGHFihUEBwdjMpkYOnSoMbr6LIoUKcKyZcvYtWsX2bNnZ8qUKVy+fDnVHOB/u3r1KlFRUVy8eBGA48ePA+Du7o67uztnzpxh8eLFvPXWW+TKlYvff/+dcePG4ejoSL169cz6+uuvv7h06RL37t3jyJEjfPzxx1SvXl3TB0RERAR4yjC7f/9+6tSpg6OjI6+//joAU6ZMYcyYMWzcuJGAgIB0LfJFKVSoEAcPHmTMmDH069eP6OhocuXKRdmyZZk5cyYmk4nVq1fz4YcfUqVKFWxsbAgKCuLTTz81+mjZsiWnT59m4MCB3L59m6ZNm9KtWzc2bNhgtOnSpQtZsmRh4sSJDBgwgKxZs1KyZEl69+5tVs8/g22KB81LnTJlCp06deKNN97gtddeY9CgQemyJNV///tfzpw5Q506dciSJQtdu3alUaNGxMY+ehHpNWvW0LFjR+N5q1atgPs3vqVMD9i+fTvTpk3j77//xs3NjSpVqrBr1y5y585t1lfK8l62trZ4eHhQr149xowZ88zXJiIiIhmDKTktdz79S+XKlfH29uaLL77Azu5+Hr537x5dunThzJkz/PTTT+leqMjTiIuLu79EV+8l2NhrmoHIq0jTDESsT8rv79jY2Me+G/vUI7P/DLIAdnZ2DBw48IHrz4qIiIiIPA9PtTSXs7NzqmWfAC5cuJBuNwSJiIiIiDzOU4XZli1b0rlzZxYvXmzc3f/dd9/RpUsXs2WVRERERESep6eaZjBp0iRMJhMhISHcu3eP5ORkMmfOTLdu3Rg3blx61yjyzH4dUUcrIIiIiGRAT3UDWIqbN28an1pVuHBhsmTRDTbycnmSCeQiIiLycnhuN4B16tQpTe2+/PLLJ+lWREREROSpPFGYnT9/PgUKFKBMmTI8w4CuiIiIiEi6eKIw261bN7799lvOnj1Lx44dadu2LTly5HhetYmIiIiIPNITrWbw2WefER0dzcCBA/nf//6Hp6cnLVq0YMOGDRqpFREREZEX7pluADt//jzz589n4cKF3Lt3j6NHj+Lk5JSe9Yk8E90AJiIiYn2e5Pf3U60zaxxsY4PJZCI5OZnExMRn6UpERERE5Ik9cZhNSEjg22+/pXbt2vj4+HDkyBGmT59OVFSURmVFRERE5IV6ohvAunfvznfffYenpyedOnXi22+/5bXXXntetYmIiIiIPNITzZm1sbEhf/78lClTBpPJ9NB2K1asSJfiRJ6V5syKiIhYn+f2oQkhISGPDLEiIiIiIi/SE39ogoiIiIjIy+KZVjMQEREREbEkhVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJW64nWmRWxVhW+qYCto62lyxAREbG4I+2PWLqEdKWRWRERERGxWgqzIiIiImK1FGZFRERExGopzIqIiIiI1VKYFRERERGrpTD7khg+fDilS5dOt/7mz5+Pq6truvUnIiIi8jLS0lxP4dKlS4wZM4a1a9fyxx9/kDt3bkqXLk3v3r2pWbPmC6vDZDKxcuVKGjVq9MLOmV5MJtMDt0+YMIEBAwakamNra0uePHlo1qwZYWFh2NvbP9H5dp//HWf7B59TREReIcNjLV2BpDOF2Sd07tw5KlWqhKurKxMnTqRkyZLcvXuXDRs28MEHH/Dbb79ZukSrEB0dbfZ8/fr1dO7cmaZNm5ptnzdvHkFBQdy9e5fDhw/TsWNHsmbNyqhRo15kuSIiIvKS0jSDJ9S9e3dMJhN79+6ladOm+Pj4ULx4cfr27cvu3bsBiIqKomHDhjg5OeHs7EyLFi24fPmyWT/jxo3Dzc2NbNmy0blzZ27fvp3qXHPmzMHPzw8HBwd8fX2ZMWPGU9d9+vRpGjZsiJubG05OTpQrV47NmzebtfHy8mL06NGEhITg5OREgQIFWLNmDVeuXDGux9/fn/379xvH/PXXX7Ru3Zq8efOSJUsWSpYsybfffvvYetzd3c0eq1evpnr16hQqVMisnaurK+7u7nh6etKgQQMaNmzIwYMHn/p1EBERkYxFYfYJXL16lR9++IEPPviArFmzptrv6upKUlISDRs25OrVq2zbto1NmzZx5swZWrZsabRbsmQJw4cPZ+zYsezfvx8PD49UQXXRokWEhoYyZswYIiMjGTt2LEOHDmXBggVPVXt8fDz16tVjy5YtHDp0iKCgIIKDg4mKijJrN3XqVCpVqsShQ4eoX78+7dq1IyQkhLZt23Lw4EEKFy5MSEgIycnJANy+fZuyZcuydu1afv31V7p27Uq7du3Yu3dvmmu7fPkya9eupXPnzo9sd+LECX788UfKly//0DYJCQnExcWZPURERCTjMiWnpBJ5rL1791K+fHlWrFhB48aNH9hm06ZN1K1bl7Nnz+Lp6QnAsWPHKF68OHv37qVcuXK88cYblClThs8++8w4rkKFCty+fZuIiAgAvL29GTVqFK1btzbajB49mnXr1rFr1y7g0XNm58+fT+/evbl27dpDr6dEiRK8//779OjRA7g/Mlu5cmW++uor4P7cYA8PD4YOHcrIkSMB2L17NxUrViQ6Ohp3d/cH9tugQQN8fX2ZNGnSQ8/9TxMmTGDcuHFcvHgRBwcHY7vJZMLBwQFbW1vu3btHQkICDRo0YMWKFWTKlOmBfQ0fPpwRI0ak2h47OJvmzIqIiObMWom4uDhcXFyIjY3F2dn5kW01MvsE0pL7IyMj8fT0NIIsQLFixXB1dSUyMtJo8+/RxYoVKxr/vnHjBqdPn6Zz5844OTkZj9GjR3P69Omnqj0+Pp7+/fvj5+eHq6srTk5OREZGphqZ9ff3N/7t5uYGQMmSJVNti4mJASAxMZFRo0ZRsmRJcuTIgZOTExs2bDD6XbRokdk1bN++PVVtX375JW3atDELsimmTp1KREQEhw8f5vvvv+fEiRO0a9fuodc5ZMgQYmNjjceFCxfS+hKJiIiIFdINYE+gSJEimEym536TV3x8PABffPFFqtBra2v7VH3279+fTZs2MWnSJLy9vXF0dKRZs2bcuXPHrN0/RzxTVhN40LakpCQAJk6cyMcff8y0adMoWbIkWbNmpXfv3ka/b7/9ttk15M2b1+x827dv5/jx4yxevPiBdbu7u+Pt7Q1A0aJFuX79Oq1bt2b06NHG9n+yt7d/4pUORERExHopzD6BHDlyUKdOHT777DN69uyZat7stWvX8PPz48KFC1y4cMFsmsG1a9coVqwYAH5+fuzZs4eQkBDj2JSbx+D+6GeePHk4c+YMbdq0SZfad+7cSYcOHYzpEfHx8Zw7dy5d+m3YsCFt27YF7ofcEydOGNeaLVs2smXL9tDj586dS9myZSlVqlSazpcS5m/duvVEdZa4PReb5CxPdIyIPNi5cfUtXYKIiEFh9gl99tlnVKpUiddff52RI0fi7+/PvXv32LRpEzNnzuTYsWOULFmSNm3aMG3aNO7du0f37t2pWrUqgYGBAPTq1YsOHToQGBhIpUqVWLRoEUePHjW7k3/EiBH07NkTFxcXgoKCSEhIYP/+/fz999/07dvXaHf27Fljnm2KIkWKpKq7SJEirFixguDgYEwmE0OHDjVGV59FkSJFWLZsGbt27SJ79uxMmTKFy5cvG2H2UeLi4li6dCmTJ09+aJtr165x6dIlkpKSOHnyJCNHjsTHxwc/P79nrl1ERESsn8LsEypUqBAHDx5kzJgx9OvXj+joaHLlykXZsmWZOXMmJpOJ1atX8+GHH1KlShVsbGwICgri008/Nfpo2bIlp0+fZuDAgdy+fZumTZvSrVs3NmzYYLTp0qULWbJkYeLEiQwYMICsWbNSsmRJevfubVbPP4NtigfNS50yZQqdOnXijTfe4LXXXmPQoEHpcqf/f//7X86cOUOdOnXIkiULXbt2pVGjRsTGPn6C/XfffUdycrLZTW7/1rFjR+D+9AZ3d3eqVKnC2LFjsbPTt66IiIhoNQPJ4FLuhvTsvQQbe00zEEkPmmYgIs+bVjMQERERkVeCwqyIiIiIWC2FWRERERGxWrqLRl4Jv46o89g5NyIiImJ9NDIrIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVUpgVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWS2FWRERERKyWwqyIiIiIWC07Sxcg8iJU+KYCto62li5DRESAI+2PWLoEyUA0MisiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitRRm5ZG8vLyYNm2apcsQEREReSAtzfUcXLlyhdDQUNauXcvly5fJnj07pUqVIjQ0lEqVKmEymVi5ciWNGjVKt3Nu3bqViRMnsmfPHm7duoWXlxd169alb9++5M2bN93Ok168vLw4f/58qu3du3fns88+S9XGxsYGNzc36taty6RJk8iePfsTnW/3+d9xtjc9e+EiIs/b8FhLVyBiVTQy+xw0bdqUQ4cOsWDBAk6cOMGaNWuoVq0af/31V7qe586dOwDMnj2bWrVq4e7uzvLlyzl27BizZs0iNjaWyZMnp+s5n7bGf9u3bx/R0dHGY9OmTQA0b97crN3IkSOJjo4mKiqKRYsW8dNPP9GzZ8/nXreIiIhYB4XZdHbt2jW2b9/O+PHjqV69OgUKFOD1119nyJAhvP3223h5eQHQuHFjTCaT8fz06dM0bNgQNzc3nJycKFeuHJs3bzbr28vLi1GjRhESEoKzszNdu3bl999/p2fPnvTs2ZMvv/ySatWq4eXlRZUqVZgzZw6hoaHG8cuXL6d48eLY29vj5eWVKujGxMQQHByMo6MjBQsWZNGiRQ+8vi5dupArVy6cnZ2pUaMGhw8fNvYPHz6c0qVLM2fOHAoWLIiDg8MDX6dcuXLh7u5uPL7//nsKFy5M1apVzdply5YNd3d38ubNS/Xq1Wnfvj0HDx5M89dDREREMjaF2XTm5OSEk5MTq1atIiEhIdX+ffv2ATBv3jyio6ON5/Hx8dSrV48tW7Zw6NAhgoKCCA4OJioqyuz4SZMmUapUKQ4dOsTQoUNZunQpd+7cYeDAgQ+sx9XVFYADBw7QokULWrVqxZEjRxg+fDhDhw5l/vz5RtsOHTpw4cIFtm7dyrJly5gxYwYxMTFm/TVv3pyYmBjWr1/PgQMHCAgIoGbNmly9etVoc+rUKZYvX86KFSuIiIh47Gt2584dvv76azp16oTJ9PCpAH/88Qf/+9//KF++/EPbJCQkEBcXZ/YQERGRjMuUnJycbOkiMprly5fz7rvvcuvWLQICAqhatSqtWrXC398fIM1zZkuUKMH7779Pjx49gPsjs2XKlGHlypVGm+7du7No0SJiYx89x6pNmzZcuXKFjRs3GtsGDhzI2rVrOXr0KCdOnKBo0aLs3buXcuXKAfDbb7/h5+fH1KlT6d27Nzt27KB+/frExMRgb29v9OPt7c3AgQPp2rUrw4cPZ+zYsfzxxx/kypUrTa/XkiVLeOedd4iKiiJPnjzGdi8vL6Kjo8mUKROJiYncvn2b8uXL88MPPxgh/d+GDx/OiBEjUm2PHZxNc2ZFxDpozqwIcXFxuLi4EBsbi7Oz8yPbamT2OWjatCkXL15kzZo1BAUFER4eTkBAgNko6L/Fx8fTv39//Pz8cHV1xcnJicjIyFQjs4GBgWbPk5OTHzmamSIyMpJKlSqZbatUqRInT54kMTGRyMhI7OzsKFu2rLHf19fXLDQePnyY+Ph4cubMaYxAOzk5cfbsWU6fPm20K1CggBFkt2/fbtb2QVMX5s6dS926dc2CbIoBAwYQERHBL7/8wpYtWwCoX78+iYmJD7zOIUOGEBsbazwuXLjw2NdGRERErJdWM3hOHBwcqF27NrVr12bo0KF06dKFYcOG0aFDhwe279+/P5s2bWLSpEl4e3vj6OhIs2bNUt1AlTVrVrPnPj4+xMbGEh0djYeHx/O6HOB+4Pbw8CA8PDzVvn+G3n/WGBgYaDbVwM3Nzey48+fPs3nzZlasWPHAc7722mt4e3sDUKRIEaZNm0bFihXZunUrtWrVStXe3t7ebNRYREREMjaF2RekWLFirFq1CsB42/yfdu7cSYcOHWjcuDFwPzieO3fusf02a9aMwYMHM2HCBKZOnZpq/7Vr13B1dcXPz4+dO3emOqePjw+2trb4+vpy7949Dhw4YEwzOH78ONeuXTPaBwQEcOnSJezs7Iwb1x7H0dHRCKMPMm/ePHLnzk39+vXT1J+trS0At27dSlP7FCVuz8UmOcsTHSPyNM6NS9v3soiIpA+F2XT2119/0bx5czp16oS/vz/ZsmVj//79TJgwgYYNGwL354Ju2bKFSpUqYW9vT/bs2SlSpAgrVqwgODgYk8nE0KFDSUpKeuz5PD09mTp1Kj169CAuLo6QkBC8vLz4/fffWbhwIU5OTkyePJl+/fpRrlw5Ro0aRcuWLfn555+ZPn06M2bMAKBo0aIEBQXx3nvvMXPmTOzs7OjduzeOjo7GuWrVqkXFihVp1KgREyZMwMfHh4sXL7J27VoaN26cagrE4yQlJTFv3jzat2+Pnd2DvxWvX7/OpUuXSE5O5sKFCwwcOJBcuXLxxhtvPNG5REREJGPSnNl05uTkRPny5Zk6dSpVqlShRIkSDB06lHfffZfp06cDMHnyZDZt2oSnpydlypQBYMqUKWTPnp033niD4OBg6tSpQ0BAQJrO2b17dzZu3Mgff/xB48aN8fX1pUuXLjg7O9O/f3/g/qjqkiVL+O677yhRogShoaGMHDnSbNrDvHnzyJMnD1WrVqVJkyZ07dqV3LlzG/tNJhPr1q2jSpUqdOzYER8fH1q1asX58+dTTR9Ii82bNxMVFUWnTp0e2iY0NBQPDw/y5MlDgwYNyJo1Kxs3biRnzpxPfD4RERHJeLSagWRoKXdDevZego29phnI86dpBiIiz06rGYiIiIjIK0FhVkRERESslsKsiIiIiFgtrWYgr4RfR9R57JwbERERsT4amRURERERq6UwKyIiIiJWS2FWRERERKyWwqyIiIiIWC2FWRERERGxWgqzIiIiImK1FGZFRERExGopzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVsrN0ASIiIvL8JSYmcvfuXUuXIQJApkyZsLW1TZe+FGZFREQysOTkZC5dusS1a9csXYqIGVdXV9zd3TGZTM/Uj8KsiIhIBpYSZHPnzk2WLFmeOTiIPKvk5GRu3rxJTEwMAB4eHs/Un8KsvBIqfFMBW8f0eTtDRCS9HGl/5Ln2n5iYaATZnDlzPtdziTwJR0dHAGJiYsidO/czTTnQDWAiIiIZVMoc2SxZsli4EpHUUr4vn3Uut8KsiIhIBqepBfIySq/vS4VZEREREbFaCrMiIiLy0qlWrRq9e/e22Pk7dOhAo0aNXpp65OF0A5iIiMgrxmvw2hd6vnPj6r/Q8z0PK1asIFOmTJYuw2p4eXnRu3fvF/IHgEZm5ZG8vLyYNm2apcsQERGxqBw5cpAtWzZLl/FMkpOTuXfvnqXLSHcamX0Orly5QmhoKGvXruXy5ctkz56dUqVKERoaSqVKlTCZTKxcudLs7YtntXXrViZOnMiePXu4desWXl5e1K1bl759+5I3b950O096mTlzJjNnzuTcuXMAFC9enNDQUOrWrWu08fLy4vz58wDY2Njg5uZG3bp1mTRpEtmzZ3+i8+0+/zvO9roBQsRqDY+1dAViAffu3aNHjx589dVXZMqUiW7dujFy5EhMJhNfffUVH3/8McePHydr1qzUqFGDadOmkTt3bgD+/vtvevTowcaNG4mPjydfvnz85z//oWPHjgBcuHCBfv36sXHjRmxsbKhcuTIff/wxXl5eD6ylWrVqlC5d2hjg8fLyomvXrpw6dYqlS5eSPXt2/vvf/9K1a1fjmCc9xz916NCBa9euUaZMGaZPn05CQgLvvPMOn3zyCZkzZwYgKSmJ8ePH8/nnn3Pp0iV8fHwYOnQozZo1AyA8PJzq1auzbt06/vvf/3LkyBE2btxIlSpVmDRpEp9//jkXLlzAzc2N9957j48++ihNdafU9uabbzJ58mTu3LlDq1atmDZtGpkyZaJatWqcP3+ePn360KdPH+B+kH5eNDL7HDRt2pRDhw6xYMECTpw4wZo1a6hWrRp//fVXup7nzp07AMyePZtatWrh7u7O8uXLOXbsGLNmzSI2NpbJkyen6zmftsZ/y5cvH+PGjePAgQPs37+fGjVq0LBhQ44ePWrWbuTIkURHRxMVFcWiRYv46aef6Nmz54soXURELGzBggXY2dmxd+9ePv74Y6ZMmcKcOXOA+8s5jRo1isOHD7Nq1SrOnTtHhw4djGOHDh3KsWPHWL9+PZGRkcycOZPXXnvNOLZOnTpky5aN7du3s3PnTpycnAgKCnro760HmTx5MoGBgRw6dIju3bvTrVs3jh8/nm7n2LJlC5GRkYSHh/Ptt9+yYsUKRowYYewPCwtj4cKFzJo1i6NHj9KnTx/atm3Ltm3bzPoZPHgw48aNIzIyEn9/f4YMGcK4ceOM1+ibb77Bzc3tiereunUrp0+fZuvWrSxYsID58+czf/584P6UjHz58hm/w6Ojo9P8mj4Njcyms2vXrrF9+3bCw8OpWrUqAAUKFOD1118HMP6qady4sbHv3LlznD59mr59+7J7925u3LiBn58fYWFh1KpVy+jby8uLzp07c/LkSVatWkWTJk0YPXo0PXv2pGfPnkydOtWsbZUqVcw+vnD58uWEhoZy6tQpPDw8+PDDD+nXr5+xPyYmhs6dO7N582bc3d0ZPXr0A6+vf//+rF69moSEBAIDA5k6dSqlSpUCYPjw4axatYoePXowZswYzp8/T1JSUqp+goODzZ6PGTOGmTNnsnv3booXL25sz5YtG+7u7gDkzZuX9u3b8+233z7+CyEiIlbP09OTqVOnYjKZKFq0KEeOHGHq1Km8++67dOrUyWhXqFAhPvnkE8qVK0d8fDxOTk5ERUVRpkwZAgMDAcxGQxcvXkxSUhJz5swxloeaN28erq6uhIeH89Zbb6Wpvnr16tG9e3cABg0axNSpU9m6dStFixZNl3NkzpyZL7/8kixZslC8eHFGjhzJgAEDGDVqFHfv3mXs2LFs3ryZihUrGq/Djh07mD17tpFB4P7AUO3atQG4fv06H3/8MdOnT6d9+/YAFC5cmDfffPOJXpvs2bMzffp0bG1t8fX1pX79+mzZsoV3332XHDlyYGtra/Y7/HlSmE1nTk5OODk5sWrVKipUqIC9vb3Z/n379pE7d27mzZtHUFCQ8YkX8fHx1KtXjzFjxmBvb8/ChQsJDg7m+PHj5M+f3zh+0qRJhIaGMmzYMACWLl3KnTt3GDhw4APrcXV1BeDAgQO0aNGC4cOH07JlS3bt2kX37t3JmTOn8Zdshw4duHjxIlu3biVTpkz07NnT+Ki5FM2bN8fR0ZH169fj4uLC7NmzqVmzJidOnCBHjhwAnDp1iuXLl7NixYo0faJHYmIiS5cu5caNG8YP5IP88ccf/O9//6N8+fIPbZOQkEBCQoLxPC4u7rHnFxGRl1OFChXM1iKtWLEikydPJjExkYiICIYPH87hw4f5+++/jYGTqKgoihUrRrdu3WjatCkHDx7krbfeolGjRrzxxhsAHD58mFOnTqWaA3v79m1Onz6d5vr8/f2Nf5tMJtzd3Y3fm+lxjlKlSpl94EXFihWJj4/nwoULxMfHc/PmTSOkprhz5w5lypQx25YS6AEiIyNJSEigZs2aDzxnWusuXry42e94Dw8Pjhx5vp9o9zAKs+nMzs6O+fPn8+677zJr1iwCAgKoWrUqrVq1wt/fn1y5cgH3Q+Y//1opVaqUMboJMGrUKFauXMmaNWvo0aOHsb1GjRpmo6knT57E2dn5sZ9rPGXKFGrWrMnQoUMB8PHx4dixY0ycOJEOHTpw4sQJ1q9fz969eylXrhwAc+fOxc/Pz+hjx44d7N27l5iYGCOkT5o0iVWrVrFs2TJjntCdO3dYuHChca0Pc+TIESpWrMjt27dxcnJi5cqVFCtWzKzNoEGD+O9//0tiYiK3b9+mfPnyTJky5aF9hoWFmb0FIyIiGc/t27epU6cOderUYdGiReTKlYuoqCjq1KljvBVet25dzp8/z7p169i0aRM1a9bkgw8+YNKkScTHx1O2bFkWLVqUqu/H/e76p3+vbmAymYxQnV7neJj4+HgA1q5dm+remH8PpGXNmtX4d8rHyD6q37TU/ahrf9E0Z/Y5aNq0KRcvXmTNmjUEBQURHh5OQECAMZfkQeLj4+nfvz9+fn64urri5OREZGQkUVFRZu3++dcV3J9QnZZP0IiMjKRSpUpm2ypVqsTJkydJTEwkMjISOzs7ypYta+z39fU1Rnbh/l9r8fHx5MyZ0xiBdnJy4uzZs2Z/rRUoUMD4ht++fbtZ23/+cBQtWpSIiAj27NlDt27daN++PceOHTOrccCAAURERPDLL7+wZcsWAOrXr09iYuIDr3PIkCHExsYajwsXLjz2tRERkZfTnj17zJ7v3r2bIkWK8Ntvv/HXX38xbtw4KleujK+vb6p3EuF++Grfvj1ff/0106ZN4/PPPwcgICCAkydPkjt3bry9vc0eLi4u6VJ7epzj8OHD3Lp1y+z6nZyc8PT0pFixYtjb2xMVFZWqf09Pz4f2WaRIERwdHY3fqc+jbrg/ReJhv6vTm8Lsc+Lg4EDt2rUZOnQou3btokOHDsbUgAfp378/K1euZOzYsWzfvp2IiAhKliyZapL4P/+6gvsjrLGxsc99cjXcD9weHh5ERESYPY4fP86AAQMeWGNgYKBZ27ffftvYlzlzZry9vSlbtixhYWGUKlWKjz/+2Oycr732Gt7e3hQpUsS4U3XXrl1s3br1gTXa29vj7Oxs9hAREesUFRVF3759OX78ON9++y2ffvopvXr1In/+/GTOnJlPP/2UM2fOsGbNGkaNGmV2bGhoKKtXr+bUqVMcPXqU77//3ni3sU2bNrz22ms0bNiQ7du3c/bsWcLDw+nZsye///57utSeHue4c+cOnTt35tixY6xbt45hw4bRo0cPbGxsyJYtG/3796dPnz4sWLCA06dPc/DgQT799FMWLFjw0D4dHBwYNGgQAwcOZOHChZw+fZrdu3czd+7cdH1tvLy8+Omnn/jjjz/4888/03zc09A0gxekWLFirFq1Crg/NP/vv1Z27txJhw4djBvD4uPjjWWrHqVZs2YMHjyYCRMmmN0AluLatWu4urri5+fHzp07U53Tx8fHmLx97949Dhw4YEwzOH78uNkNZAEBAVy6dAk7O7s0LSsC99/O8Pb2TlPbpKQks/muD5IyP+eff6mmRYnbc7FJzvL4hvJCZIQF1EWsmbX8DIaEhHDr1i1ef/11bG1t6dWrF127dsVkMjF//nz+85//8MknnxAQEMCkSZNSDZgMGTKEc+fO4ejoSOXKlfnuu+8AyJIlCz/99BODBg2iSZMmXL9+nbx581KzZs10GwRJj3PUrFmTIkWKUKVKFRISEmjdujXDhw839o8aNYpcuXIRFhbGmTNncHV1JSAggP/85z+P7Hfo0KHY2dkRGhrKxYsX8fDw4P3330+3uuH+TWfvvfcehQsXJiEh4bkuzWVKfp69v4L++usvmjdvTqdOnfD39ydbtmzs37+fDz/8kPr16zN37lx8fHyoVasWoaGh2Nvbkz17dpo0acLZs2eZN28eJpOJoUOHEh4eTqdOnczWtHvQp2nMmDGDHj160LFjR0JCQvDy8uL3339n4cKFODk5MXnyZA4ePEi5cuWMG8B+/vlnunXrxowZM4wbwOrWrcvly5eZOXMmdnZ29O7dmwMHDjB27Fh69+5NcnIyVapU4fr160yYMAEfHx8uXrzI2rVrady4MYGBgcZqBhEREY98nYYMGULdunXJnz8/169f55tvvmH8+PFs2LDBmMyesnrDu+++S3JyMhcuXGDgwIEcO3aMyMhIcubM+divR1xcHC4uLnj2XoKNvcLsy8JafpGKWLvbt29z9uxZChYsiIODg6XLkSeQspZrykBYRvSo78+U39+xsbGPDdGaZpDOnJycKF++PFOnTqVKlSqUKFGCoUOH8u677zJ9+nTg/rp0mzZtwtPT07jjcMqUKWTPnp033niD4OBg6tSpQ0BAQJrO2b17dzZu3Mgff/xB48aN8fX1pUuXLjg7O9O/f3/g/qjqkiVL+O677yhRogShoaGMHDnSbE2+efPmkSdPHqpWrUqTJk3o2rWrsfg03J/cvW7dOqpUqULHjh3x8fGhVatWnD9/3lifLq1iYmIICQmhaNGi1KxZk3379pkF2RShoaF4eHiQJ08eGjRoQNasWdm4cWOagqyIiIhkfBqZlQxNI7MvJ43MirwYGpl9eTk5OT103/r165k7d65GZtM4Mqs5syIiIiIv2KOm4+XNm5fKlSu/uGKsnMKsiIiIyAuW1puj5fE0Z1ZERERErJZGZuWV8OuIOlpzVkREJAPSyKyIiIiIWC2FWRERERGxWgqzIiIiImK1FGZFRETkpVOtWrVUn3gp8iC6AUxERORVM9zlBZ8v9sWe7yHCw8OZOnUqe/fuJS4ujiJFijBgwADatGljtJk/fz4dO3Y0O87e3p7bt2+/6HJfuHPnzlGwYEEOHTpE6dKlLV1OminMioiIyCth165d+Pv7M2jQINzc3Pj+++8JCQnBxcWFBg0aGO2cnZ05fvy48dxkMlmiXMOdO3fInDmzRWt4mWmagYiIiLyU7t27R48ePXBxceG1115j6NChJCcnA+Dl5cXo0aMJCQnBycmJAgUKsGbNGq5cuULDhg1xcnLC39+f/fv3G/395z//YdSoUbzxxhsULlyYXr16ERQUxIoVK8zOazKZcHd3Nx5ubm5prtnLy4tRo0bRunVrsmbNSt68efnss8/M2ly7do0uXbqQK1cunJ2dqVGjBocPHzb2Dx8+nNKlSzNnzhyzj3q9du0a7733Hm5ubjg4OFCiRAm+//5747gdO3ZQuXJlHB0d8fT0pGfPnty4ccOstrFjx9KpUyeyZctG/vz5+fzzz439BQsWBKBMmTKYTCaqVauW5uu2JIVZEREReSktWLAAOzs79u7dy8cff8yUKVOYM2eOsX/q1KlUqlSJQ4cOUb9+fdq1a0dISAht27bl4MGDFC5cmJCQECMAP0hsbCw5cuQw2xYfH0+BAgXw9PSkYcOGHD169InqnjhxIqVKleLQoUMMHjyYXr16sWnTJmN/8+bNiYmJYf369Rw4cICAgABq1qzJ1atXjTanTp1i+fLlrFixgoiICJKSkqhbty47d+7k66+/5tixY4wbNw5bW1sATp8+TVBQEE2bNuWXX35h8eLF7Nixgx49epjVNnnyZAIDAzl06BDdu3enW7duxij03r17Adi8eTPR0dGpQv7LypT8qK+wiJWLi4vDxcWF2NhYfWiCiLxybt++zdmzZ81G9wCrmDNbrVo1YmJiOHr0qPE2/+DBg1mzZg3Hjh3Dy8uLypUr89VXXwFw6dIlPDw8GDp0KCNHjgRg9+7dVKxYkejoaNzd3VOdY8mSJbRr146DBw9SvHhxAH7++WdOnjyJv78/sbGxTJo0iZ9++omjR4+SL1++x9bt5eWFn58f69evN7a1atWKuLg41q1bx44dO6hfvz4xMTHY29sbbby9vRk4cCBdu3Zl+PDhjB07lj/++INcuXIBsHHjRurWrUtkZCQ+Pj6pztulSxdsbW2ZPXu2sW3Hjh1UrVqVGzdu4ODgkOo1S05Oxt3dnREjRvD++++/8DmzD/3+5Ml+f2tkVkRERF5KFSpUMJuvWrFiRU6ePEliYiIA/v7+xr6UqQAlS5ZMtS0mJiZV31u3bqVjx4588cUXRpBNOUdISAilS5ematWqrFixgly5cpmFxMepWLFiqueRkZEAHD58mPj4eHLmzImTk5PxOHv2LKdPnzaOKVCggBFkASIiIsiXL98Dg2xKv/Pnzzfrs06dOiQlJXH27Fmj3T9fs5TpFA96fayJbgATERERq5QpUybj3ymh90HbkpKSzI7btm0bwcHBTJ06lZCQkMeeo0yZMpw6dSpdao6Pj8fDw4Pw8PBU+1xdXY1/Z82a1Wyfo6PjY/t977336NmzZ6p9+fPnN/79z9cH7r9G/359rI3CrIiIiLyU9uzZY/Z89+7dFClSxJgn+jTCw8Np0KAB48ePp2vXro9tn5iYyJEjR6hXr16az7F79+5Uz/38/AAICAjg0qVL2NnZ4eXlleY+/f39+f333zlx4sQDR2cDAgI4duwY3t7eae7z31JWTEgZ+bYWmmYgIiIiL6WoqCj69u3L8ePH+fbbb/n000/p1avXU/e3detW6tevT8+ePWnatCmXLl3i0qVLZjdejRw5ko0bN3LmzBkOHjxI27ZtOX/+PF26dEnzeXbu3MmECRM4ceIEn332GUuXLjXqrlWrFhUrVqRRo0Zs3LiRc+fOsWvXLj766COzlRf+rWrVqlSpUoWmTZuyadMmzp49y/r16/nhhx8AGDRoELt27aJHjx5ERERw8uRJVq9eneoGsEfJnTs3jo6O/PDDD1y+fJnY2JdjfeDHUZgVERGRl1JISAi3bt3i9ddf54MPPqBXr15pGk19mAULFnDz5k3CwsLw8PAwHk2aNDHa/P3337z77rv4+flRr1494uLi2LVrF8WKFUvzefr168f+/fspU6YMo0ePZsqUKdSpUwe4/7b+unXrqFKlCh07dsTHx4dWrVpx/vz5xy4Btnz5csqVK0fr1q0pVqwYAwcONJs/vG3bNk6cOEHlypUpU6YMoaGh5MmTJ81129nZ8cknnzB79mzy5MlDw4YN03ysJWk1A8nQtJqBiLzKHnW3uDwfXl5e9O7dWx/FmwZazUBEREREXnkKsyIiIiJpsH37drOlr/79EMvQagYiIiIiaRAYGEhERMQj25w7d+6F1CL/R2FWREREJA0cHR2faekreT4UZuWVUOGbCtg6Pv26hCJiXY60P2LpEkTkBdGcWRERERGxWgqzIiIiImK1FGZFRERExGopzIqIiIiI1VKYFREREQHCw8MxmUxcu3bN0qXIE9BqBvJI+lg+EZGMp+SCki/0fFpdwvqcO3eOggULcujQIUqXLm3pch5JYfY5uHLlCqGhoaxdu5bLly+TPXt2SpUqRWhoKJUqVcJkMrFy5UoaNWqUbufcunUrEydOZM+ePdy6dQsvLy/q1q1L3759yZs3b7qdJ7389NNPTJw4kQMHDhAdHf3A16NatWps27bNeJ47d26qVKnCpEmTKFCgwBOdb/f533G2N6VH6SKvruGxlq5A5IGSk5NJTEzEzi7jx5o7d+6QOXNmS5fxUtE0g+egadOmHDp0iAULFnDixAnWrFlDtWrV+Ouvv9L1PHfu3AFg9uzZ1KpVC3d3d5YvX86xY8eYNWsWsbGxTJ48OV3P+bQ1/tuNGzcoVaoUn3322SOPf/fdd4mOjubixYusXr2aCxcu0LZt2+dRqoiIvEQSEhLo2bMnuXPnxsHBgTfffJN9+/YB/zcdYP369ZQtWxZ7e3t27NjB6dOnadiwIW5ubjg5OVGuXDk2b96cqt9Bgwbh6emJvb093t7ezJ0796F17Nixg8qVK+Po6Iinpyc9e/bkxo0baboGLy8vRo0aRevWrcmaNSt58+ZN9Xvv2rVrdOnShVy5cuHs7EyNGjU4fPiwsX/48OGULl2aOXPmULBgQRwcHIzj3nvvPdzc3HBwcKBEiRJ8//33aa7by8uLsWPH0qlTJ7Jly0b+/Pn5/PPPjf0FCxYEoEyZMphMJqpVq5ama7YEhdl0du3aNbZv38748eOpXr06BQoU4PXXX2fIkCG8/fbbeHl5AdC4cWNMJpPxPC0/gCk/FCEhITg7O9O1a1d+//13evbsSc+ePfnyyy+pVq0aXl5eVKlShTlz5hAaGmocv3z5cooXL469vT1eXl6pgm5MTAzBwcE4OjpSsGBBFi1a9MDre5ofun+rW7cuo0ePpnHjxo98PbNkyYK7uzseHh5UqFCBHj16cPDgwUceIyIi1m/gwIEsX76cBQsWcPDgQby9valTpw5Xr1412gwePJhx48YRGRmJv78/8fHx1KtXjy1btnDo0CGCgoIIDg4mKirKOCYkJIRvv/2WTz75hMjISGbPno2Tk9MDazh9+jRBQUE0bdqUX375hcWLF7Njxw569OiR5uuYOHEipUqV4tChQwwePJhevXqxadMmY3/z5s2JiYlh/fr1HDhwgICAAGrWrGl2nadOnWL58uWsWLGCiIgIkpKSqFu3Ljt37uTrr7/m2LFjjBs3Dltb2yeqe/LkyQQGBnLo0CG6d+9Ot27dOH78OAB79+4FYPPmzURHR7NixYo0X/OLlvHH418wJycnnJycWLVqFRUqVMDe3t5s/759+8idOzfz5s0jKCjI+MZL+QEcM2YM9vb2LFy4kODgYI4fP07+/PmN4ydNmkRoaCjDhg0DYOnSpdy5c4eBAwc+sB5XV1cADhw4QIsWLRg+fDgtW7Zk165ddO/enZw5c9KhQwcAOnTowMWLF9m6dSuZMmWiZ8+exMTEmPXXvHlzHB0dWb9+PS4uLsyePZuaNWty4sQJcuTIAZj/0KVcX3q4evUqS5YsoXz58g9tk5CQQEJCgvE8Li4u3c4vIiIvxo0bN5g5cybz58+nbt26AHzxxRds2rSJuXPnUq5cOQBGjhxJ7dq1jeNy5MhBqVKljOejRo1i5cqVrFmzhh49enDixAmWLFnCpk2bqFWrFgCFChV6aB1hYWG0adPGuG+kSJEifPLJJ1StWpWZM2c+dMDmnypVqsTgwYMB8PHxYefOnUydOpXatWuzY8cO9u7dS0xMjJEXJk2axKpVq1i2bBldu3YF7r/LuXDhQnLlygXAxo0b2bt3L5GRkfj4+KS6jrTWXa9ePbp37w7AoEGDmDp1Klu3bqVo0aLGuXLmzIm7u/tjr9OSFGbTmZ2dHfPnz+fdd99l1qxZBAQEULVqVVq1aoW/v7/xzeHq6mr2zVGqVKlH/gCmqFGjBv369TOenzx5EmdnZzw8PB5Z15QpU6hZsyZDhw4F7v9AHTt2jIkTJ9KhQwdOnDjB+vXr2bt3r/GfxNy5c/Hz8zP6eNofumcxY8YM5syZQ3JyMjdv3sTHx4cNGzY8tH1YWBgjRox45vOKiIjlnD59mrt371KpUiVjW6ZMmXj99deJjIw0fk8FBgaaHRcfH8/w4cNZu3Yt0dHR3Lt3j1u3bhkjsxEREdja2lK1atU01XH48GF++eUXs3cqk5OTSUpK4uzZs2a/Ix+mYsWKqZ5PmzbN6D8+Pp6cOXOatbl16xanT582nhcoUMDsd2pERAT58uUzguzT1u3v72/sN5lMuLu7pxrEsgaaZvAcNG3alIsXL7JmzRqCgoIIDw8nICCA+fPnP/SY+Ph4+vfvj5+fH66urjg5OREZGWn21gik/sFNTk7GZHr8jU2RkZFm/ynA/b8WT548SWJiIpGRkdjZ2VG2bFljv6+vrzGyC+Y/dCkj0E5OTpw9e/ahP3Tbt283a/ugqQuP0qZNGyIiIjh8+DA7duzA29ubt956i+vXrz+w/ZAhQ4iNjTUeFy5ceKLziYiI9ciaNavZ8/79+7Ny5UrGjh3L9u3biYiIoGTJksb9G46Ojk/Uf3x8PO+99x4RERHG4/Dhw5w8eZLChQs/c/3x8fF4eHiY9R8REcHx48cZMGDAQ6/zcdeR1rozZcpkdpzJZCIpKemZr+tF08jsc+Lg4EDt2rWpXbs2Q4cOpUuXLgwbNsx4S//f+vfvz6ZNm5g0aRLe3t44OjrSrFmzVDdQ/fsb2sfHh9jYWKKjox87OvusUn7owsPDU+37Z+j9Z42BgYFEREQYz93c3J7onC4uLnh7ewMYk/Q9PDxYvHgxXbp0SdXe3t4+1dQOERGxLoULFyZz5szs3LnTWL3m7t277Nu375FLRe7cuZMOHToY92PEx8dz7tw5Y3/JkiVJSkpi27ZtxjSDRwkICODYsWPG76GnsXv37lTPU0ZGAwICuHTpEnZ2dsY9NGnh7+/P77//zokTJx44OpsedaesmJCYmPjUfbwoCrMvSLFixVi1ahVw/y+hf39zPO4H8GGaNWvG4MGDmTBhAlOnTk21/9q1a7i6uuLn58fOnTtTndPHxwdbW1t8fX25d+8eBw4cMN6+OX78uNnC0U/zQ+fo6PhMP0z/ljIH99atW090XInbc7FJzpJudTxP58bVt3QJIiIWlTVrVrp168aAAQPIkSMH+fPnZ8KECdy8eZPOnTub3Xj8T0WKFGHFihUEBwdjMpkYOnSo2Uijl5cX7du3p1OnTnzyySeUKlWK8+fPExMTQ4sWLVL1N2jQIOPm4y5dupA1a1aOHTvGpk2bmD59epquZefOnUyYMIFGjRqxadMmli5dytq1awGoVasWFStWpFGjRkyYMAEfHx8uXrzI2rVrady4cap3Y1NUrVqVKlWq0LRpU6ZMmYK3tze//fYbJpOJoKCgdKk7d+7cODo68sMPP5AvXz4cHBxwcXFJ07EvmqYZpLO//vqLGjVq8PXXX/PLL79w9uxZli5dyoQJE2jYsCFw/4dpy5YtXLp0ib///hv4vx/AlLcC3nnnnTQN9Xt6ejJ16lQ+/vhjOnfuzLZt2zh//jw7d+7kvffeY9SoUQD069ePLVu2MGrUKE6cOMGCBQuYPn06/fv3B6Bo0aIEBQXx3nvvsWfPHg4cOECXLl3M3sr45w/dxo0bOXfuHLt27eKjjz5i//79T/Q6xcfHG299AJw9e5aIiIhU0ypu3rzJpUuXuHTpEocPH6Zbt244ODjw1ltvPdH5RETEuowbN46mTZvSrl07AgICOHXqFBs2bCB79uwPPWbKlClkz56dN954g+DgYOrUqUNAQIBZm5kzZ9KsWTO6d++Or68v77777kOX2vL392fbtm2cOHGCypUrU6ZMGUJDQ8mTJ0+ar6Nfv37s37+fMmXKMHr0aKZMmUKdOnWA+2/rr1u3jipVqtCxY0d8fHxo1aoV58+ff+w7mcuXL6dcuXK0bt2aYsWKMXDgQGOgLD3qtrOz45NPPmH27NnkyZPHyDAvI1NycnKypYvISBISEhg+fDgbN240JrB7enrSvHlz/vOf/+Do6Mj//vc/+vbty7lz58ibNy/nzp3j3LlzdOrUid27d/Paa68xaNAgli5dSunSpY2J4o/6NK7NmzczadIk9u7da3xoQoMGDejbt68x/WD58uWEhoZy8uRJPDw8+PDDD40wC3Dp0iW6dOnC5s2bcXNzY/To0QwdOtTsnNevX+ejjz5i+fLlXLlyBXd3d6pUqUJYWBienp4MHz6cVatWmU0teJDw8HCqV6+eanv79u2NucX//tCE7Nmz4+/vz7Bhwx547IPExcXh4uKCZ+8l2NhrZFZEXi23b9/m7Nmzj1wqUZ4ffYrmoz3q+zPl93dsbCzOzs6P7EdhVjI0hVkReZUpzFqWwuyjpVeY1TQDERERkSf079V6/v2QF0c3gImIiIg8oX+v1vMgabmRW56dwqyIiIjIE0rv1Xrk6SnMyivh1xF1HjvnRkRERKyP5syKiIhkcNb4qU6S8aXX96VGZkVERDKozJkzY2Njw8WLF8mVKxeZM2dO00egizxPycnJ3LlzhytXrmBjY2N82tjTUpgVERHJoGxsbChYsCDR0dFcvHjR0uWImMmSJQv58+fHxubZJgoozIqIiGRgmTNnJn/+/Ny7dy/VR6mLWIqtrS12dnbp8k6BwqyIiEgGZzKZyJQpE5kyZbJ0KSLpTjeAiYiIiIjVUpgVEREREaulMCsiIiIiVktzZiVDS05OBiAuLs7ClYiIiEhapfzeTvk9/igKs5Kh/fXXXwB4enpauBIRERF5UtevX8fFxeWRbRRmJUPLkSMHAFFRUY/9YbBGcXFxeHp6cuHChQz3cb0Z+dogY19fRr42yNjXl5GvDTL29WW0a0tOTub69evkyZPnsW0VZiVDS1mI2cXFJUP8cD+Ms7Nzhr2+jHxtkLGvLyNfG2Ts68vI1wYZ+/oy0rWldRBKN4CJiIiIiNVSmBURERERq6UwKxmavb09w4YNw97e3tKlPBcZ+foy8rVBxr6+jHxtkLGvLyNfG2Ts68vI1/Y4puS0rHkgIiIiIvIS0sisiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmJUM7bPPPsPLywsHBwfKly/P3r17LV1Suvjpp58IDg4mT548mEwmVq1aZemS0k1YWBjlypUjW7Zs5M6dm0aNGnH8+HFLl5UuZs6cib+/v/EJPRUrVmT9+vWWLuu5GTduHCaTid69e1u6lGc2fPhwTCaT2cPX19fSZaWrP/74g7Zt25IzZ04cHR0pWbIk+/fvt3RZz8zLyyvV185kMvHBBx9YurR0kZiYyNChQylYsCCOjo4ULlyYUaNG8SotVqUwKxnW4sWL6du3L8OGDePgwYOUKlWKOnXqEBMTY+nSntmNGzcoVaoUn332maVLSXfbtm3jgw8+YPfu3WzatIm7d+/y1ltvcePGDUuX9szy5cvHuHHjOHDgAPv376dGjRo0bNiQo0ePWrq0dLdv3z5mz56Nv7+/pUtJN8WLFyc6Otp47Nixw9IlpZu///6bSpUqkSlTJtavX8+xY8eYPHky2bNnt3Rpz2zfvn1mX7dNmzYB0Lx5cwtXlj7Gjx/PzJkzmT59OpGRkYwfP54JEybw6aefWrq0F0brzEqGVb58ecqVK8f06dMBSEpKwtPTkw8//JDBgwdbuLr0YzKZWLlyJY0aNbJ0Kc/FlStXyJ07N9u2baNKlSqWLifd5ciRg4kTJ9K5c2dLl5Ju4uPjCQgIYMaMGYwePZrSpUszbdo0S5f1TIYPH86qVauIiIiwdCnPxeDBg9m5cyfbt2+3dCnPXe/evfn+++85efIkJpPJ0uU8swYNGuDm5sbcuXONbU2bNsXR0ZGvv/7agpW9OBqZlQzpzp07HDhwgFq1ahnbbGxsqFWrFj///LMFK5MnFRsbC9wPfRlJYmIi3333HTdu3KBixYqWLiddffDBB9SvX9/s5y8jOHnyJHny5KFQoUK0adOGqKgoS5eUbtasWUNgYCDNmzcnd+7clClThi+++MLSZaW7O3fu8PXXX9OpU6cMEWQB3njjDbZs2cKJEycAOHz4MDt27KBu3boWruzFsbN0ASLPw59//kliYiJubm5m293c3Pjtt98sVJU8qaSkJHr37k2lSpUoUaKEpctJF0eOHKFixYrcvn0bJycnVq5cSbFixSxdVrr57rvvOHjwIPv27bN0KemqfPnyzJ8/n6JFixIdHc2IESOoXLkyv/76K9myZbN0ec/szJkzzJw5k759+/Kf//yHffv20bNnTzJnzkz79u0tXV66WbVqFdeuXaNDhw6WLiXdDB48mLi4OHx9fbG1tSUxMZExY8bQpk0bS5f2wijMishL64MPPuDXX3/NUHMTixYtSkREBLGxsSxbtoz27duzbdu2DBFoL1y4QK9evdi0aRMODg6WLidd/XOUy9/fn/Lly1OgQAGWLFmSIaaIJCUlERgYyNixYwEoU6YMv/76K7NmzcpQYXbu3LnUrVuXPHnyWLqUdLNkyRIWLVrEN998Q/HixYmIiKB3797kyZMnQ33tHkVhVjKk1157DVtbWy5fvmy2/fLly7i7u1uoKnkSPXr04Pvvv+enn34iX758li4n3WTOnBlvb28AypYty759+/j444+ZPXu2hSt7dgcOHCAmJoaAgABjW2JiIj/99BPTp08nISEBW1tbC1aYflxdXfHx8eHUqVOWLiVdeHh4pPqDys/Pj+XLl1uoovR3/vx5Nm/ezIoVKyxdSroaMGAAgwcPplWrVgCULFmS8+fPExYW9sqEWc2ZlQwpc+bMlC1bli1bthjbkpKS2LJlS4abn5jRJCcn06NHD1auXMmPP/5IwYIFLV3Sc5WUlERCQoKly0gXNWvW5MiRI0RERBiPwMBA2rRpQ0RERIYJsnD/JrfTp0/j4eFh6VLSRaVKlVItgXfixAkKFChgoYrS37x588idOzf169e3dCnp6ubNm9jYmMc5W1tbkpKSLFTRi6eRWcmw+vbtS/v27QkMDOT1119n2rRp3Lhxg44dO1q6tGcWHx9vNiJ09uxZIiIiyJEjB/nz57dgZc/ugw8+4JtvvmH16tVky5aNS5cuAeDi4oKjo6OFq3s2Q4YMoW7duuTPn5/r16/zzTffEB4ezoYNGyxdWrrIli1bqrnNWbNmJWfOnFY/57l///4EBwdToEABLl68yLBhw7C1taV169aWLi1d9OnThzfeeIOxY8fSokUL9u7dy+eff87nn39u6dLSRVJSEvPmzaN9+/bY2WWs6BMcHMyYMWPInz8/xYsX59ChQ0yZMoVOnTpZurQXJ1kkA/v000+T8+fPn5w5c+bk119/PXn37t2WLildbN26NRlI9Wjfvr2lS3tmD7ouIHnevHmWLu2ZderUKblAgQLJmTNnTs6VK1dyzZo1kzdu3Gjpsp6rqlWrJvfq1cvSZTyzli1bJnt4eCRnzpw5OW/evMktW7ZMPnXqlKXLSlf/+9//kkuUKJFsb2+f7Ovrm/z5559buqR0s2HDhmQg+fjx45YuJd3FxcUl9+rVKzl//vzJDg4OyYUKFUr+6KOPkhMSEixd2gujdWZFRERExGppzqyIiIiIWC2FWRERERGxWgqzIiIiImK1FGZFRERExGopzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrX+H8k4KNHlLZZZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAGzCAYAAAA8D5+GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB88ElEQVR4nO3deXhM5///8eckIYtIYk8QgojYEiK2qp2KJbVvRcTaUrWvn1bsovZqa/mUWlpV1PopaquopaglqqR2ohV7JWIJkvn94Zfz7TSW0BDD63Fdc12ZOfe5z/vMGHnlnvvcYzKbzWZERERERKyQTXoXICIiIiLyrBRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWS2FWRERERKyWwqyIiIiIWC2FWRERERGxWgqzIiIiImK1FGZFRMQqmUwmevTokd5liEg6U5gVEZE0NW/ePEwmk3FzcHDAx8eHHj16cPHixafqa+fOnQwfPpzr168/n2JFxOrZpXcBIiLyaho5ciQFChTgzp07bN++nRkzZrB27Vp+++03nJycUtXHzp07GTFiBKGhobi5uT3fgkXEKinMiojIc1G3bl0CAwMB6Ny5M9myZWPy5MmsWrWK1q1bp3N1IvKq0DQDERF5IWrUqAHA6dOnMZlMTJkyJUWbnTt3YjKZWLRoEcOHD2fAgAEAFChQwJi2cObMGYt9Vq5cSYkSJbC3t6d48eL88MMPKfo9cOAAdevWxcXFBWdnZ2rWrMmuXbss2iRPj9ixYwd9+/YlR44cZMqUicaNG3P58uU0ehZEJK1pZFZERF6IkydPApAtWzYqVarEwoUL6dOnj0WbhQsXkjlzZho2bMiJEyc4duwYixYtYsqUKWTPnh2AHDlyGO23b9/O8uXL6d69O5kzZ2batGk0bdqU6OhosmXLBsDhw4epXLkyLi4uDBw4kAwZMjBr1iyqVavG1q1bKV++vEUNH3zwAVmyZGHYsGGcOXOGqVOn0qNHDxYvXvw8nx4ReUYKsyIi8lzExsZy5coV7ty5w44dOxg5ciSOjo40aNAAk8nEu+++y++//46vry8A9+7dY8mSJTRp0gQnJyf8/PwICAhg0aJFNGrUCC8vrxTHiIqK4siRIxQqVAiA6tWr4+/vz6JFi4yVDj766CPu3bvH9u3bKViwIAAhISEUKVKEgQMHsnXrVos+s2XLxoYNGzCZTAAkJSUxbdo0YmNjcXV1fV5Pl4g8I00zEBGR56JWrVrkyJEDT09PWrVqhbOzMytWrCBPnjy0aNECBwcHFi5caLRfv349V65coW3btk91jOQgC+Dn54eLiwunTp0CIDExkQ0bNtCoUSMjyAJ4eHjwzjvvsH37duLi4iz67Nq1qxFkASpXrkxiYiJnz5596udARJ4/jcyKiMhz8fnnn+Pj44OdnR25cuWiSJEi2Ng8GENxc3MjODiYb775hlGjRgEPphjkyZPHmFubGvny5UvxWJYsWfjrr78AuHz5Mrdu3aJIkSIp2hUtWpSkpCTOnTtH8eLFH9lnlixZAIw+ReTlojArIiLPRbly5YzVDB4mJCSEpUuXsnPnTkqWLMnq1avp3r27EXhTw9bW9qGPm83mp673efYpIs+PwqyIiKSLoKAgcuTIwcKFCylfvjy3bt2iXbt2Fm3+/nH/s8iRIwdOTk4cPXo0xbbff/8dGxsbPD09/9UxRCR9KcyKiEi6sLOzo3Xr1nzzzTdERUVRsmRJ/Pz8LNpkypQJ4Jm/AczW1pa33nqLVatWcebMGeMisosXL/LNN9/w5ptv4uLi8m9OQ0TSmS4AExGRdBMSEsKVK1fYsmXLQy/8KlOmDAAffvghX331Fd9++y03b958qmOMHj0aOzs73nzzTcaOHcv48eN54403SEhIYPz48WlyHiKSfhRmRUQk3ZQpU4bixYtjY2NDmzZtUmwvW7Yso0aN4uDBg4SGhtK6deun/gKD4sWLs23bNkqUKEF4eDgjRowgf/78bNmyJcUasyJifUxmzWgXEZF0VLp0abJmzcrmzZvTuxQRsUIamRURkXSzd+9eIiMjCQkJSe9SRMRKaWRWREReuN9++419+/YxadIkrly5wqlTp3BwcEjvskTECmlkVkREXrjvvvuODh06cO/ePRYtWqQgKyLPTCOzIiIiImK1NDIrIiIiIlZLYVZERERErJa+AUxeaUlJSZw/f57MmTP/66/FFBERkRfDbDZz48YNcufOjY3N48deFWbllXb+/Hl977qIiIiVOnfuHHnz5n1sG4VZeaVlzpwZePBm0Pevi4iIWIe4uDg8PT2N3+OPozArr7TkqQUuLi4KsyIiIlYmNVMEdQGYiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWS+vMymuhwjcVsHW0Te8yREREXimH2h9K7xI0MisiIiIi1kthVkRERESslsKsiIiIiFgthVkRERERsVoKsy+QyWRi5cqV6XLs0NBQGjVqlC7HFhEREXle0jXMhoaGYjKZMJlMZMiQgVy5clG7dm2+/PJLkpKS0rO0dHPixAk6dOhA3rx5sbe3p0CBArRu3Zq9e/emd2mPlJCQwIcffkj+/Pmxt7fHy8uLL7/88pHt582bZ7zu/7xdunTpoW2cnZ0pU6YMy5cvf1GnJSIiIlYg3ZfmCgoKYu7cuSQmJnLx4kV++OEHevXqxXfffcfq1auxs0v3El+YvXv3UrNmTUqUKMGsWbPw9fXlxo0brFq1in79+rF169Z0q81sNpOYmPjQ16NFixZcvHiROXPm4O3tTUxMzGP/GGnZsiVBQUEWj4WGhnLnzh1y5sxpPObi4sLRo0cBuHHjBnPnzqVFixYcPnyYIkWKPFX9u87+gYu96an2ERGRF2B4bHpXIFYu3acZ2Nvb4+7uTp48eQgICOA///kPq1atYt26dcybNw+A69ev07lzZ3LkyIGLiws1atTg4MGDFv2sWrWKgIAAHBwcKFiwICNGjOD+/fvGdpPJxIwZM6hbty6Ojo4ULFiQ7777zth+9+5devTogYeHBw4ODuTPn5/w8HBje1rU8E/Dhg3Dw8ODX3/9FbPZTGhoKIULF2bbtm3Ur1+fQoUKUapUKYYNG8aqVauM/Q4dOkSNGjVwdHQkW7ZsdO3alfj4eGN7YmIiffv2xc3NjWzZsjFw4EDMZrPFsZOSkggPD6dAgQI4Ojri7+9v8XxERERgMplYt24dZcqUwd7enu3bt6c4hx9++IGtW7eydu1aatWqhZeXFxUrVqRSpUqPPG9HR0fc3d2Nm62tLT/++COdOnWyaGcymYw2hQsXZvTo0djY2PDrr78+sm8RERF5vaR7mH2YGjVq4O/vb3yk3Lx5cy5dusS6devYt28fAQEB1KxZk2vXrgGwbds2QkJC6NWrF0eOHGHWrFnMmzePMWPGWPQ7dOhQmjZtysGDB2nTpg2tWrUiKioKgGnTprF69WqWLFnC0aNHWbhwIV5eXsa+aVUDPBjl/OCDD1iwYAHbtm3Dz8+PyMhIDh8+TL9+/bCxSfmyuLm5AXDz5k3q1KlDlixZ+OWXX1i6dCmbNm2iR48eRttJkyYxb948vvzyS7Zv3861a9dYsWKFRX/h4eEsWLCAmTNncvjwYfr06UPbtm1TjP4OHjyYcePGERUVhZ+fX4q6Vq9eTWBgIOPHjydPnjz4+PjQv39/bt++/dDX9mEWLFiAk5MTzZo1e2SbxMRE5s+fD0BAQMAj2yUkJBAXF2dxExERkVfXS/sZvq+vL7/++ivbt29nz549XLp0CXt7ewAmTpzIypUr+e677+jatSsjRoxg8ODBtG/fHoCCBQsyatQoBg4cyLBhw4w+mzdvTufOnQEYNWoUGzdu5NNPP2X69OlER0dTuHBh3nzzTUwmE/nz5zf2S8sa7t+/T9u2bTlw4ADbt28nT548ABw/ftw478f55ptvuHPnDgsWLCBTpkwAfPbZZwQHB/Pxxx+TK1cupk6dypAhQ2jSpAkAM2fOZP369UYfCQkJjB07lk2bNlGxYkWj3u3btzNr1iyqVq1qtB05ciS1a9d+ZD2nTp1i+/btODg4sGLFCq5cuUL37t25evUqc+fOfey5JJszZw7vvPMOjo6OFo/Hxsbi7OwMwO3bt8mQIQP//e9/KVSo0CP7Cg8PZ8SIEak6roiIiFi/lzbMms1mTCYTBw8eJD4+nmzZsllsv337NidPngTg4MGD7Nixw2IUNDExkTt37nDr1i2cnJwAjOCWrGLFikRGRgIP5mzWrl2bIkWKEBQURIMGDXjrrbeM/tOqhj59+mBvb8+uXbvInj27xfmmRlRUFP7+/kaQBahUqRJJSUkcPXoUBwcHYmJiKF++vLHdzs6OwMBA4xgnTpzg1q1bKULq3bt3KV26tMVjgYGBxs/JwRKgbdu2zJw5k6SkJEwmEwsXLsTV1RWAyZMn06xZM6ZPn54ioP7Tzz//TFRUFF999VWKbZkzZ2b//v0A3Lp1i02bNvHee++RLVs2goODH9rfkCFD6Nu3r3E/Li4OT0/Px9YgIiIi1uulDbNRUVEUKFCA+Ph4PDw8iIiISNEm+aP3+Ph4RowYYYxE/p2Dg0OqjhcQEMDp06dZt24dmzZtokWLFtSqVYvvvvsuTWuoXbs2ixYtYv369bRp08Z43MfHB4Dff/89RaBMa8nza9esWWOMDCdLHnlO9vfQnBz84cHFWQAeHh7kyZPHCLIARYsWxWw288cff1C4cOHH1jJ79mxKlSpFmTJlUmyzsbHB29vbuO/n58eGDRv4+OOPHxlm7e3tU5yDiIiIvLpeyjD7448/cujQIfr06UPevHm5cOECdnZ2FnNY/y4gIICjR49aBJ+H2bVrFyEhIRb3/x4cXVxcaNmyJS1btqRZs2YEBQVx7do1AgIC0qyGt99+m+DgYN555x1sbW1p1aoVAKVKlaJYsWJMmjSJli1bppg3e/36ddzc3ChatCjz5s3j5s2bRtDcsWMHNjY2FClSBFdXVzw8PNi9ezdVqlQBHkxtSJ7nC1CsWDHs7e2Jjo62mFLwJA87t0qVKrF06VLi4+ONkdtjx45hY2ND3rx5H9tffHw8S5YssbjQ7klsbW2faj6uiIiIvNrSPcwmJCRw4cIFi6W5wsPDadCgASEhIdjY2FCxYkUaNWrE+PHj8fHx4fz586xZs4bGjRsTGBhIWFgYDRo0IF++fDRr1gwbGxsOHjzIb7/9xujRo41jLV26lMDAQN58800WLlzInj17mDNnDvDgo3EPDw9Kly6NjY0NS5cuxd3dHTc3N2rVqpVmNQA0btyYr776inbt2mFnZ0ezZs0wmUzMnTuXWrVqUblyZT788EN8fX2Jj4/nf//7Hxs2bGDr1q20adOGYcOG0b59e4YPH87ly5f54IMPaNeuHbly5QKgV69ejBs3jsKFC+Pr68vkyZO5fv26cfzMmTPTv39/+vTpQ1JSEm+++SaxsbHs2LEDFxcXY95varzzzjuMGjWKDh06MGLECK5cucKAAQPo2LGjMcVgxYoVDBkyhN9//91i38WLFxtziB/GbDZz4cIF4MGUjo0bN7J+/XrCwsJSXV+yEnfmYGN2eur9RF43Z8bVT+8SRESeSrqH2R9++AEPDw/s7OzIkiUL/v7+TJs2jfbt2xujk2vXruXDDz+kQ4cOXL58GXd3d6pUqWKEtzp16vD9998zcuRIPv74YzJkyICvr69xsVeyESNG8O2339K9e3c8PDxYtGgRxYoVAx4EvPHjx3P8+HFsbW0pW7Ysa9euTfMakjVr1oykpCTatWuHjY0NTZo0oVy5cuzdu5cxY8bQpUsXrly5goeHB2+88QZTp04FwMnJifXr19OrVy/Kli2Lk5MTTZs2ZfLkyUbf/fr1IyYmxngOO3bsSOPGjYmN/b+1/EaNGkWOHDkIDw/n1KlTuLm5GUujPQ1nZ2c2btzIBx98QGBgINmyZaNFixYWAT42NtZYL/bv5syZQ5MmTYypGv8UFxeHh4cH8GD6QP78+Rk5ciSDBg16qhpFRETk1WUyp/bKIytnMplYsWKFvtL1NRMXF4erqyuevZdgY6+RWZEn0cisiLwMkn9/x8bGGtfpPMpLuc6siIiIiEhqKMyKiIiIiNVK9zmzL8prMptCRERE5LXy2oRZeb39NqLOE+fciIiIiPXRNAMRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWS2FWRERERKyWwqyIiIiIWC2FWRERERGxWgqzIiIiImK1FGZFRERExGopzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVskvvAkRehArfVMDW0Ta9yxAREeBQ+0PpXYK8QjQyKyIiIiJWS2FWRERERKyWwqyIiIiIWC2FWRERERGxWgqzL5DJZGLlypXpcuzQ0FAaNWqULscWEREReV7SNcyGhoZiMpkwmUxkyJCBXLlyUbt2bb788kuSkpLSs7R0c+LECTp06EDevHmxt7enQIECtG7dmr1796Z3aQ8VExPDO++8g4+PDzY2NvTu3fuJ+1y9epWgoCBy586Nvb09np6e9OjRg7i4OKPNvHnzjH8bJpMJZ2dnypQpw/Lly5/j2YiIiIi1SfeluYKCgpg7dy6JiYlcvHiRH374gV69evHdd9+xevVq7OzSvcQXZu/evdSsWZMSJUowa9YsfH19uXHjBqtWraJfv35s3bo13Wozm80kJiameD0SEhLIkSMHH330EVOmTElVXzY2NjRs2JDRo0eTI0cOTpw4wfvvv8+1a9f45ptvjHYuLi4cPXoUgBs3bjB37lxatGjB4cOHKVKkyFPVv+vsH7jYm55qHxERC8Nj07sCEXmIdJ9mYG9vj7u7O3ny5CEgIID//Oc/rFq1inXr1jFv3jwArl+/TufOncmRIwcuLi7UqFGDgwcPWvSzatUqAgICcHBwoGDBgowYMYL79+8b200mEzNmzKBu3bo4OjpSsGBBvvvuO2P73bt36dGjBx4eHjg4OJA/f37Cw8ON7WlRwz8NGzYMDw8Pfv31V8xmM6GhoRQuXJht27ZRv359ChUqRKlSpRg2bBirVq0y9jt06BA1atTA0dGRbNmy0bVrV+Lj443tiYmJ9O3bFzc3N7Jly8bAgQMxm80Wx05KSiI8PJwCBQrg6OiIv7+/xfMRERGByWRi3bp1lClTBnt7e7Zv357iHLy8vPjkk08ICQnB1dX1kef6d1myZKFbt24EBgaSP39+atasSffu3dm2bZtFO5PJhLu7O+7u7hQuXJjRo0djY2PDr7/+mqrjiIiIyKsv3cPsw9SoUQN/f3/jI+XmzZtz6dIl1q1bx759+wgICKBmzZpcu3YNgG3bthESEkKvXr04cuQIs2bNYt68eYwZM8ai36FDh9K0aVMOHjxImzZtaNWqFVFRUQBMmzaN1atXs2TJEo4ePcrChQvx8vIy9k2rGuDBKOcHH3zAggUL2LZtG35+fkRGRnL48GH69euHjU3Kl8XNzQ2AmzdvUqdOHbJkycIvv/zC0qVL2bRpEz169DDaTpo0iXnz5vHll1+yfft2rl27xooVKyz6Cw8PZ8GCBcycOZPDhw/Tp08f2rZtm2L0d/DgwYwbN46oqCj8/PxS8/I9tfPnz7N8+XKqVq36yDaJiYnMnz8fgICAgEe2S0hIIC4uzuImIiIir66XMswC+Pr6cubMGbZv386ePXtYunQpgYGBFC5cmIkTJ+Lm5maMJI4YMYLBgwfTvn17ChYsSO3atRk1ahSzZs2y6LN58+Z07twZHx8fRo0aRWBgIJ9++ikA0dHRFC5cmDfffJP8+fPz5ptv0rp1a4A0reH+/fu0bduWzZs3s337dry9vQE4fvy4cd6P880333Dnzh0WLFhAiRIlqFGjBp999hlfffUVFy9eBGDq1KkMGTKEJk2aULRoUWbOnGkxapqQkMDYsWP58ssvqVOnDgULFiQ0NJS2bdumqHfkyJHUrl2bQoUKkTVr1tS/gKnQunVrnJycyJMnDy4uLsyePdtie2xsLM7Ozjg7O5MxY0a6devGf//7XwoVKvTIPsPDw3F1dTVunp6eaVqziIiIvFxe2gmpZrMZk8nEwYMHiY+PJ1u2bBbbb9++zcmTJwE4ePAgO3bssBgFTUxM5M6dO9y6dQsnJycAKlasaNFHxYoViYyMBB5cjFa7dm2KFClCUFAQDRo04K233jL6T6sa+vTpg729Pbt27SJ79uwW55saUVFR+Pv7kylTJuOxSpUqkZSUxNGjR3FwcCAmJoby5csb2+3s7AgMDDSOceLECW7dukXt2rUt+r579y6lS5e2eCwwMND42dnZ2fi5bdu2zJw5M1U1P8qUKVMYNmwYx44dY8iQIfTt25fp06cb2zNnzsz+/fsBuHXrFps2beK9994jW7ZsBAcHP7TP5H6SxcXFKdCKiIi8wl7aMBsVFUWBAgWIj4/Hw8ODiIiIFG2SP3qPj49nxIgRNGnSJEUbBweHVB0vICCA06dPs27dOjZt2kSLFi2oVasW3333XZrWULt2bRYtWsT69etp06aN8biPjw8Av//+e4pAmdaS59euWbOGPHnyWGyzt7e3uP/30Jwc/OHBxVn/VvJ8WF9fX7JmzUrlypUZOnQoHh4ewIMLxZJHrgH8/PzYsGEDH3/88SPDrL29fYpzEBERkVfXSxlmf/zxRw4dOkSfPn3ImzcvFy5cwM7OzmIO698FBARw9OhRi+DzMLt27SIkJMTi/t+Do4uLCy1btqRly5Y0a9aMoKAgrl27RkBAQJrV8PbbbxMcHMw777yDra0trVq1AqBUqVIUK1aMSZMm0bJlyxTzZq9fv46bmxtFixZl3rx53Lx50wiaO3bswMbGhiJFiuDq6oqHhwe7d++mSpUqwIOpDcnzfAGKFSuGvb090dHRj52n+k9POrd/I3kptoSEhMe2s7W15fbt28+tDhEREbEu6R5mExISuHDhgsXSXOHh4TRo0ICQkBBsbGyoWLEijRo1Yvz48fj4+HD+/HnWrFlD48aNCQwMJCwsjAYNGpAvXz6aNWuGjY0NBw8e5LfffmP06NHGsZLnvL755pssXLiQPXv2MGfOHAAmT56Mh4cHpUuXxsbGhqVLl+Lu7o6bmxu1atVKsxoAGjduzFdffUW7du2ws7OjWbNmmEwm5s6dS61atahcuTIffvghvr6+xMfH87///Y8NGzawdetW2rRpw7Bhw2jfvj3Dhw/n8uXLfPDBB7Rr145cuXIB0KtXL8aNG0fhwoXx9fVl8uTJXL9+3Th+5syZ6d+/P3369CEpKYk333yT2NhYduzYgYuLC+3bt3+q1zB5xDY+Pp7Lly8TGRlJxowZKVasGAArVqxgyJAh/P777wCsXbuWixcvUrZsWZydnTl8+DADBgygUqVKFn8smM1mLly4ADyY0rFx40bWr19PWFjYU9UHUOLOHGzMTk+9n1iXM+Pqp3cJIiLygqV7mP3hhx/w8PDAzs6OLFmy4O/vz7Rp02jfvr0xOrl27Vo+/PBDOnTowOXLl3F3d6dKlSpGeKtTpw7ff/89I0eO5OOPPyZDhgz4+vrSuXNni2ONGDGCb7/9lu7du+Ph4cGiRYuMwJU5c2bGjx/P8ePHsbW1pWzZsqxduzbNa0jWrFkzkpKSaNeuHTY2NjRp0oRy5cqxd+9exowZQ5cuXbhy5QoeHh688cYbTJ06FQAnJyfWr19Pr169KFu2LE5OTjRt2pTJkycbfffr14+YmBjjOezYsSONGzcmNvb/1kgcNWoUOXLkIDw8nFOnTuHm5mYsjfa0/j66vW/fPr755hvy58/PmTNngAcXciWvFwvg6OjIF198QZ8+fUhISMDT05MmTZowePBgi37j4uKMKQf29vbkz5+fkSNHMmjQoKeuUURERF5NJnNqrzyyciaTiRUrVugrXV8zcXFxD1Y16L0EG3uNzL7qNDIrIvJqSP79HRsb+8TrdF7apblERERERJ5EYVZERERErFa6z5l9UV6T2RQiIiIirxWNzIqIiIiI1XptRmbl9fbbiDpp8kUPIiIi8nLRyKyIiIiIWC2FWRERERGxWgqzIiIiImK1FGZFRERExGopzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVUpgVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitezSuwCRF6HCNxWwdbRN7zJEROQpHWp/KL1LkJecRmZFRERExGopzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYfYZREREYDKZuH79+gs/tpeXF1OnTn0hx6pWrRq9e/d+IccSEREReRavfZidOXMmmTNn5v79+8Zj8fHxZMiQgWrVqlm0TQ6xHh4exMTE4Orq+oKrfbgDBw7QvHlzcuXKhYODA4ULF6ZLly4cO3YsvUt7qOXLlxMYGIibmxuZMmWiVKlSfPXVVxZtqlWrhslkMm65cuWiefPmnD17Np2qFhERkZfRa780V/Xq1YmPj2fv3r1UqFABgG3btuHu7s7u3bu5c+cODg4OAGzZsoV8+fJRpEiR51pTYmIiJpMJG5sn/63x/fff07RpU+rUqcPChQspVKgQly5dYunSpQwdOpTFixc/11of51HnkTVrVj788EN8fX3JmDEj33//PR06dCBnzpzUqVPHaNelSxdGjhyJ2Wzm7Nmz9O7dm7Zt27Jt27anrmXX2T9wsTf963MSkdfc8Nj0rkBE/uG1H5ktUqQIHh4eREREGI9FRETQsGFDChQowK5duywer169eoppBv8cRUy+nTlzBoDJkydTsmRJMmXKhKenJ927dyc+Pt7od968ebi5ubF69WqKFSuGvb090dHRXLp0ieDgYBwdHSlQoAALFy60qP3WrVt06NCBevXqsXr1amrVqkWBAgUoX748EydOZNasWUbbrVu3Uq5cOezt7fHw8GDw4MEWo9E3b94kJCQEZ2dnPDw8mDRpUornKiEhgf79+5MnTx4yZcpE+fLlLZ63R53HP1WrVo3GjRtTtGhRChUqRK9evfDz82P79u0W7ZycnHB3d8fDw4MKFSrQo0cP9u/f/+gXU0RERF47r32YhQejs1u2bDHub9myhWrVqlG1alXj8du3b7N7926qV6+eYv/ly5cTExNj3Jo0aUKRIkXIlSsXADY2NkybNo3Dhw8zf/58fvzxRwYOHGjRx61bt/j444+ZPXs2hw8fJmfOnISGhnLu3Dm2bNnCd999x/Tp07l06ZKxz/r167ly5UqKvpK5ubkB8Oeff1KvXj3Kli3LwYMHmTFjBnPmzGH06NFG2wEDBrB161ZWrVrFhg0biIiISBEce/Towc8//8y3337Lr7/+SvPmzQkKCuL48eOPPY/HMZvNbN68maNHj1KlSpVHtrt27RpLliyhfPnyj+0vISGBuLg4i5uIiIi8ul77aQbwIMz27t2b+/fvc/v2bQ4cOEDVqlW5d+8eM2fOBODnn38mISGB6tWrc+rUKYv9s2bNavw8ZcoUfvzxR3bv3o2joyOAxUVUXl5ejB49mvfee4/p06cbj9+7d4/p06fj7+8PwLFjx1i3bh179uyhbNmyAMyZM4eiRYsa+ySHSF9f38ee3/Tp0/H09OSzzz7DZDLh6+vL+fPnGTRoEGFhYdy6dYs5c+bw9ddfU7NmTQDmz59P3rx5jT6io6OZO3cu0dHR5M6dG4D+/fvzww8/MHfuXMaOHfvQ83iU2NhY8uTJQ0JCAra2tkyfPp3atWunqHv27NmYzWZu3bqFj48P69evf2y/4eHhjBgx4rFtRERE5NWhkVkefOx98+ZNfvnlF7Zt24aPjw85cuSgatWqxrzZiIgIChYsSL58+R7Zz7p16xg8eDCLFy/Gx8fHeHzTpk3UrFmTPHnykDlzZtq1a8fVq1e5deuW0SZjxoz4+fkZ96OiorCzs6NMmTLGY76+vsZoKzwY1UyNqKgoKlasiMn0f3NGK1WqRHx8PH/88QcnT57k7t27FqOeWbNmtZgbfOjQIRITE/Hx8cHZ2dm4bd26lZMnTz70PKKjoy3aJgdegMyZMxMZGckvv/zCmDFj6Nu3r8WUBYA2bdoQGRnJwYMH2b59O97e3rz11lvcuHHjkec6ZMgQYmNjjdu5c+dS9RyJiIiIddLILODt7U3evHnZsmULf/31F1WrVgUgd+7ceHp6snPnTrZs2UKNGjUe2ceRI0do1aoV48aN46233jIeP3PmDA0aNKBbt26MGTOGrFmzsn37djp16sTdu3dxcnICwNHR0SJspkZyYP7999+pWLHi0572U4mPj8fW1pZ9+/Zha2trsc3Z2dn4+e/nkTt3biIjI41tfx/BtrGxwdvbG4BSpUoRFRVFeHi4xQoSrq6uRhtvb2/mzJmDh4cHixcvpnPnzg+t097eHnt7+391riIiImI9NDL7/yVf2BUREWERqKpUqWJ83P+w+bIAV65cITg4mKZNm9KnTx+Lbfv27SMpKYlJkyZRoUIFfHx8OH/+/BPr8fX15f79++zbt8947OjRoxZr27711ltkz56d8ePHP7SP5LZFixbl559/thjJ3bFjB5kzZyZv3rwUKlSIDBkysHv3bmP7X3/9ZbG0V+nSpUlMTOTSpUt4e3tb3Nzd3R96fDs7O4t2fw+z/5SUlERCQsJjn5PkEH379u3HthMREZHXh0Zm/7/q1avz/vvvc+/ePWNkFqBq1ar06NGDu3fvPjLMNm3aFCcnJ4YPH86FCxeMx3PkyIG3tzf37t3j008/JTg4mB07dhjzcB+nSJEiBAUF8e677zJjxgzs7Ozo3bu3MQ8XIFOmTMyePZvmzZvz9ttv07NnT7y9vbly5QpLliwhOjqab7/9lu7duzN16lQ++OADevTowdGjRxk2bBh9+/bFxsYGZ2dnOnXqxIABA8iWLRs5c+bkww8/tFhSy8fHhzZt2hASEsKkSZMoXbo0ly9fZvPmzfj5+VG/fv1UP9fh4eEEBgZSqFAhEhISWLt2LV999RUzZsywaHfr1i3j+bx48SKjRo3CwcHBYuQ7tUrcmYON2emp95OX15lxqf83JyIiry6NzP5/1atX5/bt23h7exurEMCDMHvjxg1jCa+H+emnn/jtt9/Inz8/Hh4exu3cuXP4+/szefJkPv74Y0qUKMHChQsJDw9PVU1z584ld+7cVK1alSZNmtC1a9cUqwM0bNiQnTt3kiFDBt555x18fX1p3bo1sbGxxmoFefLkYe3atezZswd/f3/ee+89OnXqxEcffWT0M2HCBCpXrkxwcDC1atXizTfftJivm1xPSEgI/fr1o0iRIjRq1IhffvnlsfOIH+bmzZt0796d4sWLU6lSJZYtW8bXX3+dYurAF198YTyX1atX58qVK6xdu/a5r/MrIiIi1sNkTu1VRCJWKC4uDldXVzx7L8HGXiOzrxKNzIqIvLqSf3/Hxsbi4uLy2LYamRURERERq6UwKyIiIiJWS2FWRERERKyWwqyIiIiIWC0tzSWvhd9G1HniBHIRERGxPhqZFRERERGrpTArIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVUpgVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWS2FWRERERKyWXXoXIPIiVPimAraOtuldhoi84g61P5TeJYi8djQyKyIiIiJWS2FWRERERKyWwqyIiIiIWC2FWRERERGxWgqzIiIiImK1FGafQUREBCaTievXr7/wY3t5eTF16tQXcqxq1arRu3fvF3IsERERkWfx2i/NNXPmTAYMGMBff/2Fnd2DpyM+Pp4sWbJQqVIlIiIijLYRERFUr16d33//nZiYGFxdXdOpaksHDhxg7Nix/PTTT8TGxuLp6Um1atUYMGAAPj4+6V1eCocPHyYsLIx9+/Zx9uxZpkyZkiI0h4aGMn/+fON+1qxZKVu2LOPHj8fPz++pj7nr7B+42Jv+beki6W94bHpXICLyUnntR2arV69OfHw8e/fuNR7btm0b7u7u7N69mzt37hiPb9myhXz58lGkSBHc3d0xmZ5POEpMTCQpKSlVbb///nsqVKhAQkICCxcuJCoqiq+//hpXV1eGDh36XOpLrUedx61btyhYsCDjxo3D3d39kfsHBQURExNDTEwMmzdvxs7OjgYNGjzPkkVERMTKvPZhtkiRInh4eKQYgW3YsCEFChRg165dFo9Xr149xTSDatWqYTKZUtzOnDkDwOTJkylZsiSZMmXC09OT7t27Ex8fb/Q7b9483NzcWL16NcWKFcPe3p7o6GguXbpEcHAwjo6OFChQgIULF1rUfuvWLTp06EC9evVYvXo1tWrVokCBApQvX56JEycya9Yso+3WrVspV64c9vb2eHh4MHjwYO7fv29sv3nzJiEhITg7O+Ph4cGkSZNSPFcJCQn079+fPHnykClTJsqXL2/xvD3qPP6pbNmyTJgwgVatWmFvb//I18be3h53d3fc3d0pVaoUgwcP5ty5c1y+fPmR+yQkJBAXF2dxExERkVfXax9m4cHo7JYtW4z7W7ZsoVq1alStWtV4/Pbt2+zevZvq1aun2H/58uXGCGJMTAxNmjShSJEi5MqVCwAbGxumTZvG4cOHmT9/Pj/++CMDBw606OPWrVt8/PHHzJ49m8OHD5MzZ05CQ0M5d+4cW7Zs4bvvvmP69OlcunTJ2Gf9+vVcuXIlRV/J3NzcAPjzzz+pV68eZcuW5eDBg8yYMYM5c+YwevRoo+2AAQPYunUrq1atYsOGDURERLB//36L/nr06MHPP//Mt99+y6+//krz5s0JCgri+PHjjz2PtBAfH8/XX3+Nt7c32bJle2S78PBwXF1djZunp2eaHF9EREReTq/9nFl4EGZ79+7N/fv3uX37NgcOHKBq1arcu3ePmTNnAvDzzz+TkJBA9erVOXXqlMX+WbNmNX6eMmUKP/74I7t378bR0RHAYj6ol5cXo0eP5r333mP69OnG4/fu3WP69On4+/sDcOzYMdatW8eePXsoW7YsAHPmzKFo0aLGPskh0tfX97HnN336dDw9Pfnss88wmUz4+vpy/vx5Bg0aRFhYGLdu3WLOnDl8/fXX1KxZE4D58+eTN29eo4/o6Gjmzp1LdHQ0uXPnBqB///788MMPzJ07l7Fjxz70PP6N77//HmdnZ+DByLGHhwfff/89NjaP/htsyJAh9O3b17gfFxenQCsiIvIK08gsD6YJ3Lx5k19++YVt27bh4+NDjhw5qFq1qjFvNiIigoIFC5IvX75H9rNu3ToGDx7M4sWLLS682rRpEzVr1iRPnjxkzpyZdu3acfXqVW7dumW0yZgxo8WFTVFRUdjZ2VGmTBnjMV9fX2O0FcBsNqfq/KKioqhYsaLFHN9KlSoRHx/PH3/8wcmTJ7l79y7ly5c3tmfNmpUiRYoY9w8dOkRiYiI+Pj44Ozsbt61bt3Ly5MmHnkd0dLRF2+TAm1rVq1cnMjKSyMhI9uzZQ506dahbty5nz5595D729va4uLhY3EREROTVpZFZwNvbm7x587Jlyxb++usvqlatCkDu3Lnx9PRk586dbNmyhRo1ajyyjyNHjtCqVSvGjRvHW2+9ZTx+5swZGjRoQLdu3RgzZgxZs2Zl+/btdOrUibt37+Lk5ASAo6PjU19QlhyYf//9dypWrPi0p/1U4uPjsbW1Zd++fdja2lpsSx49BcvzyJ07N5GRkca2v49gp0amTJnw9vY27s+ePRtXV1e++OILiykSIiIi8vpSmP3/ki/s+uuvvxgwYIDxeJUqVYyP+7t16/bQfa9cuUJwcDBNmzalT58+Ftv27dtHUlISkyZNMj4eX7JkyRPr8fX15f79++zbt8+YZnD06FGLtW3feustsmfPzvjx41mxYkWKPq5fv46bmxtFixZl2bJlmM1mI2ju2LGDzJkzkzdvXrJmzUqGDBnYvXu3MfL8119/cezYMSPYly5dmsTERC5dukTlypWfWD+AnZ2dRRj9t0wmEzY2Nty+ffup9y1xZw42Zqc0qyW1zoyr/8KPKSIi8jpRmP3/qlevzvvvv8+9e/eMAAdQtWpVevTowd27dx968RdA06ZNcXJyYvjw4Vy4cMF4PEeOHHh7e3Pv3j0+/fRTgoOD2bFjhzEP93GKFClCUFAQ7777LjNmzMDOzo7evXsb83Dhwcjl7Nmzad68OW+//TY9e/bE29ubK1eusGTJEqKjo/n222/p3r07U6dO5YMPPqBHjx4cPXqUYcOG0bdvX2xsbHB2dqZTp04MGDCAbNmykTNnTj788EOLuak+Pj60adOGkJAQJk2aROnSpbl8+TKbN2/Gz8+P+vVTH9ru3r3LkSNHjJ///PNPIiMjcXZ2tgi/CQkJxvP5119/8dlnnxEfH09wcHCqjyUiIiKvNs2Z/f+qV6/O7du38fb2NlYhgAdh9saNG8YSXg/z008/8dtvv5E/f348PDyM27lz5/D392fy5Ml8/PHHlChRgoULFxIeHp6qmubOnUvu3LmpWrUqTZo0oWvXrilWB2jYsCE7d+4kQ4YMvPPOO/j6+tK6dWtiY2ONj+Lz5MnD2rVr2bNnD/7+/rz33nt06tSJjz76yOhnwoQJVK5cmeDgYGrVqsWbb75pMV83uZ6QkBD69etHkSJFaNSoEb/88stj5xE/zPnz5yldujSlS5cmJiaGiRMnUrp0aTp37mzR7ocffjCey/Lly/PLL7+wdOlSqlWr9lTHExERkVeXyZzaq4hErFBcXNyDJbp6L8HGXtMMRERErEHy7+/Y2NgnXsytkVkRERERsVoKsyIiIiJitRRmRURERMRqaTUDeS38NqKOvkBBRETkFaSRWRERERGxWgqzIiIiImK1FGZFRERExGopzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVUpgVEREREatll9qG06ZNS3WnPXv2fKZiRERERESehslsNptT07BAgQKp69Bk4tSpU/+qKJG0EhcXh6urK7Gxsbi4uKR3OSIiIpIKT/P7O9Ujs6dPn/7XhYmIiIiIpKV/NWf27t27HD16lPv376dVPSIiIiIiqfZMYfbWrVt06tQJJycnihcvTnR0NAAffPAB48aNS9MCRUREREQe5ZnC7JAhQzh48CARERE4ODgYj9eqVYvFixenWXEiIiIiIo+T6jmzf7dy5UoWL15MhQoVMJlMxuPFixfn5MmTaVacSFqp8E0FbB1t07sMERGR5+pQ+0PpXcIL90wjs5cvXyZnzpwpHr9586ZFuBUREREReZ6eKcwGBgayZs0a435ygJ09ezYVK1ZMm8pERERERJ7gmaYZjB07lrp163LkyBHu37/PJ598wpEjR9i5cydbt25N6xpFRERERB7qmUZm33zzTSIjI7l//z4lS5Zkw4YN5MyZk59//pkyZcqkdY0iIiIiIg/1TCOzAIUKFeKLL75Iy1pERERERJ5Kqkdm4+LiUn0TS8OHD6dUqVJp1t+8efNwc3NLs/5ERERErFWqR2bd3NxSvVJBYmLiMxeU3i5cuMCYMWNYs2YNf/75Jzlz5qRUqVL07t2bmjVrvrA6TCYTK1asoFGjRi/smGll+fLlzJw5k3379nHt2jUOHDiQIsy/++67bNq0ifPnz+Ps7Mwbb7zBxx9/jK+vLwBnzpyhQIECRvsMGTKQL18+QkND+fDDD5961YxdZ//AxV4rbYiI/CvDY9O7ApEUUh1mt2zZYvx85swZBg8eTGhoqLF6wc8//8z8+fMJDw9P+ypfkDNnzlCpUiXc3NyYMGECJUuW5N69e6xfv57333+f33//Pb1LtAo3b97kzTffpEWLFnTp0uWhbcqUKUObNm3Ily8f165dY/jw4bz11lucPn0aW9v/Ww9206ZNFC9enISEBLZv307nzp3x8PCgU6dOL+p0RERE5CWW6mkGVatWNW4LFixg8uTJhIeH8/bbb/P2228THh7OxIkTmTt37vOs97nq3r07JpOJPXv20LRpU3x8fChevDh9+/Zl165dAERHR9OwYUOcnZ1xcXGhRYsWXLx40aKfcePGkStXLjJnzkynTp24c+dOimPNnj2bokWL4uDggK+vL9OnT3/muk+ePEnDhg3JlSsXzs7OlC1blk2bNlm08fLyYvTo0YSEhODs7Ez+/PlZvXo1ly9fNs7Hz8+PvXv3GvtcvXqV1q1bkydPHpycnChZsiSLFi16Yj3t2rUjLCyMWrVqPbJN165dqVKlCl5eXgQEBDB69GjOnTvHmTNnLNply5YNd3d38ufPT5s2bahUqRL79+9/ZL8JCQma9iIiIvIaeabVDH7++WcCAwNTPB4YGMiePXv+dVHp4dq1a/zwww+8//77ZMqUKcV2Nzc3kpKSaNiwIdeuXWPr1q1s3LiRU6dO0bJlS6PdkiVLGD58OGPHjmXv3r14eHikCKoLFy4kLCyMMWPGEBUVxdixYxk6dCjz589/ptrj4+OpV68emzdv5sCBAwQFBREcHEx0dLRFuylTplCpUiUOHDhA/fr1adeuHSEhIbRt25b9+/dTqFAhQkJCMJvNANy5c4cyZcqwZs0afvvtN7p27Uq7du3S/DW+efMmc+fOpUCBAnh6ej6y3d69e9m3bx/ly5d/ZJvw8HBcXV2N2+P6ExEREev3TGHW09PzoSsZzJ4922rDw4kTJzCbzcaczYfZvHkzhw4d4ptvvqFMmTKUL1+eBQsWsHXrVn755RcApk6dSqdOnejUqRNFihRh9OjRFCtWzKKfYcOGMWnSJJo0aUKBAgVo0qQJffr0YdasWc9Uu7+/P++++y4lSpSgcOHCjBo1ikKFCrF69WqLdvXq1ePdd9+lcOHChIWFERcXR9myZWnevDk+Pj4MGjSIqKgoY6Q5T5489O/fn1KlSlGwYEE++OADgoKCWLJkyTPV+U/Tp0/H2dkZZ2dn1q1bx8aNG8mYMaNFmzfeeANnZ2cyZsxI2bJladGiBSEhIY/sc8iQIcTGxhq3c+fOpUmtIiIi8nJ6pjA7ZcoUPv30U0qWLEnnzp3p3Lkzfn5+fPrpp0yZMiWta3whkkcjHycqKgpPT0+LwF6sWDHc3NyIiooy2vxz5PDv34p28+ZNTp48SadOnYwg5+zszOjRozl58uQz1R4fH0///v0pWrQobm5uODs7ExUVlWJk1s/Pz/g5V65cAJQsWTLFY5cuXQIeXMg3atQoSpYsSdasWXF2dmb9+vVGvwsXLrQ4h23btj1V3W3atOHAgQNs3boVHx8fWrRokWJKxuLFi4mMjOTgwYMsWbKEVatWMXjw4Ef2aW9vj4uLi8VNREREXl3PtM5svXr1OH78ONOnTzcuigoODua9996z2pHZwoULYzKZnvtFXvHx8QB88cUXKULv3y98ehr9+/dn48aNTJw4EW9vbxwdHWnWrBl37961aJchQwbj5+TVAB72WFJSEgATJkzgk08+YerUqZQsWZJMmTLRu3dvo9+3337b4hzy5MnzVHUnTwUoXLgwFSpUIEuWLKxYsYLWrVsbbTw9PfH29gagaNGinDx5kqFDhzJ8+HAcHBye6ngiIiLy6nnmL03ImzcvY8eOTcta0lXWrFmpU6cOn3/+OT179kwxb/b69esULVqUc+fOce7cOSO0HzlyhOvXrxtTCYoWLcru3bstPgpPvngMHox+5s6dm1OnTtGmTZs0qX3Hjh2EhobSuHFj4EFg/ueFVM/ab8OGDWnbti3wIOQeO3bMONfMmTOTOXPmf30ceDAybjabSUhIeGw7W1tb7t+/z927d58qzJa4Mwcbs9O/LVPkuTszrn56lyAiYlWeOcxev36dOXPmGB+vFy9enI4dO+Lq6ppmxb1on3/+OZUqVaJcuXKMHDkSPz8/7t+/z8aNG5kxYwZHjhyhZMmStGnThqlTp3L//n26d+9O1apVjQvievXqRWhoKIGBgVSqVImFCxdy+PBhChYsaBxnxIgR9OzZE1dXV4KCgkhISGDv3r389ddf9O3b12h3+vRpIiMjLWosXLhwiroLFy7M8uXLCQ4OxmQyMXToUGN09d8oXLgw3333HTt37iRLlixMnjyZixcvppgD/E/Xrl0jOjqa8+fPA3D06FEA3N3dcXd359SpUyxevJi33nqLHDly8McffzBu3DgcHR2pV6+eRV9Xr17lwoUL3L9/n0OHDvHJJ59QvXp1TR8QERER4BnD7N69e6lTpw6Ojo6UK1cOgMmTJzNmzBg2bNhAQEBAmhb5ohQsWJD9+/czZswY+vXrR0xMDDly5KBMmTLMmDEDk8nEqlWr+OCDD6hSpQo2NjYEBQXx6aefGn20bNmSkydPMnDgQO7cuUPTpk3p1q0b69evN9p07twZJycnJkyYwIABA8iUKRMlS5akd+/eFvX8Pdgme9i81MmTJ9OxY0feeOMNsmfPzqBBg9JkSaqPPvqIU6dOUadOHZycnOjatSuNGjUiNvbxi2avXr2aDh06GPdbtWoFPLjwLXl6wLZt25g6dSp//fUXuXLlokqVKuzcuZOcOXNa9JW8vJetrS0eHh7Uq1ePMWPG/OtzExERkVeDyZyaK5/+oXLlynh7e/PFF19gZ/cgD9+/f5/OnTtz6tQpfvrppzQvVORZxMXFPViiq/cSbOw1zUBefppmICLyf7+/Y2Njn/hp7DOPzP49yALY2dkxcODAh64/KyIiIiLyPDzT0lwuLi4pln0COHfuXJpdECQiIiIi8iTPFGZbtmxJp06dWLx4sXF1/7fffkvnzp0tllUSEREREXmenmmawcSJEzGZTISEhHD//n3MZjMZM2akW7dujBs3Lq1rFPnXfhtRRysgiIiIvIKe6QKwZLdu3TK+tapQoUI4OekCG3m5PM0EchEREXk5PLcLwDp27Jiqdl9++eXTdCsiIiIi8kyeKszOmzeP/PnzU7p0af7FgK6IiIiISJp4qjDbrVs3Fi1axOnTp+nQoQNt27Yla9asz6s2EREREZHHeqrVDD7//HNiYmIYOHAg//vf//D09KRFixasX79eI7UiIiIi8sL9qwvAzp49y7x581iwYAH379/n8OHDODs7p2V9Iv+KLgATERGxPk/z+/uZ1pk1draxwWQyYTabSUxM/DddiYiIiIg8tacOswkJCSxatIjatWvj4+PDoUOH+Oyzz4iOjtaorIiIiIi8UE91AVj37t359ttv8fT0pGPHjixatIjs2bM/r9pERERERB7rqebM2tjYkC9fPkqXLo3JZHpku+XLl6dJcSL/lubMioiIWJ/n9qUJISEhjw2xIiIiIiIv0lN/aYKIiIiIyMviX61mICIiIiKSnhRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWS2FWRERERKyWwqyIiIiIWK2nWmdWxFpV+KYCto626V2GiIhYsUPtD6V3CfIQGpkVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsy+J4cOHU6pUqTTrb968ebi5uaVZfyIiIiIvIy3N9QwuXLjAmDFjWLNmDX/++Sc5c+akVKlS9O7dm5o1a76wOkwmEytWrKBRo0Yv7JhpxWQyPfTx8ePHM2DAgBRtbG1tyZ07N82aNSM8PBx7e/unOt6us3/gYv/wY4qIvHaGx6Z3BSJpRmH2KZ05c4ZKlSrh5ubGhAkTKFmyJPfu3WP9+vW8//77/P777+ldolWIiYmxuL9u3To6depE06ZNLR6fO3cuQUFB3Lt3j4MHD9KhQwcyZcrEqFGjXmS5IiIi8pLSNIOn1L17d0wmE3v27KFp06b4+PhQvHhx+vbty65duwCIjo6mYcOGODs74+LiQosWLbh48aJFP+PGjSNXrlxkzpyZTp06cefOnRTHmj17NkWLFsXBwQFfX1+mT5/+zHWfPHmShg0bkitXLpydnSlbtiybNm2yaOPl5cXo0aMJCQnB2dmZ/Pnzs3r1ai5fvmycj5+fH3v37jX2uXr1Kq1btyZPnjw4OTlRsmRJFi1a9MR63N3dLW6rVq2ievXqFCxY0KKdm5sb7u7ueHp60qBBAxo2bMj+/fuf+XkQERGRV4vC7FO4du0aP/zwA++//z6ZMmVKsd3NzY2kpCQaNmzItWvX2Lp1Kxs3buTUqVO0bNnSaLdkyRKGDx/O2LFj2bt3Lx4eHimC6sKFCwkLC2PMmDFERUUxduxYhg4dyvz585+p9vj4eOrVq8fmzZs5cOAAQUFBBAcHEx0dbdFuypQpVKpUiQMHDlC/fn3atWtHSEgIbdu2Zf/+/RQqVIiQkBDMZjMAd+7coUyZMqxZs4bffvuNrl270q5dO/bs2ZPq2i5evMiaNWvo1KnTY9sdO3aMH3/8kfLlyz+yTUJCAnFxcRY3EREReXWZzMmpRJ5oz549lC9fnuXLl9O4ceOHttm4cSN169bl9OnTeHp6AnDkyBGKFy/Onj17KFu2LG+88QalS5fm888/N/arUKECd+7cITIyEgBvb29GjRpF69atjTajR49m7dq17Ny5E3j8nNl58+bRu3dvrl+//sjzKVGiBO+99x49evQAHozMVq5cma+++gp4MDfYw8ODoUOHMnLkSAB27dpFxYoViYmJwd3d/aH9NmjQAF9fXyZOnPjIY//d+PHjGTduHOfPn8fBwcF43GQy4eDggK2tLffv3ychIYEGDRqwfPlyMmTI8NC+hg8fzogRI1I8Hjs4s+bMiogk05xZecnFxcXh6upKbGwsLi4uj22rkdmnkJrcHxUVhaenpxFkAYoVK4abmxtRUVFGm3+OLlasWNH4+ebNm5w8eZJOnTrh7Oxs3EaPHs3Jkyefqfb4+Hj69+9P0aJFcXNzw9nZmaioqBQjs35+fsbPuXLlAqBkyZIpHrt06RIAiYmJjBo1ipIlS5I1a1acnZ1Zv3690e/ChQstzmHbtm0pavvyyy9p06aNRZBNNmXKFCIjIzl48CDff/89x44do127do88zyFDhhAbG2vczp07l9qnSERERKyQLgB7CoULF8ZkMj33i7zi4+MB+OKLL1KEXltb22fqs3///mzcuJGJEyfi7e2No6MjzZo14+7duxbt/j7imbyawMMeS0pKAmDChAl88sknTJ06lZIlS5IpUyZ69+5t9Pv2229bnEOePHksjrdt2zaOHj3K4sWLH1q3u7s73t7eABQpUoQbN27QunVrRo8ebTz+d/b29k+90oGIiIhYL4XZp5A1a1bq1KnD559/Ts+ePVPMm71+/TpFixbl3LlznDt3zmKawfXr1ylWrBgARYsWZffu3YSEhBj7Jl88Bg9GP3Pnzs2pU6do06ZNmtS+Y8cOQkNDjekR8fHxnDlzJk36bdiwIW3btgUehNxjx44Z55o5c2YyZ878yP3nzJlDmTJl8Pf3T9XxksP87du3n6rOEnfmYGN2eqp9RNLCmXH107sEEZFXmsLsU/r888+pVKkS5cqVY+TIkfj5+XH//n02btzIjBkzOHLkCCVLlqRNmzZMnTqV+/fv0717d6pWrUpgYCAAvXr1IjQ0lMDAQCpVqsTChQs5fPiwxZX8I0aMoGfPnri6uhIUFERCQgJ79+7lr7/+om/fvka706dPG/NskxUuXDhF3YULF2b58uUEBwdjMpkYOnSoMbr6bxQuXJjvvvuOnTt3kiVLFiZPnszFixeNMPs4cXFxLF26lEmTJj2yzfXr17lw4QJJSUkcP36ckSNH4uPjQ9GiRf917SIiImL9FGafUsGCBdm/fz9jxoyhX79+xMTEkCNHDsqUKcOMGTMwmUysWrWKDz74gCpVqmBjY0NQUBCffvqp0UfLli05efIkAwcO5M6dOzRt2pRu3bqxfv16o03nzp1xcnJiwoQJDBgwgEyZMlGyZEl69+5tUc/fg22yh81LnTx5Mh07duSNN94ge/bsDBo0KE2u9P/oo484deoUderUwcnJia5du9KoUSNiY598ccG3336L2Wy2uMjtnzp06AA8mN7g7u5OlSpVGDt2LHZ2+qcrIiIiWs1AXnHJV0N69l6Cjb2mGciLp2kGIiJPT6sZiIiIiMhrQWFWRERERKyWwqyIiIiIWC1dRSOvhd9G1HninBsRERGxPhqZFRERERGrpTArIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVUpgVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWS2FWRERERKyWXXoXIPIiVPimAraOtuldhoiIvGIOtT+U3iW89jQyKyIiIiJWS2FWRERERKyWwqyIiIiIWC2FWRERERGxWgqzIiIiImK1FGblsby8vJg6dWp6lyEiIiLyUFqa6zm4fPkyYWFhrFmzhosXL5IlSxb8/f0JCwujUqVKmEwmVqxYQaNGjdLsmFu2bGHChAns3r2b27dv4+XlRd26denbty958uRJs+OkFS8vL86ePZvi8e7du/P555+naGNjY0OuXLmoW7cuEydOJEuWLE91vF1n/8DF3vTvCxcReVkMj03vCkReChqZfQ6aNm3KgQMHmD9/PseOHWP16tVUq1aNq1evpulx7t69C8CsWbOoVasW7u7uLFu2jCNHjjBz5kxiY2OZNGlSmh7zWWv8p19++YWYmBjjtnHjRgCaN29u0W7kyJHExMQQHR3NwoUL+emnn+jZs+dzr1tERESsg8JsGrt+/Trbtm3j448/pnr16uTPn59y5coxZMgQ3n77bby8vABo3LgxJpPJuH/y5EkaNmxIrly5cHZ2pmzZsmzatMmiby8vL0aNGkVISAguLi507dqVP/74g549e9KzZ0++/PJLqlWrhpeXF1WqVGH27NmEhYUZ+y9btozixYtjb2+Pl5dXiqB76dIlgoODcXR0pECBAixcuPCh59e5c2dy5MiBi4sLNWrU4ODBg8b24cOHU6pUKWbPnk2BAgVwcHB46POUI0cO3N3djdv3339PoUKFqFq1qkW7zJkz4+7uTp48eahevTrt27dn//79qX49RERE5NWmMJvGnJ2dcXZ2ZuXKlSQkJKTY/ssvvwAwd+5cYmJijPvx8fHUq1ePzZs3c+DAAYKCgggODiY6Otpi/4kTJ+Lv78+BAwcYOnQoS5cu5e7duwwcOPCh9bi5uQGwb98+WrRoQatWrTh06BDDhw9n6NChzJs3z2gbGhrKuXPn2LJlC9999x3Tp0/n0qVLFv01b96cS5cusW7dOvbt20dAQAA1a9bk2rVrRpsTJ06wbNkyli9fTmRk5BOfs7t37/L111/TsWNHTKZHTwX4888/+d///kf58uUf2SYhIYG4uDiLm4iIiLy6TGaz2ZzeRbxqli1bRpcuXbh9+zYBAQFUrVqVVq1a4efnB5DqObMlSpTgvffeo0ePHsCDkdnSpUuzYsUKo0337t1ZuHAhsbGPnzvVpk0bLl++zIYNG4zHBg4cyJo1azh8+DDHjh2jSJEi7Nmzh7JlywLw+++/U7RoUaZMmULv3r3Zvn079evX59KlS9jb2xv9eHt7M3DgQLp27crw4cMZO3Ysf/75Jzly5EjV87VkyRLeeecdoqOjyZ07t/G4l5cXMTExZMiQgcTERO7cuUP58uX54YcfjJD+T8OHD2fEiBEpHo8dnFlzZkXk1aI5s/IKi4uLw9XVldjYWFxcXB7bViOzz0HTpk05f/48q1evJigoiIiICAICAixGQf8pPj6e/v37U7RoUdzc3HB2diYqKirFyGxgYKDFfbPZ/NjRzGRRUVFUqlTJ4rFKlSpx/PhxEhMTiYqKws7OjjJlyhjbfX19LULjwYMHiY+PJ1u2bMYItLOzM6dPn+bkyZNGu/z58xtBdtu2bRZtHzZ1Yc6cOdStW9ciyCYbMGAAkZGR/Prrr2zevBmA+vXrk5iY+NDzHDJkCLGxscbt3LlzT3xuRERExHppNYPnxMHBgdq1a1O7dm2GDh1K586dGTZsGKGhoQ9t379/fzZu3MjEiRPx9vbG0dGRZs2apbiAKlOmTBb3fXx8iI2NJSYmBg8Pj+d1OsCDwO3h4UFERESKbX8PvX+vMTAw0GKqQa5cuSz2O3v2LJs2bWL58uUPPWb27Nnx9vYGoHDhwkydOpWKFSuyZcsWatWqlaK9vb29xaixiIiIvNoUZl+QYsWKsXLlSgDjY/O/27FjB6GhoTRu3Bh4EBzPnDnzxH6bNWvG4MGDGT9+PFOmTEmx/fr167i5uVG0aFF27NiR4pg+Pj7Y2tri6+vL/fv32bdvnzHN4OjRo1y/ft1oHxAQwIULF7CzszMuXHsSR0dHI4w+zNy5c8mZMyf169dPVX+2trYA3L59O1Xtk5W4Mwcbs9NT7SPyd2fGpe7fqIiIvFgKs2ns6tWrNG/enI4dO+Ln50fmzJnZu3cv48ePp2HDhsCDuaCbN2+mUqVK2NvbkyVLFgoXLszy5csJDg7GZDIxdOhQkpKSnng8T09PpkyZQo8ePYiLiyMkJAQvLy/++OMPFixYgLOzM5MmTaJfv36ULVuWUaNG0bJlS37++Wc+++wzpk+fDkCRIkUICgri3XffZcaMGdjZ2dG7d28cHR2NY9WqVYuKFSvSqFEjxo8fj4+PD+fPn2fNmjU0btw4xRSIJ0lKSmLu3Lm0b98eO7uH/1O8ceMGFy5cwGw2c+7cOQYOHEiOHDl44403nupYIiIi8mrSnNk05uzsTPny5ZkyZQpVqlShRIkSDB06lC5duvDZZ58BMGnSJDZu3IinpyelS5cGYPLkyWTJkoU33niD4OBg6tSpQ0BAQKqO2b17dzZs2MCff/5J48aN8fX1pXPnzri4uNC/f3/gwajqkiVL+PbbbylRogRhYWGMHDnSYtrD3LlzyZ07N1WrVqVJkyZ07dqVnDlzGttNJhNr166lSpUqdOjQAR8fH1q1asXZs2dTTB9IjU2bNhEdHU3Hjh0f2SYsLAwPDw9y585NgwYNyJQpExs2bCBbtmxPfTwRERF59Wg1A3mlJV8N6dl7CTb2mmYgz07TDEREXhytZiAiIiIirwWFWRERERGxWgqzIiIiImK1tJqBvBZ+G1HniXNuRERExPpoZFZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVUpgVEREREaulMCsiIiIiVkthVkRERESslsKsiIiIiFgthVkRERERsVoKsyIiIiJitRRmRURERMRqKcyKiIiIiNVSmBURERERq6UwKyIiIiJWyy69CxAREZHnLzExkXv37qV3GSIAZMiQAVtb2zTpS2FWRETkFWY2m7lw4QLXr19P71JELLi5ueHu7o7JZPpX/SjMioiIvMKSg2zOnDlxcnL618FB5N8ym83cunWLS5cuAeDh4fGv+lOYlddChW8qYOuYNh9niIhYCwcbB0b5jCJ3rtxcMF+Am+ld0dMpnr14epcgz4mjoyMAly5dImfOnP9qyoEuABMREXlFudq5YmdjhymjRmPl5ePk5ATwr+dyK8yKiIi8omywwYQJlGXlJZRWU14UZkVERETEainMioiIyEsntGEovXv3Tr/jh4bSqFEj4361atXStR55NF0AJiIi8pqpP/HMCz3emv5eL/R4z8Py5cvJkCFDepdhNby8vOjdu/cL+QNAI7PyWF5eXkydOjW9yxAREUlXWbNmJXPmzOldxr9iNpu5f/9+epeR5jQy+xxcvnyZsLAw1qxZw8WLF8mSJQv+/v6EhYVRqVIlTCYTK1assPj44t/asmULEyZMYPfu3dy+fRsvLy/q1q1L3759yZMnT5odJ63MmDGDGTNmcObMGQCKFy9OWFgYdevWNdp4eXlx9uxZAGxsbMiVKxd169Zl4sSJZMmS5amOt+vsH7jY6woIEXmE4bHpXcFzcefOHU6fPk2BLAVwcHD425YzL7SOZ1liK1OGTNy/f58ePXrw1VdfkSFDBrp168bIkSMxmUx89dVXfPLJJxw9epRMmTJRo0YNpk6dSs6cOQH466+/6NGjBxs2bCA+Pp68efPyn//8hw4dOgBw7tw5+vXrx4YNG7CxsaFy5cp88skneHl5PbSeatWqUapUKWOAx8vLi65du3LixAmWLl1KlixZ+Oijj+jatauxz9Me4+9CQ0O5fv06pUuX5rPPPiMhIYF33nmHadOmkTFjRgCSkpL4+OOP+e9//8uFCxfw8fFh6NChNGvWDICIiAiqV6/O2rVr+eijjzh06BAbNmygSpUqTJw4kf/+97+cO3eOXLly8e677/Lhhx+mqu7k2t58800mTZrE3bt3adWqFVOnTiVDhgxUq1aNs2fP0qdPH/r06QM8CNLPi0Zmn4OmTZty4MAB5s+fz7Fjx1i9ejXVqlXj6tWraXqcu3fvAjBr1ixq1aqFu7s7y5Yt48iRI8ycOZPY2FgmTZqUpsd81hr/KW/evIwbN459+/axd+9eatSoQcOGDTl8+LBFu5EjRxITE0N0dDQLFy7kp59+omfPni+idBERSWfz58/Hzs6OPXv28MknnzB58mRmz54NPFjOadSoURw8eJCVK1dy5swZQkNDjX2HDh3KkSNHWLduHVFRUcyYMYPs2bMb+9apU4fMmTOzbds2duzYgbOzM0FBQY/8vfUwkyZNIjAwkAMHDtC9e3e6devG0aNH0+wYmzdvJioqioiICBYtWsTy5csZMWKEsT08PJwFCxYwc+ZMDh8+TJ8+fWjbti1bt2616Gfw4MGMGzeOqKgo/Pz8GDJkCOPGjTOeo2+++YZcuXI9Vd1btmzh5MmTbNmyhfnz5zNv3jzmzZsHPJiSkTdvXuN3eExMTKqf02ehkdk0dv36dbZt20ZERARVq1YFIH/+/JQrVw7A+KumcePGxrYzZ85w8uRJ+vbty65du7h58yZFixYlPDycWrVqGX17eXnRqVMnjh8/zsqVK2nSpAmjR4+mZ8+e9OzZkylTpli0rVKlisXXFy5btoywsDBOnDiBh4cHH3zwAf369TO2X7p0iU6dOrFp0ybc3d0ZPXr0Q8+vf//+rFq1ioSEBAIDA5kyZQr+/v4ADB8+nJUrV9KjRw/GjBnD2bNnSUpKStFPcHCwxf0xY8YwY8YMdu3aRfHi//cXfObMmXF3dwcgT548tG/fnkWLFj35hRAREavn6enJlClTMJlMFClShEOHDjFlyhS6dOlCx44djXYFCxZk2rRplC1blvj4eJydnYmOjqZ06dIEBgYCWIyGLl68mKSkJGbPnm0sDzV37lzc3NyIiIjgrbfeSlV99erVo3v37gAMGjSIKVOmsGXLFooUKZImx8iYMSNffvklTk5OFC9enJEjRzJgwABGjRrFvXv3GDt2LJs2baJixYrG87B9+3ZmzZplZBB4MDBUu3ZtAG7cuMEnn3zCZ599Rvv27QEoVKgQb7755lM9N1myZOGzzz7D1tYWX19f6tevz+bNm+nSpQtZs2bF1tbW4nf486Qwm8acnZ1xdnZm5cqVVKhQAXt7e4vtv/zyCzlz5mTu3LkEBQUZ33gRHx9PvXr1GDNmDPb29ixYsIDg4GCOHj1Kvnz5jP0nTpxIWFgYw4YNA2Dp0qXcvXuXgQMHPrQeNzc3APbt20eLFi0YPnw4LVu2ZOfOnXTv3p1s2bIZf8mGhoZy/vx5tmzZQoYMGejZs6fxVXPJmjdvjqOjI+vWrcPV1ZVZs2ZRs2ZNjh07RtasWQE4ceIEy5YtY/ny5an6Ro/ExESWLl3KzZs3jTfkw/z555/873//o3z58o9sk5CQQEJCgnE/Li7uiccXEZGXU4UKFSzWIq1YsSKTJk0iMTGRyMhIhg8fzsGDB/nrr7+MgZPo6GiKFStGt27daNq0Kfv37+ett96iUaNGvPHGGwAcPHiQEydOpJgDe+fOHU6ePJnq+vz8/IyfTSYT7u7uxu/NtDiGv7+/8cUCyecfHx/PuXPniI+P59atW0ZITXb37l1Kly5t8VhyoAeIiooiISGBmjVrPvSYqa27ePHiFr/jPTw8OHToUKrOK60pzKYxOzs75s2bR5cuXZg5cyYBAQFUrVqVVq1a4efnR44cOYAHIfPvf634+/sbo5sAo0aNYsWKFaxevZoePXoYj9eoUcNiNPX48eO4uLg88XuNJ0+eTM2aNRk6dCgAPj4+HDlyhAkTJhAaGsqxY8dYt24de/bsoWzZsgDMmTOHokWLGn1s376dPXv2cOnSJSOkT5w4kZUrV/Ldd98Z84Tu3r3LggULjHN9lEOHDlGxYkXu3LmDs7MzK1asoFixYhZtBg0axEcffURiYiJ37tyhfPnyTJ48+ZF9hoeHW3wEIyIir547d+5Qp04d6tSpw8KFC8mRIwfR0dHUqVPH+Ci8bt26nD17lrVr17Jx40Zq1qzJ+++/z8SJE4mPj6dMmTIsXLgwRd9P+t31d/9c3cBkMhmhOq2O8Sjx8fEArFmzJsW1Mf8cSMuUKZPxc/LXyD6u39TU/bhzf9E0Z/Y5aNq0KefPn2f16tUEBQURERFBQECAMZfkYeLj4+nfvz9FixbFzc0NZ2dnoqKiiI6Otmj397+u4MGE6tR8g0ZUVBSVKlWyeKxSpUocP36cxMREoqKisLOzo0yZMsZ2X19fY2QXHvy1Fh8fT7Zs2YwRaGdnZ06fPm3x11r+/PmNf/Dbtm2zaPv3N0eRIkWIjIxk9+7ddOvWjfbt23PkyBGLGgcMGEBkZCS//vormzdvBqB+/fokJiY+9DyHDBlCbGyscTt37twTnxsREXk57d692+L+rl27KFy4ML///jtXr15l3LhxVK5cGV9f3xSfJMKD8NW+fXu+/vprpk6dyn//+18AAgICOH78ODlz5sTb29vi5urqmia1p8UxDh48yO3bty3O39nZGU9PT4oVK4a9vT3R0dEp+vf09Hxkn4ULF8bR0dH4nfo86oYHUyQe9bs6rSnMPicODg7Url2boUOHsnPnTkJDQ42pAQ/Tv39/VqxYwdixY9m2bRuRkZGULFkyxSTxv/91BQ9GWGNjY5/75Gp4ELg9PDyIjIy0uB09epQBAwY8tMbAwECLtm+//baxLWPGjHh7e1OmTBnCw8Px9/fnk08+sThm9uzZ8fb2pnDhwsaVqjt37mTLli0PrdHe3h4XFxeLm4iIWKfo6Gj69u3L0aNHWbRoEZ9++im9evUiX758ZMyYkU8//ZRTp06xevVqRo0aZbFvWFgYq1at4sSJExw+fJjvv//e+LSxTZs2ZM+enYYNG7Jt2zZOnz5NREQEPXv25I8//kiT2tPiGHfv3qVTp04cOXKEtWvXMmzYMHr06IGNjQ2ZM2emf//+9OnTh/nz53Py5En279/Pp59+yvz58x/Zp4ODA4MGDWLgwIEsWLCAkydPsmvXLubMmZOmz42Xlxc//fQTf/75J1euXEn1fs9C0wxekGLFirFy5UrgwdD8P/9a2bFjB6GhocaFYfHx8cayVY/TrFkzBg8ezPjx4y0uAEt2/fp13NzcKFq0KDt27EhxTB8fH2Py9v3799m3b58xzeDo0aMWF5AFBARw4cIF7OzsUrWsCDz4OMPb2ztVbZOSkizmuz5M8vycv/+lmhol7szBxuz05IaS7s6Mq5/eJYi88qzlfRYSEsLt27cpV64ctra29OrVi65du2IymZg3bx7/+c9/mDZtGgEBAUycODHFgMmQIUM4c+YMjo6OVK5cmW+//RYAJycnfvrpJwYNGkSTJk24ceMGefLkoWbNmmk2CJIWx6hZsyaFCxemSpUqJCQk0Lp1a4YPH25sHzVqFDly5CA8PJxTp07h5uZGQEAA//nPfx7b79ChQ7GzsyMsLIzz58/j4eHBe++9l2Z1w4OLzt59910KFSpEQkLCc12ay2R+nr2/hq5evUrz5s3p2LEjfn5+ZM6cmb179/LBBx9Qv3595syZg4+PD7Vq1SIsLAx7e3uyZMlCkyZNOH36NHPnzsVkMjF06FAiIiLo2LGjxZp2D/s2jenTp9OjRw86dOhASEgIXl5e/PHHHyxYsABnZ2cmTZrE/v37KVu2rHEB2M8//0y3bt2YPn26cQFY3bp1uXjxIjNmzMDOzo7evXuzb98+xo4dS+/evTGbzVSpUoUbN24wfvx4fHx8OH/+PGvWrKFx48YEBgYaqxlERkY+9nkaMmQIdevWJV++fNy4cYNvvvmGjz/+mPXr1xuT2ZNXb+jSpQtms5lz584xcOBAjhw5QlRUFNmyZXvi6xEXF4erqyuevZdgY68waw2s5ZesiDUw1pkt8M91ZuVll7yWa/JA2Kvocf8+k39/x8bGPjFEa5pBGnN2dqZ8+fJMmTKFKlWqUKJECYYOHUqXLl347LPPgAfr0m3cuBFPT0/jisPJkyeTJUsW3njjDYKDg6lTpw4BAQGpOmb37t3ZsGEDf/75J40bN8bX15fOnTvj4uJC//79gQejqkuWLOHbb7+lRIkShIWFMXLkSIs1+ebOnUvu3LmpWrUqTZo0oWvXrsbi0/BgcvfatWupUqUKHTp0wMfHh1atWnH27FljfbrUunTpEiEhIRQpUoSaNWvyyy+/WATZZGFhYXh4eJA7d24aNGhApkyZ2LBhQ6qCrIiIiLz6NDIrrzSNzFofjcyKpB2NzL68nJ2dH7lt3bp1zJkzRyOzqRyZ1ZxZERERkRfscdPx8uTJQ+XKlV9cMVZOYVZERETkBUvtxdHyZJozKyIiIiJWSyOz8lr4bUQdrTkrIiLyCtLIrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVEROSlU61atRTfeCnyMLoATERE5HUz3PUFHy/2xR7vESIiIpgyZQp79uwhLi6OwoULM2DAANq0aWO0mTdvHh06dLDYz97enjt37rzocl+4M2fOUKBAAQ4cOECpUqXSu5xUU5gVERGR18LOnTvx8/Nj0KBB5MqVi++//56QkBBcXV1p0KCB0c7FxYWjR48a900mU3qUa7h79y4ZM2ZM1xpeZppmICIiIi+l+/fv06NHD1xdXcmePTtDhw7FbDYD4OXlxejRowkJCcHZ2Zn8+fOzevVqLl++TMOGDXF2dsbPz4+9e/ca/f3nP/9h1KhRvPHGGxQqVIhevXoRFBTE8uXLLY5rMplwd3c3brly5Up1zV5eXowaNYrWrVuTKVMm8uTJw+eff27R5vr163Tu3JkcOXLg4uJCjRo1OHjwoLF9+PDhlCpVitmzZ1t81ev169d59913yZUrFw4ODpQoUYLvv//e2G/79u1UrlwZR0dHPD096dmzJzdv3rSobezYsXTs2JHMmTOTL18+/vvf/xrbCxQoAEDp0qUxmUxUq1Yt1eednhRmRURE5KU0f/587Ozs2LNnD5988gmTJ09m9uzZxvYpU6ZQqVIlDhw4QP369WnXrh0hISG0bduW/fv3U6hQIUJCQowA/DCxsbFkzZrV4rH4+Hjy58+Pp6cnDRs25PDhw09V94QJE/D39+fAgQMMHjyYXr16sXHjRmN78+bNuXTpEuvWrWPfvn0EBARQs2ZNrl27ZrQ5ceIEy5YtY/ny5URGRpKUlETdunXZsWMHX3/9NUeOHGHcuHHY2toCcPLkSYKCgmjatCm//vorixcvZvv27fTo0cOitkmTJhEYGMiBAwfo3r073bp1M0ah9+zZA8CmTZuIiYlJEfJfVibz415hESsXFxeHq6srsbGx+tIEEXnt3Llzh9OnT1uM7gFWMWe2WrVqXLp0icOHDxsf8w8ePJjVq1dz5MgRvLy8qFy5Ml999RUAFy5cwMPDg6FDhzJy5EgAdu3aRcWKFYmJicHd3T3FMZYsWUK7du3Yv38/xYsXB+Dnn3/m+PHj+Pn5ERsby8SJE/npp584fPgwefPmfWLdXl5eFC1alHXr1hmPtWrViri4ONauXcv27dupX78+ly5dwt7e3mjj7e3NwIED6dq1K8OHD2fs2LH8+eef5MiRA4ANGzZQt25doqKi8PHxSXHczp07Y2try6xZs4zHtm/fTtWqVbl58yYODg4pnjOz2Yy7uzsjRozgvffee+FzZh/575On+/2tkVkRERF5KVWoUMFivmrFihU5fvw4iYmJAPj5+RnbkqcClCxZMsVjly5dStH3li1b6NChA1988YURZJOPERISQqlSpahatSrLly8nR44cFiHxSSpWrJjiflRUFAAHDx4kPj6ebNmy4ezsbNxOnz7NyZMnjX3y589vBFmAyMhI8ubN+9Agm9zvvHnzLPqsU6cOSUlJnD592mj39+cseTrFw54fa6ILwERERMQqZciQwfg5OfQ+7LGkpCSL/bZu3UpwcDBTpkwhJCTkiccoXbo0J06cSJOa4+Pj8fDwICIiIsU2Nzc34+dMmTJZbHN0dHxiv++++y49e/ZMsS1fvnzGz39/fuDBc/TP58faKMyKiIjIS2n37t0W93ft2kXhwoWNeaLPIiIiggYNGvDxxx/TtWvXJ7ZPTEzk0KFD1KtXL9XH2LVrV4r7RYsWBSAgIIALFy5gZ2eHl5dXqvv08/Pjjz/+4NixYw8dnQ0ICODIkSN4e3unus9/Sl4xIXnk21pomoGIiIi8lKKjo+nbty9Hjx5l0aJFfPrpp/Tq1euZ+9uyZQv169enZ8+eNG3alAsXLnDhwgWLC69GjhzJhg0bOHXqFPv376dt27acPXuWzp07p/o4O3bsYPz48Rw7dozPP/+cpUuXGnXXqlWLihUr0qhRIzZs2MCZM2fYuXMnH374ocXKC/9UtWpVqlSpQtOmTdm4cSOnT59m3bp1/PDDDwAMGjSInTt30qNHDyIjIzl+/DirVq1KcQHY4+TMmRNHR0d++OEHLl68SGzsy7E+8JMozIqIiMhLKSQkhNu3b1OuXDnef/99evXqlarR1EeZP38+t27dIjw8HA8PD+PWpEkTo81ff/1Fly5dKFq0KPXq1SMuLo6dO3dSrFixVB+nX79+7N27l9KlSzN69GgmT55MnTp1gAcf669du5YqVarQoUMHfHx8aNWqFWfPnn3iEmDLli2jbNmytG7dmmLFijFw4ECL+cNbt27l2LFjVK5cmdKlSxMWFkbu3LlTXbednR3Tpk1j1qxZ5M6dm4YNG6Z63/Sk1QzklabVDETkdfa4q8Xl+fDy8qJ37976Kt5U0GoGIiIiIvLaU5gVERERSYVt27ZZLH31z5ukD61mICIiIpIKgYGBREZGPrbNmTNnXkgt8n8UZkVERERSwdHR8V8tfSXPh8KsvBYqfFMBW8dnX5dQRORhDrU/lN4liLz2NGdWRERERKyWwqyIiIiIWC2FWRERERGxWgqzIiIiImK1FGZFREREgIiICEwmE9evX0/vUuQpaDUDeSx9LZ+IyKun5PySL/R4WvXB+pw5c4YCBQpw4MABSpUqld7lPJbC7HNw+fJlwsLCWLNmDRcvXiRLliz4+/sTFhZGpUqVMJlMrFixgkaNGqXZMbds2cKECRPYvXs3t2/fxsvLi7p169K3b1/y5MmTZsdJKz/99BMTJkxg3759xMTEPPT5qFatGlu3bjXu58yZkypVqjBx4kTy58//VMfbdfYPXOxNaVG6iHUbHpveFYikObPZTGJiInZ2r36suXv3LhkzZkzvMl4qmmbwHDRt2pQDBw4wf/58jh07xurVq6lWrRpXr15N0+PcvXsXgFmzZlGrVi3c3d1ZtmwZR44cYebMmcTGxjJp0qQ0Peaz1vhPN2/exN/fn88///yx+3fp0oWYmBjOnz/PqlWrOHfuHG3btn0epYqIyEskISGBnj17kjNnThwcHHjzzTf55ZdfgP+bDrBu3TrKlCmDvb0927dv5+TJkzRs2JBcuXLh7OxM2bJl2bRpU4p+Bw0ahKenJ/b29nh7ezNnzpxH1rF9+3YqV66Mo6Mjnp6e9OzZk5s3b6bqHLy8vBg1ahStW7cmU6ZM5MmTJ8XvvevXr9O5c2dy5MiBi4sLNWrU4ODBg8b24cOHU6pUKWbPnk2BAgVwcHAw9nv33XfJlSsXDg4OlChRgu+//z7VdXt5eTF27Fg6duxI5syZyZcvH//973+N7QUKFACgdOnSmEwmqlWrlqpzTg8Ks2ns+vXrbNu2jY8//pjq1auTP39+ypUrx5AhQ3j77bfx8vICoHHjxphMJuN+at6AyW+KkJAQXFxc6Nq1K3/88Qc9e/akZ8+efPnll1SrVg0vLy+qVKnC7NmzCQsLM/ZftmwZxYsXx97eHi8vrxRB99KlSwQHB+Po6EiBAgVYuHDhQ8/vWd50/1S3bl1Gjx5N48aNH/t8Ojk54e7ujoeHBxUqVKBHjx7s37//sfuIiIj1GzhwIMuWLWP+/Pns378fb29v6tSpw7Vr14w2gwcPZty4cURFReHn50d8fDz16tVj8+bNHDhwgKCgIIKDg4mOjjb2CQkJYdGiRUybNo2oqChmzZqFs7PzQ2s4efIkQUFBNG3alF9//ZXFixezfft2evTokerzmDBhAv7+/hw4cIDBgwfTq1cvNm7caGxv3rw5ly5dYt26dezbt4+AgABq1qxpcZ4nTpxg2bJlLF++nMjISJKSkqhbty47duzg66+/5siRI4wbNw5bW9unqnvSpEkEBgZy4MABunfvTrdu3Th69CgAe/bsAWDTpk3ExMSwfPnyVJ/zi/bqj8e/YM7Ozjg7O7Ny5UoqVKiAvb29xfZffvmFnDlzMnfuXIKCgox/eMlvwDFjxmBvb8+CBQsIDg7m6NGj5MuXz9h/4sSJhIWFMWzYMACWLl3K3bt3GThw4EPrcXNzA2Dfvn20aNGC4cOH07JlS3bu3En37t3Jli0boaGhAISGhnL+/Hm2bNlChgwZ6NmzJ5cuXbLor3nz5jg6OrJu3TpcXV2ZNWsWNWvW5NixY2TNmhWwfNMln19auHbtGkuWLKF8+fKPbJOQkEBCQoJxPy4uLs2OLyIiL8bNmzeZMWMG8+bNo27dugB88cUXbNy4kTlz5lC2bFkARo4cSe3atY39smbNir+/v3F/1KhRrFixgtWrV9OjRw+OHTvGkiVL2LhxI7Vq1QKgYMGCj6wjPDycNm3aGNeNFC5cmGnTplG1alVmzJjxyAGbv6tUqRKDBw8GwMfHhx07djBlyhRq167N9u3b2bNnD5cuXTLywsSJE1m5ciXfffcdXbt2BR58yrlgwQJy5MgBwIYNG9izZw9RUVH4+PikOI/U1l2vXj26d+8OwKBBg5gyZQpbtmyhSJEixrGyZcuGu7v7E88zPSnMpjE7OzvmzZtHly5dmDlzJgEBAVStWpVWrVrh5+dn/ONwc3Oz+Mfh7+//2Ddgsho1atCvXz/j/vHjx3FxccHDw+OxdU2ePJmaNWsydOhQ4MEb6siRI0yYMIHQ0FCOHTvGunXr2LNnj/GfxJw5cyhatKjRx7O+6f6N6dOnM3v2bMxmM7du3cLHx4f169c/sn14eDgjRoz418cVEZH0c/LkSe7du0elSpWMxzJkyEC5cuWIiooyfk8FBgZa7BcfH8/w4cNZs2YNMTEx3L9/n9u3bxsjs5GRkdja2lK1atVU1XHw4EF+/fVXi08qzWYzSUlJnD592uJ35KNUrFgxxf2pU6ca/cfHx5MtWzaLNrdv3+bkyZPG/fz581v8To2MjCRv3rxGkH3Wuv38/IztJpMJd3f3FINY1kDTDJ6Dpk2bcv78eVavXk1QUBAREREEBAQwb968R+4THx9P//79KVq0KG5ubjg7OxMVFWXx0QikfOOazWZMpidf2BQVFWXxnwI8+Gvx+PHjJCYmEhUVhZ2dHWXKlDG2+/r6GiO7YPmmSx6BdnZ25vTp0498023bts2i7cOmLjxOmzZtiIyM5ODBg2zfvh1vb2/eeustbty48dD2Q4YMITY21ridO3fuqY4nIiLWI1OmTBb3+/fvz4oVKxg7dizbtm0jMjKSkiVLGtdvODo6PlX/8fHxvPvuu0RGRhq3gwcPcvz4cQoVKvSv64+Pj8fDw8Oi/8jISI4ePcqAAQMeeZ5POo/U1p0hQwaL/UwmE0lJSf/6vF40jcw+Jw4ODtSuXZvatWszdOhQOnfuzLBhw4yP9P+pf//+bNy4kYkTJ+Lt7Y2joyPNmjVLcQHVP/9B+/j4EBsbS0xMzBNHZ/+t5DddREREim1/D71/rzEwMJDIyEjjfq5cuZ7qmK6urnh7ewMYk/Q9PDxYvHgxnTt3TtHe3t4+xdQOERGxLoUKFSJjxozs2LHDWL3m3r17/PLLL49dKnLHjh2EhoYa12PEx8dz5swZY3vJkiVJSkpi69atxjSDxwkICODIkSPG76FnsWvXrhT3k0dGAwICuHDhAnZ2dsY1NKnh5+fHH3/8wbFjxx46OpsWdSevmJCYmPjMfbwoCrMvSLFixVi5ciXw4C+hf/7jeNIb8FGaNWvG4MGDGT9+PFOmTEmx/fr167i5uVG0aFF27NiR4pg+Pj7Y2tri6+vL/fv32bdvn/HxzdGjRy0Wjn6WN52jo+O/ejP9U/Ic3Nu3bz/VfiXuzMHG7JRmdfzTmXH1n1vfIiKvm0yZMtGtWzcGDBhA1qxZyZcvH+PHj+fWrVt06tTJ4sLjvytcuDDLly8nODgYk8nE0KFDLUYavby8aN++PR07dmTatGn4+/tz9uxZLl26RIsWLVL0N2jQIOPi486dO5MpUyaOHDnCxo0b+eyzz1J1Ljt27GD8+PE0atSIjRs3snTpUtasWQNArVq1qFixIo0aNWL8+PH4+Phw/vx51qxZQ+PGjVN8GpusatWqVKlShaZNmzJ58mS8vb35/fffMZlMBAUFpUndOXPmxNHRkR9++IG8efPi4OCAq6trqvZ90TTNII1dvXqVGjVq8PXXX/Prr79y+vRpli5dyvjx42nYsCHw4M20efNmLly4wF9//QX83xsw+aOAd955J1VD/Z6enkyZMoVPPvmETp06sXXrVs6ePcuOHTt49913GTVqFAD9+vVj8+bNjBo1imPHjjF//nw+++wz+vfvD0CRIkUICgri3XffZffu3ezbt4/OnTtbfJTx9zfdhg0bOHPmDDt37uTDDz9k7969T/U8xcfHGx99AJw+fZrIyMgU0ypu3brFhQsXuHDhAgcPHqRbt244ODjw1ltvPdXxRETEuowbN46mTZvSrl07AgICOHHiBOvXrydLliyP3Gfy5MlkyZKFN954g+DgYOrUqUNAQIBFmxkzZtCsWTO6d++Or68vXbp0eeRSW35+fmzdupVjx45RuXJlSpcuTVhYGLlz5071efTr14+9e/dSunRpRo8ezeTJk6lTpw7w4GP9tWvXUqVKFTp06ICPjw+tWrXi7NmzT/wkc9myZZQtW5bWrVtTrFgxBg4caAyUpUXddnZ2TJs2jVmzZpE7d24jw7yMTGaz2ZzeRbxKEhISGD58OBs2bDAmsHt6etK8eXP+85//4OjoyP/+9z/69u3LmTNnyJMnD2fOnOHMmTN07NiRXbt2kT17dgYNGsTSpUspVaqUMVH8cd/GtWnTJiZOnMiePXuML01o0KABffv2NaYfLFu2jLCwMI4fP46HhwcffPCBEWYBLly4QOfOndm0aRO5cuVi9OjRDB061OKYN27c4MMPP2TZsmVcvnwZd3d3qlSpQnh4OJ6engwfPpyVK1daTC14mIiICKpXr57i8fbt2xtzi//5pQlZsmTBz8+PYcOGPXTfh4mLi8PV1RXP3kuwsdfIrIi8Xu7cucPp06cfu1SiPD/6Fs3He9y/z+Tf37Gxsbi4uDy2H4VZeaUpzIrI60xhNn0pzD5eWoVZTTMQEREReUr/XK3nnzd5cXQBmIiIiMhT+udqPQ+Tmgu55d9TmBURERF5Smm9Wo88O4VZeS38NqLOE+fciIiIiPXRnFkREZFXnDV+q5O8+tLq36VGZkVERF5RGTNmxMbGhvPnz5MjRw4yZsyYqq9AF3mezGYzd+/e5fLly9jY2BjfNvasFGZFREReUTY2NhQoUICYmBjOnz+f3uWIWHByciJfvnzY2Py7iQIKsyIiIq+wjBkzki9fPu7fv5/iq9RF0outrS12dnZp8kmBwqyIiMgrzmQykSFDBjJkyJDepYikOV0AJiIiIiJWS2FWRERERKyWwqyIiIiIWC3NmZVXmtlsBiAuLi6dKxEREZHUSv69nfx7/HEUZuWVdvXqVQA8PT3TuRIRERF5Wjdu3MDV1fWxbRRm5ZWWNWtWAKKjo5/4ZpCXR1xcHJ6enpw7d05fQ2xl9NpZJ71u1ulVft3MZjM3btwgd+7cT2yrMCuvtOSFmF1dXV+5N/rrwMXFRa+bldJrZ530ulmnV/V1S+0glC4AExERERGrpTArIiIiIlZLYVZeafb29gwbNgx7e/v0LkWegl4366XXzjrpdbNOet0eMJlTs+aBiIiIiMhLSCOzIiIiImK1FGZFRERExGopzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYVZeaZ9//jleXl44ODhQvnx59uzZk94lyWMMHz4ck8lkcfP19U3vsuQffvrpJ4KDg8mdOzcmk4mVK1dabDebzYSFheHh4YGjoyO1atXi+PHj6VOsWHjSaxcaGpriPRgUFJQ+xQoA4eHhlC1blsyZM5MzZ04aNWrE0aNHLdrcuXOH999/n2zZsuHs7EzTpk25ePFiOlX84inMyitr8eLF9O3bl2HDhrF//378/f2pU6cOly5dSu/S5DGKFy9OTEyMcdu+fXt6lyT/cPPmTfz9/fn8888fun38+PFMmzaNmTNnsnv3bjJlykSdOnW4c+fOC65U/ulJrx1AUFCQxXtw0aJFL7BC+aetW7fy/vvvs2vXLjZu3Mi9e/d46623uHnzptGmT58+/O9//2Pp0qVs3bqV8+fP06RJk3Ss+gUzi7yiypUrZ37//feN+4mJiebcuXObw8PD07EqeZxhw4aZ/f3907sMeQqAecWKFcb9pKQks7u7u3nChAnGY9evXzfb29ubFy1alA4VyqP887Uzm83m9u3bmxs2bJgu9UjqXLp0yQyYt27dajabH7y/MmTIYF66dKnRJioqygyYf/755/Qq84XSyKy8ku7evcu+ffuoVauW8ZiNjQ21atXi559/TsfK5EmOHz9O7ty5KViwIG3atCE6Ojq9S5KncPr0aS5cuGDx3nN1daV8+fJ671mJiIgIcubMSZEiRejWrRtXr15N75Lkb2JjYwHImjUrAPv27ePevXsW7zlfX1/y5cv32rznFGbllXTlyhUSExPJlSuXxeO5cuXiwoUL6VSVPEn58uWZN28eP/zwAzNmzOD06dNUrlyZGzdupHdpkkrJ7y+996xTUFAQCxYsYPPmzXz88cds3bqVunXrkpiYmN6lCZCUlETv3r2pVKkSJUqUAB685zJmzIibm5tF29fpPWeX3gWIiCSrW7eu8bOfnx/ly5cnf/78LFmyhE6dOqVjZSKvh1atWhk/lyxZEj8/PwoVKkRERAQ1a9ZMx8oE4P333+e3337TtQT/oJFZeSVlz54dW1vbFFdzXrx4EXd393SqSp6Wm5sbPj4+nDhxIr1LkVRKfn/pvfdqKFiwINmzZ9d78CXQo0cPvv/+e7Zs2ULevHmNx93d3bl79y7Xr1+3aP86vecUZuWVlDFjRsqUKcPmzZuNx5KSkti8eTMVK1ZMx8rkacTHx3Py5Ek8PDzSuxRJpQIFCuDu7m7x3ouLi2P37t1671mhP/74g6tXr+o9mI7MZjM9evRgxYoV/PjjjxQoUMBie5kyZciQIYPFe+7o0aNER0e/Nu85TTOQV1bfvn1p3749gYGBlCtXjqlTp3Lz5k06dOiQ3qXJI/Tv35/g4GDy58/P+fPnGTZsGLa2trRu3Tq9S5O/iY+PtxipO336NJGRkWTNmpV8+fLRu3dvRo8eTeHChSlQoABDhw4ld+7cNGrUKP2KFuDxr13WrFkZMWIETZs2xd3dnZMnTzJw4EC8vb2pU6dOOlb9env//ff55ptvWLVqFZkzZzbmwbq6uuLo6IirqyudOnWib9++ZM2aFRcXFz744AMqVqxIhQoV0rn6FyS9l1MQeZ4+/fRTc758+cwZM2Y0lytXzrxr1670Lkkeo2XLlmYPDw9zxowZzXny5DG3bNnSfOLEifQuS/5hy5YtZiDFrX379maz+cHyXEOHDjXnypXLbG9vb65Zs6b56NGj6Vu0mM3mx792t27dMr/11lvmHDlymDNkyGDOnz+/uUuXLuYLFy6kd9mvtYe9XoB57ty5Rpvbt2+bu3fvbs6SJYvZycnJ3LhxY3NMTEz6Ff2Cmcxms/nFR2gRERERkX9Pc2ZFRERExGopzIqIiIiI1VKYFRERERGrpTArIiIiIlZLYVZERERErJbCrIiIiIhYLYVZEREREbFaCrMiIiIiYrUUZkVERETEainMioiIiIjVUpgVEREREav1/wCfFydQ5gXWkgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAGzCAYAAAA8D5+GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAOUlEQVR4nOzdd3yN9///8cdJQhIiCUoShCCJWEHEqtpUjNReRWwtVatmW7FF7S6jpUarLWp+iloVNWqLKmls0YpRKhEjSM7vD79c357GCEKceN5vt3NrznW9r/f7dV1Oel55n9f1Piaz2WxGRERERMQK2aR3ACIiIiIiT0rJrIiIiIhYLSWzIiIiImK1lMyKiIiIiNVSMisiIiIiVkvJrIiIiIhYLSWzIiIiImK1lMyKiIiIiNVSMisiIiIiVkvJrIiIyH/MmzcPk8nE6dOn0zsUEXkEJbMiIpKCyWRK1SM8PDy9Q33hHDlyhBEjRigRFnlOTGaz2ZzeQYiIyIvlm2++sXi+YMECNmzYwNdff22xvU6dOri5uT3P0J6LxMRE7ty5g729PSaT6bGO/eGHH2jRogWbN2+mevXqzyZAETHYpXcAIiLy4mnXrp3F8507d7Jhw4YU2zOa69evkzVrVmxtbbG1tU3vcEQkFVRmICIij61Dhw688sor3LlzJ8W+119/nSJFihjPTSYTvXr1YuHChRQpUgQHBwfKli3LL7/8kuLYv/76i86dO+Pm5oa9vT3Fixfnq6++StHu008/pXjx4mTJkoXs2bMTGBjIt99+m6KvLl26kCdPHuzt7SlYsCA9evTg9u3bwP/VxW7ZsoWePXuSO3du8uXLZ7Hv36UCXl5eNGzYkPXr11O6dGkcHBwoVqwYy5YtM9rMmzePFi1aAFCjRg2VY4g8B5qZFRGRx9a+fXsWLFjAunXraNiwobH9/Pnz/PzzzwwfPtyi/ZYtW1i0aBG9e/fG3t6e6dOnExQUxO7duylRogQAFy5coGLFikbymytXLtauXUuXLl2Ii4ujb9++AHz55Zf07t2b5s2b06dPH27dusVvv/3Grl27ePPNNwE4d+4c5cuX5+rVq3Tv3h0/Pz/++usvfvjhB27cuEHmzJmN2Hr27EmuXLkIDQ3l+vXrDz3vY8eO0apVK95++206dOjA3LlzadGiBT/99BN16tShatWq9O7dm08++YT333+fokWLAhj/FZFnwCwiIvII77zzjvnfbxmJiYnmfPnymVu1amXRbsqUKWaTyWQ+efKksQ0wA+a9e/ca286cOWN2cHAwN2nSxNjWpUsXs4eHh/nvv/+26LN169ZmFxcX840bN8xms9ncqFEjc/HixR8ab0hIiNnGxsa8Z8+eFPuSkpLMZrPZPHfuXDNgfu2118x37961aJO879SpU8a2AgUKmAHz0qVLjW2xsbFmDw8Pc5kyZYxtS5YsMQPmzZs3PzRGEUkbKjMQEZHHZmNjQ9u2bVm1ahXXrl0zti9cuJBXX32VggULWrSvVKkSZcuWNZ7nz5+fRo0asW7dOhITEzGbzSxdupTg4GDMZjN///238ahbty6xsbHs378fAFdXV/7880/27Nlz39iSkpJYsWIFwcHBBAYGptj/3xu6unXrlur62Dx58tCkSRPjubOzMyEhIRw4cIDz58+nqg8RSVtKZkVE5ImEhIRw8+ZNli9fDkBUVBT79u2jffv2Kdr6+Pik2Obr68uNGze4dOkSly5d4urVq3zxxRfkypXL4tGpUycALl68CMDgwYNxcnKifPny+Pj48M4777B9+3aj30uXLhEXF2eULzzKfxPvh/H29k6RDPv6+gJoKS6RdKKaWREReSLFihWjbNmyfPPNN4SEhPDNN9+QOXNmWrZs+dh9JSUlAfdWUejQocN92/j7+wP36k+joqL48ccf+emnn1i6dCnTp08nNDSUkSNHPvbYjo6Oj32MiLw4lMyKiMgTCwkJoX///sTExPDtt9/SoEEDsmfPnqLdsWPHUmw7evQoWbJkIVeuXABky5aNxMREateu/chxs2bNSqtWrWjVqhW3b9+madOmjB07lqFDh5IrVy6cnZ35/fffn/4E/+P48eOYzWaL2dmjR48C91Y7gJRlDCLybKnMQEREnlibNm0wmUz06dOHkydPPnAd2l9//dWoeQU4e/YsK1eu5PXXXzfWdG3WrBlLly69bxJ66dIl4+fLly9b7MucOTPFihXDbDZz584dbGxsaNy4Mf/73//Yu3dvir7MT/FdQefOnTPKKgDi4uJYsGABpUuXxt3dHbiXaANcvXr1iccRkdTTzKyIiDyxXLlyERQUxJIlS3B1daVBgwb3bVeiRAnq1q1rsTQXYFEWMH78eDZv3kyFChXo1q0bxYoV48qVK+zfv5+NGzdy5coV4N46tu7u7lSuXBk3NzciIyP57LPPaNCgAdmyZQNg3LhxrF+/nmrVqtG9e3eKFi1KTEwMS5YsYdu2bbi6uj7R+fr6+tKlSxf27NmDm5sbX331FRcuXGDu3LlGm9KlS2Nra8tHH31EbGws9vb21KxZk9y5cz/RmCLycEpmRUTkqYSEhPDjjz/SsmVL7O3t79umWrVqVKpUiZEjRxIdHU2xYsWYN2+eUQcL4Obmxu7duxk1ahTLli1j+vTp5MyZk+LFi/PRRx8Z7d566y0WLlzIlClTiI+PJ1++fPTu3ZsPP/zQaJM3b1527drFsGHDWLhwIXFxceTNm5d69eqRJUuWJz5XHx8fPv30UwYOHEhUVBQFCxZk0aJF1K1b12jj7u7OzJkzCQsLo0uXLiQmJrJ582YlsyLPiMn8NJ+3iIjIS2/lypU0btyYX375hSpVqqTYbzKZeOedd/jss8/SIbq04+XlRYkSJfjxxx/TOxQR+RfVzIqIyFP58ssvKVSoEK+99lp6hyIiLyGVGYiIyBP5/vvv+e2331i9ejUff/yx7uIXkXShZFZERJ5ImzZtcHJyokuXLvTs2TO9wxGRl5RqZkVERETEaqlmVkRERESslpJZEREREbFaqpmVDC0pKYlz586RLVs23ZwiIiJiJcxmM9euXSNPnjzY2Dx87lXJrGRo586dw9PTM73DEBERkSdw9uxZ8uXL99A2SmYlQ0v+asuzZ8/i7OycztGIiIhIasTFxeHp6Wm8jz+MklnJ0JJLC5ydnZXMioiIWJnUlAjqBjARERERsVpKZkVERETEaimZFRERERGrpWRWRERERKyWklkRERERsVpKZkVERETEaimZFRERERGrpXVm5aVQ8duK2DrapncYIiIiVudQh0PpHcJDaWZWRERERKyWklkRERERsVpKZkVERETEaimZFRERERGrpWT2OTKZTKxYsSJdxu7YsSONGzdOl7FFREREnpV0TWY7duyIyWTCZDKRKVMm3NzcqFOnDl999RVJSUnpGVq6OX78OJ06dSJfvnzY29tTsGBB2rRpw969e9M7tAdKSEjggw8+oECBAtjb2+Pl5cVXX331wPbz5s0z/t3/+7h48eJ92zg5OVG2bFmWLVv2vE5LRERErEC6L80VFBTE3LlzSUxM5MKFC/z000/06dOHH374gVWrVmFnl+4hPjd79+6lVq1alChRglmzZuHn58e1a9dYuXIl7733Hlu2bEm32MxmM4mJiff992jZsiUXLlxgzpw5eHt7ExMT89A/Rlq1akVQUJDFto4dO3Lr1i1y585tbHN2diYqKgqAa9euMXfuXFq2bMnhw4cpUqTIY8W/88yfONubHusYERERAEbEpncE8hDpXmZgb2+Pu7s7efPmJSAggPfff5+VK1eydu1a5s2bB8DVq1fp2rUruXLlwtnZmZo1a3Lw4EGLflauXElAQAAODg4UKlSIkSNHcvfuXWO/yWRixowZ1KtXD0dHRwoVKsQPP/xg7L99+za9evXCw8MDBwcHChQoQFhYmLE/LWL4r+HDh+Ph4cFvv/2G2WymY8eO+Pj4sHXrVho0aEDhwoUpXbo0w4cPZ+XKlcZxhw4dombNmjg6OpIzZ066d+9OfHy8sT8xMZH+/fvj6upKzpw5GTRoEGaz2WLspKQkwsLCKFiwII6OjpQqVcrieoSHh2MymVi7di1ly5bF3t6ebdu2pTiHn376iS1btrBmzRpq166Nl5cXlSpVonLlyg88b0dHR9zd3Y2Hra0tP//8M126dLFoZzKZjDY+Pj6MGTMGGxsbfvvttwf2LSIiIi+XdE9m76dmzZqUKlXK+Ei5RYsWXLx4kbVr17Jv3z4CAgKoVasWV65cAWDr1q2EhITQp08fjhw5wqxZs5g3bx5jx4616HfYsGE0a9aMgwcP0rZtW1q3bk1kZCQAn3zyCatWrWLx4sVERUWxcOFCvLy8jGPTKga4N8v57rvvsmDBArZu3Yq/vz8REREcPnyY9957DxublP8srq6uAFy/fp26deuSPXt29uzZw5IlS9i4cSO9evUy2k6ePJl58+bx1VdfsW3bNq5cucLy5cst+gsLC2PBggXMnDmTw4cP069fP9q1a5di9nfIkCGMHz+eyMhI/P39U8S1atUqAgMDmTBhAnnz5sXX15cBAwZw8+bN+/7b3s+CBQvIkiULzZs3f2CbxMRE5s+fD0BAQMAD2yUkJBAXF2fxEBERkYzrhf0M38/Pj99++41t27axe/duLl68iL29PQCTJk1ixYoV/PDDD3Tv3p2RI0cyZMgQOnToAEChQoUYPXo0gwYNYvjw4UafLVq0oGvXrgCMHj2aDRs28OmnnzJ9+nSio6Px8fHhtddew2QyUaBAAeO4tIzh7t27tGvXjgMHDrBt2zby5s0LwLFjx4zzfphvv/2WW7dusWDBArJmzQrAZ599RnBwMB999BFubm5MmzaNoUOH0rRpUwBmzpzJunXrjD4SEhIYN24cGzdupFKlSka827ZtY9asWVSrVs1oO2rUKOrUqfPAeE6ePMm2bdtwcHBg+fLl/P333/Ts2ZPLly8zd+7ch55Lsjlz5vDmm2/i6OhosT02NhYnJycAbt68SaZMmfjiiy8oXLjwA/sKCwtj5MiRqRpXRERErN8Lm8yazWZMJhMHDx4kPj6enDlzWuy/efMmJ06cAODgwYNs377dYhY0MTGRW7ducePGDbJkyQJgJG7JKlWqREREBHCvZrNOnToUKVKEoKAgGjZsyOuvv270n1Yx9OvXD3t7e3bu3Mkrr7xicb6pERkZSalSpYxEFqBy5cokJSURFRWFg4MDMTExVKhQwdhvZ2dHYGCgMcbx48e5ceNGiiT19u3blClTxmJbYGCg8XNyYgnQrl07Zs6cSVJSEiaTiYULF+Li4gLAlClTaN68OdOnT0+RoP7Xr7/+SmRkJF9//XWKfdmyZWP//v0A3Lhxg40bN/L222+TM2dOgoOD79vf0KFD6d+/v/E8Li4OT0/Ph8YgIiIi1uuFTWYjIyMpWLAg8fHxeHh4EB4enqJN8kfv8fHxjBw50piJ/DcHB4dUjRcQEMCpU6dYu3YtGzdupGXLltSuXZsffvghTWOoU6cO3333HevWraNt27bGdl9fXwD++OOPFAllWkuur129erUxM5wseeY52b+T5uTEH+7dnAXg4eFB3rx5jUQWoGjRopjNZv788098fHweGsvs2bMpXbo0ZcuWTbHPxsYGb29v47m/vz/r16/no48+emAya29vn+IcREREJON6IZPZn3/+mUOHDtGvXz/y5cvH+fPnsbOzs6hh/beAgACioqIsEp/72blzJyEhIRbP/504Ojs706pVK1q1akXz5s0JCgriypUrBAQEpFkMb7zxBsHBwbz55pvY2trSunVrAEqXLk2xYsWYPHkyrVq1SlE3e/XqVVxdXSlatCjz5s3j+vXrRqK5fft2bGxsKFKkCC4uLnh4eLBr1y6qVq0K3CttSK7zBShWrBj29vZER0dblBQ8yv3OrXLlyixZsoT4+Hhj5vbo0aPY2NiQL1++h/YXHx/P4sWLLW60exRbW9vHqscVERGRjC3dk9mEhATOnz9vsTRXWFgYDRs2JCQkBBsbGypVqkTjxo2ZMGECvr6+nDt3jtWrV9OkSRMCAwMJDQ2lYcOG5M+fn+bNm2NjY8PBgwf5/fffGTNmjDHWkiVLCAwM5LXXXmPhwoXs3r2bOXPmAPc+Gvfw8KBMmTLY2NiwZMkS3N3dcXV1pXbt2mkWA0CTJk34+uuvad++PXZ2djRv3hyTycTcuXOpXbs2VapU4YMPPsDPz4/4+Hj+97//sX79erZs2ULbtm0ZPnw4HTp0YMSIEVy6dIl3332X9u3b4+bmBkCfPn0YP348Pj4++Pn5MWXKFK5evWqMny1bNgYMGEC/fv1ISkritddeIzY2lu3bt+Ps7GzU/abGm2++yejRo+nUqRMjR47k77//ZuDAgXTu3NkoMVi+fDlDhw7ljz/+sDh20aJFRg3x/ZjNZs6fPw/cK+nYsGED69atIzQ0NNXxJStxaw425iyPfZyISHo4Pb5BeocgYjXSPZn96aef8PDwwM7OjuzZs1OqVCk++eQTOnToYMxOrlmzhg8++IBOnTpx6dIl3N3dqVq1qpG81a1blx9//JFRo0bx0UcfkSlTJvz8/IybvZKNHDmS77//np49e+Lh4cF3331HsWLFgHsJ3oQJEzh27Bi2traUK1eONWvWpHkMyZo3b05SUhLt27fHxsaGpk2bUr58efbu3cvYsWPp1q0bf//9Nx4eHrz66qtMmzYNgCxZsrBu3Tr69OlDuXLlyJIlC82aNWPKlClG3++99x4xMTHGNezcuTNNmjQhNvb/1skbPXo0uXLlIiwsjJMnT+Lq6mosjfY4nJyc2LBhA++++y6BgYHkzJmTli1bWiTwsbGxxnqx/zZnzhyaNm1qlGr8V1xcHB4eHsC98oECBQowatQoBg8e/FgxioiISMZlMqf2ziMrZzKZWL58ub7S9SUTFxeHi4sLnn0XY2OvmVkRsQ6amZWXXfL7d2xsrHGfzoO8kOvMioiIiIikhpJZEREREbFa6V4z+7y8JNUUIiIiIi+VlyaZlZfb7yPrPrLmRkRERKyPygxERERExGopmRURERERq6VkVkRERESslpJZEREREbFaSmZFRERExGopmRURERERq6VkVkRERESslpJZEREREbFaSmZFRERExGopmRURERERq6VkVkRERESslpJZEREREbFaSmZFRERExGopmRURERERq6VkVkRERESslpJZEREREbFaSmZFRERExGopmRURERERq6VkVkRERESslpJZEREREbFadukdgMjzUPHbitg62qZ3GCIi8pwd6nAovUOQZ0wzsyIiIiJitZTMioiIiIjVUjIrIiIiIlZLyayIiIiIWC0ls8+RyWRixYoV6TJ2x44dady4cbqMLSIiIvKspGsy27FjR0wmEyaTiUyZMuHm5kadOnX46quvSEpKSs/Q0s3x48fp1KkT+fLlw97enoIFC9KmTRv27t2b3qHdV0xMDG+++Sa+vr7Y2NjQt2/fRx5z+fJlgoKCyJMnD/b29nh6etKrVy/i4uKMNvPmzTNeGyaTCScnJ8qWLcuyZcue4dmIiIiItUn3pbmCgoKYO3cuiYmJXLhwgZ9++ok+ffrwww8/sGrVKuzs0j3E52bv3r3UqlWLEiVKMGvWLPz8/Lh27RorV67kvffeY8uWLekWm9lsJjExMcW/R0JCArly5eLDDz9k6tSpqerLxsaGRo0aMWbMGHLlysXx48d55513uHLlCt9++63RztnZmaioKACuXbvG3LlzadmyJYcPH6ZIkSKPFf/OM3/ibG96rGNERDKEEbHpHYHIM5XuZQb29va4u7uTN29eAgICeP/991m5ciVr165l3rx5AFy9epWuXbuSK1cunJ2dqVmzJgcPHrToZ+XKlQQEBODg4EChQoUYOXIkd+/eNfabTCZmzJhBvXr1cHR0pFChQvzwww/G/tu3b9OrVy88PDxwcHCgQIEChIWFGfvTIob/Gj58OB4eHvz222+YzWY6duyIj48PW7dupUGDBhQuXJjSpUszfPhwVq5caRx36NAhatasiaOjIzlz5qR79+7Ex8cb+xMTE+nfvz+urq7kzJmTQYMGYTabLcZOSkoiLCyMggUL4ujoSKlSpSyuR3h4OCaTibVr11K2bFns7e3Ztm1binPw8vLi448/JiQkBBcXlwee679lz56dHj16EBgYSIECBahVqxY9e/Zk69atFu1MJhPu7u64u7vj4+PDmDFjsLGx4bfffkvVOCIiIpLxpXsyez81a9akVKlSxkfKLVq04OLFi6xdu5Z9+/YREBBArVq1uHLlCgBbt24lJCSEPn36cOTIEWbNmsW8efMYO3asRb/Dhg2jWbNmHDx4kLZt29K6dWsiIyMB+OSTT1i1ahWLFy8mKiqKhQsX4uXlZRybVjHAvVnOd999lwULFrB161b8/f2JiIjg8OHDvPfee9jYpPxncXV1BeD69evUrVuX7Nmzs2fPHpYsWcLGjRvp1auX0Xby5MnMmzePr776im3btnHlyhWWL19u0V9YWBgLFixg5syZHD58mH79+tGuXbsUs79Dhgxh/PjxREZG4u/vn5p/vsd27tw5li1bRrVq1R7YJjExkfnz5wMQEBDwwHYJCQnExcVZPERERCTjeiGTWQA/Pz9Onz7Ntm3b2L17N0uWLCEwMBAfHx8mTZqEq6urMZM4cuRIhgwZQocOHShUqBB16tRh9OjRzJo1y6LPFi1a0LVrV3x9fRk9ejSBgYF8+umnAERHR+Pj48Nrr71GgQIFeO2112jTpg1AmsZw9+5d2rVrx6ZNm9i2bRve3t4AHDt2zDjvh/n222+5desWCxYsoESJEtSsWZPPPvuMr7/+mgsXLgAwbdo0hg4dStOmTSlatCgzZ860mDVNSEhg3LhxfPXVV9StW5dChQrRsWNH2rVrlyLeUaNGUadOHQoXLkyOHDlS/w+YCm3atCFLlizkzZsXZ2dnZs+ebbE/NjYWJycnnJycyJw5Mz169OCLL76gcOHCD+wzLCwMFxcX4+Hp6ZmmMYuIiMiL5YUtSDWbzZhMJg4ePEh8fDw5c+a02H/z5k1OnDgBwMGDB9m+fbvFLGhiYiK3bt3ixo0bZMmSBYBKlSpZ9FGpUiUiIiKAezej1alThyJFihAUFETDhg15/fXXjf7TKoZ+/fphb2/Pzp07eeWVVyzONzUiIyMpVaoUWbNmNbZVrlyZpKQkoqKicHBwICYmhgoVKhj77ezsCAwMNMY4fvw4N27coE6dOhZ93759mzJlylhsCwwMNH52cnIyfm7Xrh0zZ85MVcwPMnXqVIYPH87Ro0cZOnQo/fv3Z/r06cb+bNmysX//fgBu3LjBxo0befvtt8mZMyfBwcH37TO5n2RxcXFKaEVERDKwFzaZjYyMpGDBgsTHx+Ph4UF4eHiKNskfvcfHxzNy5EiaNm2aoo2Dg0OqxgsICODUqVOsXbuWjRs30rJlS2rXrs0PP/yQpjHUqVOH7777jnXr1tG2bVtju6+vLwB//PFHioQyrSXX165evZq8efNa7LO3t7d4/u+kOTnxh3s3Zz2t5HpYPz8/cuTIQZUqVRg2bBgeHh7AvRvFkmeuAfz9/Vm/fj0fffTRA5NZe3v7FOcgIiIiGdcLmcz+/PPPHDp0iH79+pEvXz7Onz+PnZ2dRQ3rvwUEBBAVFWWR+NzPzp07CQkJsXj+78TR2dmZVq1a0apVK5o3b05QUBBXrlwhICAgzWJ44403CA4O5s0338TW1pbWrVsDULp0aYoVK8bkyZNp1apVirrZq1ev4urqStGiRZk3bx7Xr183Es3t27djY2NDkSJFcHFxwcPDg127dlG1alXgXmlDcp0vQLFixbC3tyc6Ovqhdar/9ahzexrJS7ElJCQ8tJ2trS03b958ZnGIiIiIdUn3ZDYhIYHz589bLM0VFhZGw4YNCQkJwcbGhkqVKtG4cWMmTJiAr68v586dY/Xq1TRp0oTAwEBCQ0Np2LAh+fPnp3nz5tjY2HDw4EF+//13xowZY4yVXPP62muvsXDhQnbv3s2cOXMAmDJlCh4eHpQpUwYbGxuWLFmCu7s7rq6u1K5dO81iAGjSpAlff/017du3x87OjubNm2MymZg7dy61a9emSpUqfPDBB/j5+REfH8///vc/1q9fz5YtW2jbti3Dhw+nQ4cOjBgxgkuXLvHuu+/Svn173NzcAOjTpw/jx4/Hx8cHPz8/pkyZwtWrV43xs2XLxoABA+jXrx9JSUm89tprxMbGsn37dpydnenQocNj/Rsmz9jGx8dz6dIlIiIiyJw5M8WKFQNg+fLlDB06lD/++AOANWvWcOHCBcqVK4eTkxOHDx9m4MCBVK5c2eKPBbPZzPnz54F7JR0bNmxg3bp1hIaGPlZ8ACVuzcHGnOWxjxOR9HF6fIP0DkFErES6J7M//fQTHh4e2NnZkT17dkqVKsUnn3xChw4djNnJNWvW8MEHH9CpUycuXbqEu7s7VatWNZK3unXr8uOPPzJq1Cg++ugjMmXKhJ+fH127drUYa+TIkXz//ff07NkTDw8PvvvuOyPhypYtGxMmTODYsWPY2tpSrlw51qxZk+YxJGvevDlJSUm0b98eGxsbmjZtSvny5dm7dy9jx46lW7du/P3333h4ePDqq68ybdo0ALJkycK6devo06cP5cqVI0uWLDRr1owpU6YYfb/33nvExMQY17Bz5840adKE2Nj/W2tw9OjR5MqVi7CwME6ePImrq6uxNNrj+vfs9r59+/j2228pUKAAp0+fBu7dyJW8XiyAo6MjX375Jf369SMhIQFPT0+aNm3KkCFDLPqNi4szSg7s7e0pUKAAo0aNYvDgwY8do4iIiGRMJnNq7zyyciaTieXLl+srXV8ycXFx91Y16LsYG3vNzIpYC83Mirzckt+/Y2NjH3mfzgu7NJeIiIiIyKMomRURERERq5XuNbPPy0tSTSEiIiLyUtHMrIiIiIhYrZdmZlZebr+PrJsmX/QgIiIiLxbNzIqIiIiI1VIyKyIiIiJWS8msiIiIiFgtJbMiIiIiYrWUzIqIiIiI1VIyKyIiIiJWS8msiIiIiFgtJbMiIiIiYrWUzIqIiIiI1VIyKyIiIiJWS8msiIiIiFgtJbMiIiIiYrWUzIqIiIiI1VIyKyIiIiJWS8msiIiIiFgtJbMiIiIiYrWUzIqIiIiI1VIyKyIiIiJWS8msiIiIiFgtu/QOQOR5qPhtRWwdbdM7DBH5/w51OJTeIYhIBqGZWRERERGxWkpmRURERMRqKZkVEREREaulZFZERERErJaS2ScQHh6OyWTi6tWrz31sLy8vpk2b9lzGql69On379n0uY4mIiIg8iZc+mZ05cybZsmXj7t27xrb4+HgyZcpE9erVLdomJ7EeHh7ExMTg4uLynKO9vwMHDtCiRQvc3NxwcHDAx8eHbt26cfTo0fQO7b6WLVtGYGAgrq6uZM2aldKlS/P1119btKlevTomk8l4uLm50aJFC86cOZNOUYuIiMiL6KVfmqtGjRrEx8ezd+9eKlasCMDWrVtxd3dn165d3Lp1CwcHBwA2b95M/vz5KVKkyDONKTExEZPJhI3No//W+PHHH2nWrBl169Zl4cKFFC5cmIsXL7JkyRKGDRvGokWLnmmsD/Og88iRIwcffPABfn5+ZM6cmR9//JFOnTqRO3du6tata7Tr1q0bo0aNwmw2c+bMGfr27Uu7du3YunXrY8ey88yfONubnvqcRKzCiNj0jkBE5Ll56WdmixQpgoeHB+Hh4ca28PBwGjVqRMGCBdm5c6fF9ho1aqQoM/jvLGLy4/Tp0wBMmTKFkiVLkjVrVjw9PenZsyfx8fFGv/PmzcPV1ZVVq1ZRrFgx7O3tiY6O5uLFiwQHB+Po6EjBggVZuHChRew3btygU6dO1K9fn1WrVlG7dm0KFixIhQoVmDRpErNmzTLabtmyhfLly2Nvb4+HhwdDhgyxmI2+fv06ISEhODk54eHhweTJk1Ncq4SEBAYMGEDevHnJmjUrFSpUsLhuDzqP/6pevTpNmjShaNGiFC5cmD59+uDv78+2bdss2mXJkgV3d3c8PDyoWLEivXr1Yv/+/Q/+xxQREZGXzkufzMK92dnNmzcbzzdv3kz16tWpVq2asf3mzZvs2rWLGjVqpDh+2bJlxMTEGI+mTZtSpEgR3NzcALCxseGTTz7h8OHDzJ8/n59//plBgwZZ9HHjxg0++ugjZs+ezeHDh8mdOzcdO3bk7NmzbN68mR9++IHp06dz8eJF45h169bx999/p+grmaurKwB//fUX9evXp1y5chw8eJAZM2YwZ84cxowZY7QdOHAgW7ZsYeXKlaxfv57w8PAUiWOvXr349ddf+f777/ntt99o0aIFQUFBHDt27KHn8TBms5lNmzYRFRVF1apVH9juypUrLF68mAoVKjy0v4SEBOLi4iweIiIiknG99GUGcC+Z7du3L3fv3uXmzZscOHCAatWqcefOHWbOnAnAr7/+SkJCAjVq1ODkyZMWx+fIkcP4eerUqfz888/s2rULR0dHAIubqLy8vBgzZgxvv/0206dPN7bfuXOH6dOnU6pUKQCOHj3K2rVr2b17N+XKlQNgzpw5FC1a1DgmOYn08/N76PlNnz4dT09PPvvsM0wmE35+fpw7d47BgwcTGhrKjRs3mDNnDt988w21atUCYP78+eTLl8/oIzo6mrlz5xIdHU2ePHkAGDBgAD/99BNz585l3Lhx9z2PB4mNjSVv3rwkJCRga2vL9OnTqVOnToq4Z8+ejdls5saNG/j6+rJu3bqH9hsWFsbIkSMf2kZEREQyDs3Mcu9j7+vXr7Nnzx62bt2Kr68vuXLlolq1akbdbHh4OIUKFSJ//vwP7Gft2rUMGTKERYsW4evra2zfuHEjtWrVIm/evGTLlo327dtz+fJlbty4YbTJnDkz/v7+xvPIyEjs7OwoW7assc3Pz8+YbYV7s5qpERkZSaVKlTCZ/q9mtHLlysTHx/Pnn39y4sQJbt++bTHrmSNHDova4EOHDpGYmIivry9OTk7GY8uWLZw4ceK+5xEdHW3RNjnhBciWLRsRERHs2bOHsWPH0r9/f4uSBYC2bdsSERHBwYMH2bZtG97e3rz++utcu3btgec6dOhQYmNjjcfZs2dTdY1ERETEOmlmFvD29iZfvnxs3ryZf/75h2rVqgGQJ08ePD092bFjB5s3b6ZmzZoP7OPIkSO0bt2a8ePH8/rrrxvbT58+TcOGDenRowdjx44lR44cbNu2jS5dunD79m2yZMkCgKOjo0WymRrJCfMff/xBpUqVHve0H0t8fDy2trbs27cPW1tbi31OTk7Gz/8+jzx58hAREWHs+/cMto2NDd7e3gCULl2ayMhIwsLCLFaQcHFxMdp4e3szZ84cPDw8WLRoEV27dr1vnPb29tjb2z/VuYqIiIj10Mzs/5d8Y1d4eLhFQlW1alXj4/771csC/P333wQHB9OsWTP69etnsW/fvn0kJSUxefJkKlasiK+vL+fOnXtkPH5+fty9e5d9+/YZ26KioizWtn399dd55ZVXmDBhwn37SG5btGhRfv31V4uZ3O3bt5MtWzby5ctH4cKFyZQpE7t27TL2//PPPxZLe5UpU4bExEQuXryIt7e3xcPd3f2+49vZ2Vm0+3cy+19JSUkkJCQ89JokJ9E3b958aDsRERF5eWhm9v+rUaMG77zzDnfu3DFmZgGqVatGr169uH379gOT2WbNmpElSxZGjBjB+fPnje25cuXC29ubO3fu8OmnnxIcHMz27duNOtyHKVKkCEFBQbz11lvMmDEDOzs7+vbta9ThAmTNmpXZs2fTokUL3njjDXr37o23tzd///03ixcvJjo6mu+//56ePXsybdo03n33XXr16kVUVBTDhw+nf//+2NjY4OTkRJcuXRg4cCA5c+Ykd+7cfPDBBxZLavn6+tK2bVtCQkKYPHkyZcqU4dKlS2zatAl/f38aNGiQ6msdFhZGYGAghQsXJiEhgTVr1vD1118zY8YMi3Y3btwwrueFCxcYPXo0Dg4OFjPfqVXi1hxszFke+zixbqfHp/51KSIi1kkzs/9fjRo1uHnzJt7e3sYqBHAvmb127ZqxhNf9/PLLL/z+++8UKFAADw8P43H27FlKlSrFlClT+OijjyhRogQLFy4kLCwsVTHNnTuXPHnyUK1aNZo2bUr37t1TrA7QqFEjduzYQaZMmXjzzTfx8/OjTZs2xMbGGqsV5M2blzVr1rB7925KlSrF22+/TZcuXfjwww+NfiZOnEiVKlUIDg6mdu3avPbaaxb1usnxhISE8N5771GkSBEaN27Mnj17HlpHfD/Xr1+nZ8+eFC9enMqVK7N06VK++eabFKUDX375pXEta9Sowd9//82aNWue+Tq/IiIiYj1M5tTeRSRiheLi4nBxccGz72Js7DUz+7LRzKyIiHVKfv+OjY3F2dn5oW01MysiIiIiVkvJrIiIiIhYLSWzIiIiImK1lMyKiIiIiNXS0lzyUvh9ZN1HFpCLiIiI9dHMrIiIiIhYLSWzIiIiImK1lMyKiIiIiNVSMisiIiIiVkvJrIiIiIhYLSWzIiIiImK1lMyKiIiIiNVSMisiIiIiVkvJrIiIiIhYLSWzIiIiImK1lMyKiIiIiNVSMisiIiIiVkvJrIiIiIhYLSWzIiIiImK1lMyKiIiIiNVSMisiIiIiVkvJrIiIiIhYLSWzIiIiImK1lMyKiIiIiNWyS+8ARJ6Hit9WxNbRNr3DEElzhzocSu8QRETSlWZmRURERMRqKZkVEREREaulZFZERERErJaSWRERERGxWkpmRURERMRqKZl9AuHh4ZhMJq5evfrcx/by8mLatGnPZazq1avTt2/f5zKWiIiIyJN46ZfmmjlzJgMHDuSff/7Bzu7e5YiPjyd79uxUrlyZ8PBwo214eDg1atTgjz/+ICYmBhcXl3SK2tKBAwcYN24cv/zyC7GxsXh6elK9enUGDhyIr69veoeXwuHDhwkNDWXfvn2cOXOGqVOnpkiaO3bsyPz5843nOXLkoFy5ckyYMAF/f//HHnPnmT9xtjc9bejyMhoRm94RiIjIQ7z0M7M1atQgPj6evXv3Gtu2bt2Ku7s7u3bt4tatW8b2zZs3kz9/fooUKYK7uzsm07NJjhITE0lKSkpV2x9//JGKFSuSkJDAwoULiYyM5JtvvsHFxYVhw4Y9k/hS60HncePGDQoVKsT48eNxd3d/4PFBQUHExMQQExPDpk2bsLOzo2HDhs8yZBEREbEyL30yW6RIETw8PFLMwDZq1IiCBQuyc+dOi+01atRIUWZQvXp1TCZTisfp06cBmDJlCiVLliRr1qx4enrSs2dP4uPjjX7nzZuHq6srq1atolixYtjb2xMdHc3FixcJDg7G0dGRggULsnDhQovYb9y4QadOnahfvz6rVq2idu3aFCxYkAoVKjBp0iRmzZpltN2yZQvly5fH3t4eDw8PhgwZwt27d439169fJyQkBCcnJzw8PJg8eXKKa5WQkMCAAQPImzcvWbNmpUKFChbX7UHn8V/lypVj4sSJtG7dGnt7+wf+29jb2+Pu7o67uzulS5dmyJAhnD17lkuXLj3wmISEBOLi4iweIiIiknG99Mks3Jud3bx5s/F88+bNVK9enWrVqhnbb968ya5du6hRo0aK45ctW2bMIMbExNC0aVOKFCmCm5sbADY2NnzyySccPnyY+fPn8/PPPzNo0CCLPm7cuMFHH33E7NmzOXz4MLlz56Zjx46cPXuWzZs388MPPzB9+nQuXrxoHLNu3Tr+/vvvFH0lc3V1BeCvv/6ifv36lCtXjoMHDzJjxgzmzJnDmDFjjLYDBw5ky5YtrFy5kvXr1xMeHs7+/fst+uvVqxe//vor33//Pb/99hstWrQgKCiIY8eOPfQ80kJ8fDzffPMN3t7e5MyZ84HtwsLCcHFxMR6enp5pMr6IiIi8mF76mlm4l8z27duXu3fvcvPmTQ4cOEC1atW4c+cOM2fOBODXX38lISGBGjVqcPLkSYvjc+TIYfw8depUfv75Z3bt2oWjoyOART2ol5cXY8aM4e2332b69OnG9jt37jB9+nRKlSoFwNGjR1m7di27d++mXLlyAMyZM4eiRYsaxyQnkX5+fg89v+nTp+Pp6clnn32GyWTCz8+Pc+fOMXjwYEJDQ7lx4wZz5szhm2++oVatWgDMnz+ffPnyGX1ER0czd+5coqOjyZMnDwADBgzgp59+Yu7cuYwbN+6+5/E0fvzxR5ycnIB7M8ceHh78+OOP2Ng8+G+woUOH0r9/f+N5XFycEloREZEMTDOz3CsTuH79Onv27GHr1q34+vqSK1cuqlWrZtTNhoeHU6hQIfLnz//AftauXcuQIUNYtGiRxY1XGzdupFatWuTNm5ds2bLRvn17Ll++zI0bN4w2mTNntrixKTIyEjs7O8qWLWts8/PzM2ZbAcxmc6rOLzIykkqVKlnU+FauXJn4+Hj+/PNPTpw4we3bt6lQoYKxP0eOHBQpUsR4fujQIRITE/H19cXJycl4bNmyhRMnTtz3PKKjoy3aJie8qVWjRg0iIiKIiIhg9+7d1K1bl3r16nHmzJkHHmNvb4+zs7PFQ0RERDIuzcwC3t7e5MuXj82bN/PPP/9QrVo1APLkyYOnpyc7duxg8+bN1KxZ84F9HDlyhNatWzN+/Hhef/11Y/vp06dp2LAhPXr0YOzYseTIkYNt27bRpUsXbt++TZYsWQBwdHR87BvKkhPmP/74g0qVKj3uaT+W+Ph4bG1t2bdvH7a2thb7kmdPwfI88uTJQ0REhLHv3zPYqZE1a1a8vb2N57Nnz8bFxYUvv/zSokRCREREXl5KZv+/5Bu7/vnnHwYOHGhsr1q1qvFxf48ePe577N9//01wcDDNmjWjX79+Fvv27dtHUlISkydPNj4eX7x48SPj8fPz4+7du+zbt88oM4iKirJY2/b111/nlVdeYcKECSxfvjxFH1evXsXV1ZWiRYuydOlSzGazkWhu376dbNmykS9fPnLkyEGmTJnYtWuXMfP8zz//cPToUSOxL1OmDImJiVy8eJEqVao8Mn4AOzs7i2T0aZlMJmxsbLh58+ZjH1vi1hxszFnSLBa55/T4BukdgoiIvOSUzP5/NWrU4J133uHOnTtGAgdQrVo1evXqxe3bt+978xdAs2bNyJIlCyNGjOD8+fPG9ly5cuHt7c2dO3f49NNPCQ4OZvv27UYd7sMUKVKEoKAg3nrrLWbMmIGdnR19+/Y16nDh3szl7NmzadGiBW+88Qa9e/fG29ubv//+m8WLFxMdHc33339Pz549mTZtGu+++y69evUiKiqK4cOH079/f2xsbHBycqJLly4MHDiQnDlzkjt3bj744AOL2lRfX1/atm1LSEgIkydPpkyZMly6dIlNmzbh7+9PgwapT2pu377NkSNHjJ//+usvIiIicHJyskh+ExISjOv5zz//8NlnnxEfH09wcHCqxxIREZGMTTWz/1+NGjW4efMm3t7exioEcC+ZvXbtmrGE1/388ssv/P777xQoUAAPDw/jcfbsWUqVKsWUKVP46KOPKFGiBAsXLiQsLCxVMc2dO5c8efJQrVo1mjZtSvfu3VOsDtCoUSN27NhBpkyZePPNN/Hz86NNmzbExsYaH8XnzZuXNWvWsHv3bkqVKsXbb79Nly5d+PDDD41+Jk6cSJUqVQgODqZ27dq89tprFvW6yfGEhITw3nvvUaRIERo3bsyePXseWkd8P+fOnaNMmTKUKVOGmJgYJk2aRJkyZejatatFu59++sm4lhUqVGDPnj0sWbKE6tWrP9Z4IiIiknGZzKm9i0jECsXFxd1boqvvYmzsVWaQ1lRmICIiz0Ly+3dsbOwjb+bWzKyIiIiIWC0lsyIiIiJitZTMioiIiIjV0moG8lL4fWRdfYGCiIhIBqSZWRERERGxWkpmRURERMRqKZkVEREREaulZFZERERErJaSWRERERGxWkpmRURERMRqKZkVEREREaulZFZERERErJaSWRERERGxWkpmRURERMRqKZkVEREREaulZFZERERErJaSWRERERGxWnapbfjJJ5+kutPevXs/UTAiIiIiIo/DZDabzalpWLBgwdR1aDJx8uTJpwpKJK3ExcXh4uJCbGwszs7O6R2OiIiIpMLjvH+nemb21KlTTx2YiIiIiEhaeqqa2du3bxMVFcXdu3fTKh4RERERkVR7omT2xo0bdOnShSxZslC8eHGio6MBePfddxk/fnyaBigiIiIi8iBPlMwOHTqUgwcPEh4ejoODg7G9du3aLFq0KM2CExERERF5mFTXzP7bihUrWLRoERUrVsRkMhnbixcvzokTJ9IsOJG0UvHbitg62qZ3GCIiIhnKoQ6H0juEJ5uZvXTpErlz506x/fr16xbJrYiIiIjIs/REyWxgYCCrV682nicnsLNnz6ZSpUppE5mIiIiIyCM8UZnBuHHjqFevHkeOHOHu3bt8/PHHHDlyhB07drBly5a0jlFERERE5L6eaGb2tddeIyIigrt371KyZEnWr19P7ty5+fXXXylbtmxaxygiIiIicl9PNDMLULhwYb788su0jEVERERE5LGkemY2Li4u1Q+xNGLECEqXLp1m/c2bNw9XV9c0609ERETEWqV6ZtbV1TXVKxUkJiY+cUDp7fz584wdO5bVq1fz119/kTt3bkqXLk3fvn2pVavWc4vDZDKxfPlyGjdu/NzGTCvLli1j5syZ7Nu3jytXrnDgwIEUyfxbb73Fxo0bOXfuHE5OTrz66qt89NFH+Pn5AXD69GkKFixotM+UKRP58+enY8eOfPDBB4+9asbOM3/ibK+VNkREJJVGxKZ3BJJKqU5mN2/ebPx8+vRphgwZQseOHY3VC3799Vfmz59PWFhY2kf5nJw+fZrKlSvj6urKxIkTKVmyJHfu3GHdunW88847/PHHH+kdolW4fv06r732Gi1btqRbt273bVO2bFnatm1L/vz5uXLlCiNGjOD111/n1KlT2Nr+33qwGzdupHjx4iQkJLBt2za6du2Kh4cHXbp0eV6nIyIiIi+wVJcZVKtWzXgsWLCAKVOmEBYWxhtvvMEbb7xBWFgYkyZNYu7cuc8y3meqZ8+emEwmdu/eTbNmzfD19aV48eL079+fnTt3AhAdHU2jRo1wcnLC2dmZli1bcuHCBYt+xo8fj5ubG9myZaNLly7cunUrxVizZ8+maNGiODg44Ofnx/Tp05847hMnTtCoUSPc3NxwcnKiXLlybNy40aKNl5cXY8aMISQkBCcnJwoUKMCqVau4dOmScT7+/v7s3bvXOOby5cu0adOGvHnzkiVLFkqWLMl33333yHjat29PaGgotWvXfmCb7t27U7VqVby8vAgICGDMmDGcPXuW06dPW7TLmTMn7u7uFChQgLZt21K5cmX279//wH4TEhJU9iIiIvISeaLVDH799VcCAwNTbA8MDGT37t1PHVR6uHLlCj/99BPvvPMOWbNmTbHf1dWVpKQkGjVqxJUrV9iyZQsbNmzg5MmTtGrVymi3ePFiRowYwbhx49i7dy8eHh4pEtWFCxcSGhrK2LFjiYyMZNy4cQwbNoz58+c/Uezx8fHUr1+fTZs2ceDAAYKCgggODiY6Otqi3dSpU6lcuTIHDhygQYMGtG/fnpCQENq1a8f+/fspXLgwISEhmM1mAG7dukXZsmVZvXo1v//+O927d6d9+/Zp/m98/fp15s6dS8GCBfH09Hxgu71797Jv3z4qVKjwwDZhYWG4uLgYj4f1JyIiItbviZJZT0/P+65kMHv2bKtNHo4fP47ZbDZqNu9n06ZNHDp0iG+//ZayZctSoUIFFixYwJYtW9izZw8A06ZNo0uXLnTp0oUiRYowZswYihUrZtHP8OHDmTx5Mk2bNqVgwYI0bdqUfv36MWvWrCeKvVSpUrz11luUKFECHx8fRo8eTeHChVm1apVFu/r16/PWW2/h4+NDaGgocXFxlCtXjhYtWuDr68vgwYOJjIw0Zprz5s3LgAEDKF26NIUKFeLdd98lKCiIxYsXP1Gc/zV9+nScnJxwcnJi7dq1bNiwgcyZM1u0efXVV3FyciJz5syUK1eOli1bEhIS8sA+hw4dSmxsrPE4e/ZsmsQqIiIiL6YnSmanTp3Kp59+SsmSJenatStdu3bF39+fTz/9lKlTp6Z1jM9F8mzkw0RGRuLp6WmRsBcrVgxXV1ciIyONNv+dOfz3t6Jdv36dEydO0KVLFyORc3JyYsyYMZw4ceKJYo+Pj2fAgAEULVoUV1dXnJyciIyMTDEz6+/vb/zs5uYGQMmSJVNsu3jxInDvRr7Ro0dTsmRJcuTIgZOTE+vWrTP6XbhwocU5bN269bHibtu2LQcOHGDLli34+vrSsmXLFCUZixYtIiIigoMHD7J48WJWrlzJkCFDHtinvb09zs7OFg8RERHJuJ5ondn69etz7Ngxpk+fbtwUFRwczNtvv221M7M+Pj6YTKZnfpNXfHw8AF9++WWKpPffNz49jgEDBrBhwwYmTZqEt7c3jo6ONG/enNu3b1u0y5Qpk/Fz8moA99uWlJQEwMSJE/n444+ZNm0aJUuWJGvWrPTt29fo94033rA4h7x58z5W3MmlAD4+PlSsWJHs2bOzfPly2rRpY7Tx9PTE29sbgKJFi3LixAmGDRvGiBEjcHBweKzxREREJON54i9NyJcvH+PGjUvLWNJVjhw5qFu3Lp9//jm9e/dOUTd79epVihYtytmzZzl79qyRtB85coSrV68apQRFixZl165dFh+FJ988BvdmP/PkycPJkydp27ZtmsS+fft2OnbsSJMmTYB7CfN/b6R60n4bNWpEu3btgHtJ7tGjR41zzZYtG9myZXvqceDezLjZbCYhIeGh7Wxtbbl79y63b99+rGS2xK052JizPG2YIiKpcnp8g/QOQeSl8cTJ7NWrV5kzZ47x8Xrx4sXp3LkzLi4uaRbc8/b5559TuXJlypcvz6hRo/D39+fu3bts2LCBGTNmcOTIEUqWLEnbtm2ZNm0ad+/epWfPnlSrVs24Ia5Pnz507NiRwMBAKleuzMKFCzl8+DCFChUyxhk5ciS9e/fGxcWFoKAgEhIS2Lt3L//88w/9+/c32p06dYqIiAiLGH18fFLE7ePjw7JlywgODsZkMjFs2DBjdvVp+Pj48MMPP7Bjxw6yZ8/OlClTuHDhQooa4P+6cuUK0dHRnDt3DoCoqCgA3N3dcXd35+TJkyxatIjXX3+dXLly8eeffzJ+/HgcHR2pX7++RV+XL1/m/Pnz3L17l0OHDvHxxx9To0YNlQ+IiIgI8ITJ7N69e6lbty6Ojo6UL18egClTpjB27FjWr19PQEBAmgb5vBQqVIj9+/czduxY3nvvPWJiYsiVKxdly5ZlxowZmEwmVq5cybvvvkvVqlWxsbEhKCiITz/91OijVatWnDhxgkGDBnHr1i2aNWtGjx49WLdundGma9euZMmShYkTJzJw4ECyZs1KyZIl6du3r0U8/05sk92vLnXKlCl07tyZV199lVdeeYXBgwenyZJUH374ISdPnqRu3bpkyZKF7t2707hxY2JjH76Q9KpVq+jUqZPxvHXr1sC9G9+SywO2bt3KtGnT+Oeff3Bzc6Nq1ars2LGD3LlzW/SVvLyXra0tHh4e1K9fn7Fjxz71uYmIiEjGYDKn5s6n/6hSpQre3t58+eWX2Nndy4fv3r1L165dOXnyJL/88kuaByryJOLi4u4t0dV3MTb2KjMQkedDZQYiTyf5/Ts2NvaRn8Y+8czsvxNZADs7OwYNGnTf9WdFRERERJ6FJ1qay9nZOcWyTwBnz55NsxuCREREREQe5YmS2VatWtGlSxcWLVpk3N3//fff07VrV4tllUREREREnqUnKjOYNGkSJpOJkJAQ7t69i9lsJnPmzPTo0YPx48endYwiT+33kXW1AoKIiEgG9EQ3gCW7ceOG8a1VhQsXJksW3WAjL5bHKSAXERGRF8MzuwGsc+fOqWr31VdfPU63IiIiIiJP5LGS2Xnz5lGgQAHKlCnDU0zoioiIiIikicdKZnv06MF3333HqVOn6NSpE+3atSNHjhzPKjYRERERkYd6rNUMPv/8c2JiYhg0aBD/+9//8PT0pGXLlqxbt04ztSIiIiLy3D3VDWBnzpxh3rx5LFiwgLt373L48GGcnJzSMj6Rp6IbwERERKzP47x/P9E6s8bBNjaYTCbMZjOJiYlP05WIiIiIyGN77GQ2ISGB7777jjp16uDr68uhQ4f47LPPiI6O1qysiIiIiDxXj3UDWM+ePfn+++/x9PSkc+fOfPfdd7zyyivPKjYRERERkYd6rJpZGxsb8ufPT5kyZTCZTA9st2zZsjQJTuRpqWZWRETE+jyzL00ICQl5aBIrIiIiIvI8PfaXJoiIiIiIvCieajUDEREREZH0pGRWRERERKyWklkRERERsVpKZkVERETEaimZFRERERGrpWRWRERERKyWklkRERERsVqPtc6siLWq+G1FbB1t0zsMERF5yRzqcCi9Q8jwNDMrIiIiIlZLyayIiIiIWC0lsyIiIiJitZTMioiIiIjVUjIrIiIiIlZLyewLYsSIEZQuXTrN+ps3bx6urq5p1p+IiIjIi0hLcz2B8+fPM3bsWFavXs1ff/1F7ty5KV26NH379qVWrVrPLQ6TycTy5ctp3LjxcxszrZhMpvtunzBhAgMHDkzRxtbWljx58tC8eXPCwsKwt7d/rPF2nvkTZ/v7jykiIlZoRGx6RyAvCCWzj+n06dNUrlwZV1dXJk6cSMmSJblz5w7r1q3jnXfe4Y8//kjvEK1CTEyMxfO1a9fSpUsXmjVrZrF97ty5BAUFcefOHQ4ePEinTp3ImjUro0ePfp7hioiIyAtKZQaPqWfPnphMJnbv3k2zZs3w9fWlePHi9O/fn507dwIQHR1No0aNcHJywtnZmZYtW3LhwgWLfsaPH4+bmxvZsmWjS5cu3Lp1K8VYs2fPpmjRojg4OODn58f06dOfOO4TJ07QqFEj3NzccHJyoly5cmzcuNGijZeXF2PGjCEkJAQnJycKFCjAqlWruHTpknE+/v7+7N271zjm8uXLtGnThrx585IlSxZKlizJd99998h43N3dLR4rV66kRo0aFCpUyKKdq6sr7u7ueHp60rBhQxo1asT+/fuf+DqIiIhIxqJk9jFcuXKFn376iXfeeYesWbOm2O/q6kpSUhKNGjXiypUrbNmyhQ0bNnDy5ElatWpltFu8eDEjRoxg3Lhx7N27Fw8PjxSJ6sKFCwkNDWXs2LFERkYybtw4hg0bxvz5858o9vj4eOrXr8+mTZs4cOAAQUFBBAcHEx0dbdFu6tSpVK5cmQMHDtCgQQPat29PSEgI7dq1Y//+/RQuXJiQkBDMZjMAt27domzZsqxevZrff/+d7t270759e3bv3p3q2C5cuMDq1avp0qXLQ9sdPXqUn3/+mQoVKjywTUJCAnFxcRYPERERybhM5uSsRB5p9+7dVKhQgWXLltGkSZP7ttmwYQP16tXj1KlTeHp6AnDkyBGKFy/O7t27KVeuHK+++iplypTh888/N46rWLEit27dIiIiAgBvb29Gjx5NmzZtjDZjxoxhzZo17NixA3h4zey8efPo27cvV69efeD5lChRgrfffptevXoB92Zmq1Spwtdffw3cqw328PBg2LBhjBo1CoCdO3dSqVIlYmJicHd3v2+/DRs2xM/Pj0mTJj1w7H+bMGEC48eP59y5czg4OBjbTSYTDg4O2NracvfuXRISEmjYsCHLli0jU6ZM9+1rxIgRjBw5MsX22CHZVDMrIpKRqGY2Q4uLi8PFxYXY2FicnZ0f2lYzs48hNXl/ZGQknp6eRiILUKxYMVxdXYmMjDTa/Hd2sVKlSsbP169f58SJE3Tp0gUnJyfjMWbMGE6cOPFEscfHxzNgwACKFi2Kq6srTk5OREZGppiZ9ff3N352c3MDoGTJkim2Xbx4EYDExERGjx5NyZIlyZEjB05OTqxbt87od+HChRbnsHXr1hSxffXVV7Rt29YikU02depUIiIiOHjwID/++CNHjx6lffv2DzzPoUOHEhsbazzOnj2b2kskIiIiVkg3gD0GHx8fTCbTM7/JKz4+HoAvv/wyRdJra2v7RH0OGDCADRs2MGnSJLy9vXF0dKR58+bcvn3bot2/ZzyTVxO437akpCQAJk6cyMcff8y0adMoWbIkWbNmpW/fvka/b7zxhsU55M2b12K8rVu3EhUVxaJFi+4bt7u7O97e3gAUKVKEa9eu0aZNG8aMGWNs/zd7e/vHXulARERErJeS2ceQI0cO6taty+eff07v3r1T1M1evXqVokWLcvbsWc6ePWtRZnD16lWKFSsGQNGiRdm1axchISHGsck3j8G92c88efJw8uRJ2rZtmyaxb9++nY4dOxrlEfHx8Zw+fTpN+m3UqBHt2rUD7iW5R48eNc41W7ZsZMuW7YHHz5kzh7Jly1KqVKlUjZeczN+8efOx4ixxaw425iyPdYyIZGynxzdI7xBEJA0omX1Mn3/+OZUrV6Z8+fKMGjUKf39/7t69y4YNG5gxYwZHjhyhZMmStG3blmnTpnH37l169uxJtWrVCAwMBKBPnz507NiRwMBAKleuzMKFCzl8+LDFnfwjR46kd+/euLi4EBQUREJCAnv37uWff/6hf//+RrtTp04ZdbbJfHx8UsTt4+PDsmXLCA4OxmQyMWzYMGN29Wn4+Pjwww8/sGPHDrJnz86UKVO4cOGCkcw+TFxcHEuWLGHy5MkPbHP16lXOnz9PUlISx44dY9SoUfj6+lK0aNGnjl1ERESsn5LZx1SoUCH279/P2LFjee+994iJiSFXrlyULVuWGTNmYDKZWLlyJe+++y5Vq1bFxsaGoKAgPv30U6OPVq1aceLECQYNGsStW7do1qwZPXr0YN26dUabrl27kiVLFiZOnMjAgQPJmjUrJUuWpG/fvhbx/DuxTXa/utQpU6bQuXNnXn31VV555RUGDx6cJnf6f/jhh5w8eZK6deuSJUsWunfvTuPGjYmNfXRh/vfff4/ZbLa4ye2/OnXqBNwrb3B3d6dq1aqMGzcOOzu9dEVERESrGUgGl3w3pGffxdjYq8xARP6PygxEXlxazUBEREREXgpKZkVERETEaimZFRERERGrpbto5KXw+8i6j6y5EREREeujmVkRERERsVpKZkVERETEaimZFRERERGrpWRWRERERKyWklkRERERsVpKZkVERETEaimZFRERERGrpWRWRERERKyWklkRERERsVpKZkVERETEaimZFRERERGrpWRWRERERKyWklkRERERsVpKZkVERETEaimZFRERERGrpWRWRERERKyWklkRERERsVpKZkVERETEaimZFRERERGrZZfeAYg8DxW/rYito216hyEiz8ChDofSOwQRSUeamRURERERq6VkVkRERESslpJZEREREbFaSmZFRERExGopmRURERERq6VkVh7Ky8uLadOmpXcYIiIiIvelpbmegUuXLhEaGsrq1au5cOEC2bNnp1SpUoSGhlK5cmVMJhPLly+ncePGaTbm5s2bmThxIrt27eLmzZt4eXlRr149+vfvT968edNsnLTi5eXFmTNnUmzv2bMnn3/+eYo2NjY2uLm5Ua9ePSZNmkT27Nkfa7ydZ/7E2d709IGLCIyITe8IREQMmpl9Bpo1a8aBAweYP38+R48eZdWqVVSvXp3Lly+n6Ti3b98GYNasWdSuXRt3d3eWLl3KkSNHmDlzJrGxsUyePDlNx3zSGP9rz549xMTEGI8NGzYA0KJFC4t2o0aNIiYmhujoaBYuXMgvv/xC7969n3ncIiIiYh2UzKaxq1evsnXrVj766CNq1KhBgQIFKF++PEOHDuWNN97Ay8sLgCZNmmAymYznJ06coFGjRri5ueHk5ES5cuXYuHGjRd9eXl6MHj2akJAQnJ2d6d69O3/++Se9e/emd+/efPXVV1SvXh0vLy+qVq3K7NmzCQ0NNY5funQpxYsXx97eHi8vrxSJ7sWLFwkODsbR0ZGCBQuycOHC+55f165dyZUrF87OztSsWZODBw8a+0eMGEHp0qWZPXs2BQsWxMHB4b7XKVeuXLi7uxuPH3/8kcKFC1OtWjWLdtmyZcPd3Z28efNSo0YNOnTowP79+1P97yEiIiIZm5LZNObk5ISTkxMrVqwgISEhxf49e/YAMHfuXGJiYozn8fHx1K9fn02bNnHgwAGCgoIIDg4mOjra4vhJkyZRqlQpDhw4wLBhw1iyZAm3b99m0KBB943H1dUVgH379tGyZUtat27NoUOHGDFiBMOGDWPevHlG244dO3L27Fk2b97MDz/8wPTp07l48aJFfy1atODixYusXbuWffv2ERAQQK1atbhy5YrR5vjx4yxdupRly5YRERHxyGt2+/ZtvvnmGzp37ozJ9OBSgL/++ov//e9/VKhQ4YFtEhISiIuLs3iIiIhIxmUym83m9A4io1m6dCndunXj5s2bBAQEUK1aNVq3bo2/vz9AqmtmS5Qowdtvv02vXr2AezOzZcqUYfny5Uabnj17snDhQmJjH17D1rZtWy5dusT69euNbYMGDWL16tUcPnyYo0ePUqRIEXbv3k25cuUA+OOPPyhatChTp06lb9++bNu2jQYNGnDx4kXs7e2Nfry9vRk0aBDdu3dnxIgRjBs3jr/++otcuXKl6notXryYN998k+joaPLkyWNs9/LyIiYmhkyZMpGYmMitW7eoUKECP/30k5Gk/9eIESMYOXJkiu2xQ7KpZlYkrahmVkSesbi4OFxcXIiNjcXZ2fmhbTUz+ww0a9aMc+fOsWrVKoKCgggPDycgIMBiFvS/4uPjGTBgAEWLFsXV1RUnJyciIyNTzMwGBgZaPDebzQ+dzUwWGRlJ5cqVLbZVrlyZY8eOkZiYSGRkJHZ2dpQtW9bY7+fnZ5E0Hjx4kPj4eHLmzGnMQDs5OXHq1ClOnDhhtCtQoICRyG7dutWi7f1KF+bMmUO9evUsEtlkAwcOJCIigt9++41NmzYB0KBBAxITE+97nkOHDiU2NtZ4nD179pHXRkRERKyXVjN4RhwcHKhTpw516tRh2LBhdO3aleHDh9OxY8f7th8wYAAbNmxg0qRJeHt74+joSPPmzVPcQJU1a1aL576+vsTGxhITE4OHh8ezOh3gXsLt4eFBeHh4in3/Tnr/HWNgYKBFqYGbm5vFcWfOnGHjxo0sW7bsvmO+8soreHt7A+Dj48O0adOoVKkSmzdvpnbt2ina29vbW8wai4iISMamZPY5KVasGCtWrAAwPjb/t+3bt9OxY0eaNGkC3EscT58+/ch+mzdvzpAhQ5gwYQJTp05Nsf/q1au4urpStGhRtm/fnmJMX19fbG1t8fPz4+7du+zbt88oM4iKiuLq1atG+4CAAM6fP4+dnZ1x49qjODo6Gsno/cydO5fcuXPToEGDVPVna2sLwM2bN1PVPlmJW3OwMWd5rGNEkp0en7rXp4iIPH9KZtPY5cuXadGiBZ07d8bf359s2bKxd+9eJkyYQKNGjYB7taCbNm2icuXK2Nvbkz17dnx8fFi2bBnBwcGYTCaGDRtGUlLSI8fz9PRk6tSp9OrVi7i4OEJCQvDy8uLPP/9kwYIFODk5MXnyZN577z3KlSvH6NGjadWqFb/++iufffYZ06dPB6BIkSIEBQXx1ltvMWPGDOzs7Ojbty+Ojo7GWLVr16ZSpUo0btyYCRMm4Ovry7lz51i9ejVNmjRJUQLxKElJScydO5cOHTpgZ3f/l+K1a9c4f/48ZrOZs2fPMmjQIHLlysWrr776WGOJiIhIxqSa2TTm5OREhQoVmDp1KlWrVqVEiRIMGzaMbt268dlnnwEwefJkNmzYgKenJ2XKlAFgypQpZM+enVdffZXg4GDq1q1LQEBAqsbs2bMn69ev56+//qJJkyb4+fnRtWtXnJ2dGTBgAHBvVnXx4sV8//33lChRgtDQUEaNGmVR9jB37lzy5MlDtWrVaNq0Kd27dyd37tzGfpPJxJo1a6hatSqdOnXC19eX1q1bc+bMmRTlA6mxceNGoqOj6dy58wPbhIaG4uHhQZ48eWjYsCFZs2Zl/fr15MyZ87HHExERkYxHqxlIhpZ8N6Rn38XY2KvMQJ6MygxERJ4vrWYgIiIiIi8FJbMiIiIiYrWUzIqIiIiI1dJqBvJS+H1k3UfW3IiIiIj10cysiIiIiFgtJbMiIiIiYrWUzIqIiIiI1VIyKyIiIiJWS8msiIiIiFgtJbMiIiIiYrWUzIqIiIiI1VIyKyIiIiJWS8msiIiIiFgtJbMiIiIiYrWUzIqIiIiI1VIyKyIiIiJWS8msiIiIiFgtJbMiIiIiYrWUzIqIiIiI1VIyKyIiIiJWyy69AxAREZFnLzExkTt37qR3GCIAZMqUCVtb2zTpS8msiIhIBmY2mzl//jxXr15N71BELLi6uuLu7o7JZHqqfpTMioiIZGDJiWzu3LnJkiXLUycOIk/LbDZz48YNLl68CICHh8dT9adkVl4KFb+tiK1j2nycISJP71CHQ+kdwkshMTHRSGRz5syZ3uGIGBwdHQG4ePEiuXPnfqqSA90AJiIikkEl18hmyZIlnSMRSSn5dfm0tdxKZkVERDI4lRbIiyitXpdKZkVERETEaimZFRERkRdO9erV6du3b7qN37FjRxo3bvzCxCMPphvAREREXjJeQ1Y/1/FOj2/wXMd7FpYtW0amTJnSOwyr4eXlRd++fZ/LHwCamZWH8vLyYtq0aekdhoiISLrKkSMH2bJlS+8wnorZbObu3bvpHUaa08zsM3Dp0iVCQ0NZvXo1Fy5cIHv27JQqVYrQ0FAqV66MyWRi+fLlFh9fPK3NmzczceJEdu3axc2bN/Hy8qJevXr079+fvHnzptk4aWXGjBnMmDGD06dPA1C8eHFCQ0OpV6+e0cbLy4szZ84AYGNjg5ubG/Xq1WPSpElkz579scbbeeZPnO11A4S8ZEbEpncEIk/l7t279OrVi6+//ppMmTLRo0cPRo0ahclk4uuvv+bjjz8mKiqKrFmzUrNmTaZNm0bu3LkB+Oeff+jVqxfr168nPj6efPny8f7779OpUycAzp49y3vvvcf69euxsbGhSpUqfPzxx3h5ed03lurVq1O6dGljgsfLy4vu3btz/PhxlixZQvbs2fnwww/p3r27cczjjvFvHTt25OrVq5QpU4bPPvuMhIQE3nzzTT755BMyZ84MQFJSEh999BFffPEF58+fx9fXl2HDhtG8eXMAwsPDqVGjBmvWrOHDDz/k0KFDrF+/nqpVqzJp0iS++OILzp49i5ubG2+99RYffPBBquJOju21115j8uTJ3L59m9atWzNt2jQyZcpE9erVOXPmDP369aNfv37AvUT6WdHM7DPQrFkzDhw4wPz58zl69CirVq2ievXqXL58OU3HuX37NgCzZs2idu3auLu7s3TpUo4cOcLMmTOJjY1l8uTJaTrmk8b4X/ny5WP8+PHs27ePvXv3UrNmTRo1asThw4ct2o0aNYqYmBiio6NZuHAhv/zyC717934eoYuISDqbP38+dnZ27N69m48//pgpU6Ywe/Zs4N5yTqNHj+bgwYOsWLGC06dP07FjR+PYYcOGceTIEdauXUtkZCQzZszglVdeMY6tW7cu2bJlY+vWrWzfvh0nJyeCgoIe+L51P5MnTyYwMJADBw7Qs2dPevToQVRUVJqNsWnTJiIjIwkPD+e7775j2bJljBw50tgfFhbGggULmDlzJocPH6Zfv360a9eOLVu2WPQzZMgQxo8fT2RkJP7+/gwdOpTx48cb1+jbb7/Fzc3tseLevHkzJ06cYPPmzcyfP5958+Yxb9484F5JRr58+Yz38JiYmFRf0yehmdk0dvXqVbZu3Up4eDjVqlUDoECBApQvXx7A+KumSZMmxr7Tp09z4sQJ+vfvz86dO7l+/TpFixYlLCyM2rVrG317eXnRpUsXjh07xooVK2jatCljxoyhd+/e9O7dm6lTp1q0rVq1qsXXFy5dupTQ0FCOHz+Oh4cH7777Lu+9956x/+LFi3Tp0oWNGzfi7u7OmDFj7nt+AwYMYOXKlSQkJBAYGMjUqVMpVaoUACNGjGDFihX06tWLsWPHcubMGZKSklL0ExwcbPF87NixzJgxg507d1K8eHFje7Zs2XB3dwcgb968dOjQge++++7R/xAiImL1PD09mTp1KiaTiSJFinDo0CGmTp1Kt27d6Ny5s9GuUKFCfPLJJ5QrV474+HicnJyIjo6mTJkyBAYGAljMhi5atIikpCRmz55tLA81d+5cXF1dCQ8P5/XXX09VfPXr16dnz54ADB48mKlTp7J582aKFCmSJmNkzpyZr776iixZslC8eHFGjRrFwIEDGT16NHfu3GHcuHFs3LiRSpUqGddh27ZtzJo1y8hB4N7EUJ06dQC4du0aH3/8MZ999hkdOnQAoHDhwrz22muPdW2yZ8/OZ599hq2tLX5+fjRo0IBNmzbRrVs3cuTIga2trcV7+LOkZDaNOTk54eTkxIoVK6hYsSL29vYW+/fs2UPu3LmZO3cuQUFBxjdexMfHU79+fcaOHYu9vT0LFiwgODiYqKgo8ufPbxw/adIkQkNDGT58OABLlizh9u3bDBo06L7xuLq6ArBv3z5atmzJiBEjaNWqFTt27KBnz57kzJnT+Eu2Y8eOnDt3js2bN5MpUyZ69+5tfNVcshYtWuDo6MjatWtxcXFh1qxZ1KpVi6NHj5IjRw4Ajh8/ztKlS1m2bFmqvtEjMTGRJUuWcP36deMX8n7++usv/ve//1GhQoUHtklISCAhIcF4HhcX98jxRUTkxVSxYkWLtUgrVarE5MmTSUxMJCIighEjRnDw4EH++ecfY+IkOjqaYsWK0aNHD5o1a8b+/ft5/fXXady4Ma+++ioABw8e5Pjx4ylqYG/dusWJEydSHZ+/v7/xs8lkwt3d3XjfTIsxSpUqZfGFF5UqVSI+Pp6zZ88SHx/PjRs3jCQ12e3btylTpozFtuSEHiAyMpKEhARq1ap13zFTG3fx4sUt3uM9PDw4dCh9vtlPyWwas7OzY968eXTr1o2ZM2cSEBBAtWrVaN26Nf7+/uTKlQu4l2T++6+VUqVKGbObAKNHj2b58uWsWrWKXr16Gdtr1qxpMZt67NgxnJ2dH/m9xlOmTKFWrVoMGzYMAF9fX44cOcLEiRPp2LEjR48eZe3atezevZty5coBMGfOHIoWLWr0sW3bNnbv3s3FixeNJH3SpEmsWLGCH374wagTun37NgsWLDDO9UEOHTpEpUqVuHXrFk5OTixfvpxixYpZtBk8eDAffvghiYmJ3Lp1iwoVKjBlypQH9hkWFmbxEYyIiGQ8t27dom7dutStW5eFCxeSK1cuoqOjqVu3rvFReL169Thz5gxr1qxhw4YN1KpVi3feeYdJkyYRHx9P2bJlWbhwYYq+H/Xe9W//Xd3AZDIZSXVajfEg8fHxAKxevTrFvTH/nUjLmjWr8XPy18g+rN/UxP2wc3/eVDP7DDRr1oxz586xatUqgoKCCA8PJyAgwKgluZ/4+HgGDBhA0aJFcXV1xcnJicjISKKjoy3a/fuvK7hXUJ2ab9CIjIykcuXKFtsqV67MsWPHSExMJDIyEjs7O8qWLWvs9/PzM2Z24d5fa/Hx8eTMmdOYgXZycuLUqVMWf60VKFDAeMFv3brVou2/fzmKFClCREQEu3btokePHnTo0IEjR45YxDhw4EAiIiL47bff2LRpEwANGjQgMTHxvuc5dOhQYmNjjcfZs2cfeW1EROTFtGvXLovnO3fuxMfHhz/++IPLly8zfvx4qlSpgp+fX4pPEuFe8tWhQwe++eYbpk2bxhdffAFAQEAAx44dI3fu3Hh7e1s8XFxc0iT2tBjj4MGD3Lx50+L8nZyc8PT0pFixYtjb2xMdHZ2if09Pzwf26ePjg6Ojo/Ge+izihnslEg96r05rSmafEQcHB+rUqcOwYcPYsWMHHTt2NEoD7mfAgAEsX76ccePGsXXrViIiIihZsmSKIvF//3UF92ZYY2Njn3lxNdxLuD08PIiIiLB4REVFMXDgwPvGGBgYaNH2jTfeMPZlzpwZb29vypYtS1hYGKVKleLjjz+2GPOVV17B29sbHx8f407VHTt2sHnz5vvGaG9vj7Ozs8VDRESsU3R0NP379ycqKorvvvuOTz/9lD59+pA/f34yZ87Mp59+ysmTJ1m1ahWjR4+2ODY0NJSVK1dy/PhxDh8+zI8//mh82ti2bVteeeUVGjVqxNatWzl16hTh4eH07t2bP//8M01iT4sxbt++TZcuXThy5Ahr1qxh+PDh9OrVCxsbG7Jly8aAAQPo168f8+fP58SJE+zfv59PP/2U+fPnP7BPBwcHBg8ezKBBg1iwYAEnTpxg586dzJkzJ02vjZeXF7/88gt//fUXf//9d6qPexIqM3hOihUrxooVK4B7U/P//Wtl+/btdOzY0bgxLD4+3li26mGaN2/OkCFDmDBhgsUNYMmuXr2Kq6srRYsWZfv27SnG9PX1NYq37969y759+4wyg6ioKIsbyAICAjh//jx2dnapWlYE7n2c4e3tnaq2SUlJFvWu95Ncn/Pvv1RTo8StOdiYszy6oWQIGWGBdpFnyVp+R0JCQrh58ybly5fH1taWPn360L17d0wmE/PmzeP999/nk08+ISAggEmTJqWYMBk6dCinT5/G0dGRKlWq8P333wOQJUsWfvnlFwYPHkzTpk25du0aefPmpVatWmk2CZIWY9SqVQsfHx+qVq1KQkICbdq0YcSIEcb+0aNHkytXLsLCwjh58iSurq4EBATw/vvvP7TfYcOGYWdnR2hoKOfOncPDw4O33347zeKGezedvfXWWxQuXJiEhIRnujSXyfwse38JXb58mRYtWtC5c2f8/f3Jli0be/fu5d1336VBgwbMmTMHX19fateuTWhoKPb29mTPnp2mTZty6tQp5s6di8lkYtiwYYSHh9O5c2eLNe3u920a06dPp1evXnTq1ImQkBC8vLz4888/WbBgAU5OTkyePJn9+/dTrlw54wawX3/9lR49ejB9+nTjBrB69epx4cIFZsyYgZ2dHX379mXfvn2MGzeOvn37YjabqVq1KteuXWPChAn4+vpy7tw5Vq9eTZMmTQgMDDRWM4iIiHjodRo6dCj16tUjf/78XLt2jW+//ZaPPvqIdevWGcXsyas3dOvWDbPZzNmzZxk0aBBHjhwhMjKSnDlzPvLfIy4uDhcXFzz7LsbGXsnsy8Ja3qhFnrVbt25x6tQpChYsiIODQ3qHI48heS3X5ImwjOhhr8/k9+/Y2NhHJtEqM0hjTk5OVKhQgalTp1K1alVKlCjBsGHD6NatG5999hlwb126DRs24OnpadxxOGXKFLJnz86rr75KcHAwdevWJSAgIFVj9uzZk/Xr1/PXX3/RpEkT/Pz86Nq1K87OzgwYMAC4N6u6ePFivv/+e0qUKEFoaCijRo2yWJNv7ty55MmTh2rVqtG0aVO6d+9uLD4N94q716xZQ9WqVenUqRO+vr60bt2aM2fOGOvTpdbFixcJCQmhSJEi1KpViz179lgksslCQ0Px8PAgT548NGzYkKxZs7J+/fpUJbIiIiKS8WlmVjI0zcy+nDQzK3KPZmZfXE5OTg/ct3btWubMmaOZ2VTOzKpmVkREROQ5e1g5Xt68ealSpcrzC8bKKZkVERERec5Se3O0PJpqZkVERETEamlmVl4Kv4+sqzVnRUREMiDNzIqIiIiI1VIyKyIiIiJWS8msiIiIiFgtJbMiIiLywqlevXqKb7wUuR/dACYiIvKyGeHynMeLfb7jPUB4eDhTp05l9+7dxMXF4ePjw8CBA2nbtq3RZt68eXTq1MniOHt7e27duvW8w33uTp8+TcGCBTlw4AClS5dO73BSTcmsiIiIvBR27NiBv78/gwcPxs3NjR9//JGQkBBcXFxo2LCh0c7Z2ZmoqCjjuclkSo9wDbdv3yZz5szpGsOLTGUGIiIi8kK6e/cuvXr1wsXFhVdeeYVhw4ZhNpsB8PLyYsyYMYSEhODk5ESBAgVYtWoVly5dolGjRjg5OeHv78/evXuN/t5//31Gjx7Nq6++SuHChenTpw9BQUEsW7bMYlyTyYS7u7vxcHNzS3XMXl5ejB49mjZt2pA1a1by5s3L559/btHm6tWrdO3alVy5cuHs7EzNmjU5ePCgsX/EiBGULl2a2bNnW3zV69WrV3nrrbdwc3PDwcGBEiVK8OOPPxrHbdu2jSpVquDo6Iinpye9e/fm+vXrFrGNGzeOzp07ky1bNvLnz88XX3xh7C9YsCAAZcqUwWQyUb169VSfd3pSMisiIiIvpPnz52NnZ8fu3bv5+OOPmTJlCrNnzzb2T506lcqVK3PgwAEaNGhA+/btCQkJoV27duzfv5/ChQsTEhJiJMD3ExsbS44cOSy2xcfHU6BAATw9PWnUqBGHDx9+rLgnTpxIqVKlOHDgAEOGDKFPnz5s2LDB2N+iRQsuXrzI2rVr2bdvHwEBAdSqVYsrV64YbY4fP87SpUtZtmwZERERJCUlUa9ePbZv384333zDkSNHGD9+PLa2tgCcOHGCoKAgmjVrxm+//caiRYvYtm0bvXr1soht8uTJBAYGcuDAAXr27EmPHj2MWejdu3cDsHHjRmJiYlIk+S8qk/lh/8IiVi4uLg4XFxdiY2P1pQki8tK5desWp06dspjdA6yiZrZ69epcvHiRw4cPGx/zDxkyhFWrVnHkyBG8vLyoUqUKX3/9NQDnz5/Hw8ODYcOGMWrUKAB27txJpUqViImJwd3dPcUYixcvpn379uzfv5/ixYsD8Ouvv3Ls2DH8/f2JjY1l0qRJ/PLLLxw+fJh8+fI9Mm4vLy+KFi3K2rVrjW2tW7cmLi6ONWvWsG3bNho0aMDFixext7c32nh7ezNo0CC6d+/OiBEjGDduHH/99Re5cuUCYP369dSrV4/IyEh8fX1TjNu1a1dsbW2ZNWuWsW3btm1Uq1aN69ev4+DgkOKamc1m3N3dGTlyJG+//fZzr5l94OuTx3v/1sysiIiIvJAqVqxoUa9aqVIljh07RmJiIgD+/v7GvuRSgJIlS6bYdvHixRR9b968mU6dOvHll18aiWzyGCEhIZQuXZpq1aqxbNkycuXKZZEkPkqlSpVSPI+MjATg4MGDxMfHkzNnTpycnIzHqVOnOHHihHFMgQIFjEQWICIignz58t03kU3ud968eRZ91q1bl6SkJE6dOmW0+/c1Sy6nuN/1sSa6AUxERESsUqZMmYyfk5Pe+21LSkqyOG7Lli0EBwczdepUQkJCHjlGmTJlOH78eJrEHB8fj4eHB+Hh4Sn2ubq6Gj9nzZrVYp+jo+Mj+33rrbfo3bt3in358+c3fv739YF71+i/18faKJkVERGRF9KuXbssnu/cuRMfHx+jTvRJhIeH07BhQz766CO6d+/+yPaJiYkcOnSI+vXrp3qMnTt3pnhetGhRAAICAjh//jx2dnZ4eXmluk9/f3/+/PNPjh49et/Z2YCAAI4cOYK3t3eq+/yv5BUTkme+rYXKDEREROSFFB0dTf/+/YmKiuK7777j008/pU+fPk/c3+bNm2nQoAG9e/emWbNmnD9/nvPnz1vceDVq1CjWr1/PyZMn2b9/P+3atePMmTN07do11eNs376dCRMmcPToUT7//HOWLFlixF27dm0qVapE48aNWb9+PadPn2bHjh188MEHFisv/Fe1atWoWrUqzZo1Y8OGDZw6dYq1a9fy008/ATB48GB27NhBr169iIiI4NixY6xcuTLFDWAPkzt3bhwdHfnpp5+4cOECsbEvxvrAj6JkVkRERF5IISEh3Lx5k/Lly/POO+/Qp0+fVM2mPsj8+fO5ceMGYWFheHh4GI+mTZsabf755x+6detG0aJFqV+/PnFxcezYsYNixYqlepz33nuPvXv3UqZMGcaMGcOUKVOoW7cucO9j/TVr1lC1alU6deqEr68vrVu35syZM49cAmzp0qWUK1eONm3aUKxYMQYNGmRRP7xlyxaOHj1KlSpVKFOmDKGhoeTJkyfVcdvZ2fHJJ58wa9Ys8uTJQ6NGjVJ9bHrSagaSoWk1AxF5mT3sbnF5Nry8vOjbt6++ijcVtJqBiIiIiLz0lMyKiIiIpMLWrVstlr7670PSh1YzEBEREUmFwMBAIiIiHtrm9OnTzyUW+T9KZkVERERSwdHR8amWvpJnQ8msvBQqflsRW8cnX5dQ5EV3qMOh9A5BRCRdqGZWRERERKyWklkRERERsVpKZkVERETEaimZFRERERGrpWRWREREBAgPD8dkMnH16tX0DkUeg1YzkIfS1/KJiGQ8JeeXfK7jabUN63P69GkKFizIgQMHKF26dHqH81BKZp+BS5cuERoayurVq7lw4QLZs2enVKlShIaGUrlyZUwmE8uXL6dx48ZpNubmzZuZOHEiu3bt4ubNm3h5eVGvXj369+9P3rx502yctPLLL78wceJE9u3bR0xMzH2vR/Xq1dmyZYvxPHfu3FStWpVJkyZRoECBxxpv55k/cbY3pUXo8jIbEZveEYjIfZjNZhITE7Gzy/hpze3bt8mcOXN6h/FCUZnBM9CsWTMOHDjA/PnzOXr0KKtWraJ69epcvnw5Tce5ffs2ALNmzaJ27dq4u7uzdOlSjhw5wsyZM4mNjWXy5MlpOuaTxvhf169fp1SpUnz++ecPPb5bt27ExMRw7tw5Vq5cydmzZ2nXrt2zCFVERF4gCQkJ9O7dm9y5c+Pg4MBrr73Gnj17gP8rB1i7di1ly5bF3t6ebdu2ceLECRo1aoSbmxtOTk6UK1eOjRs3puh38ODBeHp6Ym9vj7e3N3PmzHlgHNu2baNKlSo4Ojri6elJ7969uX79eqrOwcvLi9GjR9OmTRuyZs1K3rx5U7zvXb16la5du5IrVy6cnZ2pWbMmBw8eNPaPGDGC0qVLM3v2bAoWLIiDg4Nx3FtvvYWbmxsODg6UKFGCH3/8MdVxe3l5MW7cODp37ky2bNnInz8/X3zxhbG/YMGCAJQpUwaTyUT16tVTdc7pQclsGrt69Spbt27lo48+okaNGhQoUIDy5cszdOhQ3njjDby8vABo0qQJJpPJeJ6aX8DkX4qQkBCcnZ3p3r07f/75J71796Z379589dVXVK9eHS8vL6pWrcrs2bMJDQ01jl+6dCnFixfH3t4eLy+vFInuxYsXCQ4OxtHRkYIFC7Jw4cL7nt+T/NL9V7169RgzZgxNmjR56PXMkiUL7u7ueHh4ULFiRXr16sX+/fsfeoyIiFi/QYMGsXTpUubPn8/+/fvx9vambt26XLlyxWgzZMgQxo8fT2RkJP7+/sTHx1O/fn02bdrEgQMHCAoKIjg4mOjoaOOYkJAQvvvuOz755BMiIyOZNWsWTk5O943hxIkTBAUF0axZM3777TcWLVrEtm3b6NWrV6rPY+LEiZQqVYoDBw4wZMgQ+vTpw4YNG4z9LVq04OLFi6xdu5Z9+/YREBBArVq1LM7z+PHjLF26lGXLlhEREUFSUhL16tVj+/btfPPNNxw5coTx48dja2v7WHFPnjyZwMBADhw4QM+ePenRowdRUVEA7N69G4CNGzcSExPDsmXLUn3Oz1vGn49/zpycnHBycmLFihVUrFgRe3t7i/179uwhd+7czJ07l6CgIOOFl/wLOHbsWOzt7VmwYAHBwcFERUWRP39+4/hJkyYRGhrK8OHDAViyZAm3b99m0KBB943H1dUVgH379tGyZUtGjBhBq1at2LFjBz179iRnzpx07NgRgI4dO3Lu3Dk2b95MpkyZ6N27NxcvXrTor0WLFjg6OrJ27VpcXFyYNWsWtWrV4ujRo+TIkQOw/KVLPr+0cOXKFRYvXkyFChUe2CYhIYGEhATjeVxcXJqNLyIiz8f169eZMWMG8+bNo169egB8+eWXbNiwgTlz5lCuXDkARo0aRZ06dYzjcuTIQalSpYzno0ePZvny5axatYpevXpx9OhRFi9ezIYNG6hduzYAhQoVemAcYWFhtG3b1rhvxMfHh08++YRq1aoxY8aMB07Y/FvlypUZMmQIAL6+vmzfvp2pU6dSp04dtm3bxu7du7l48aKRL0yaNIkVK1bwww8/0L17d+Dep5wLFiwgV65cAKxfv57du3cTGRmJr69vivNIbdz169enZ8+eAAwePJipU6eyefNmihQpYoyVM2dO3N3dH3me6UnJbBqzs7Nj3rx5dOvWjZkzZxIQEEC1atVo3bo1/v7+xovD1dXV4sVRqlSph/4CJqtZsybvvfee8fzYsWM4Ozvj4eHx0LimTJlCrVq1GDZsGHDvF+rIkSNMnDiRjh07cvToUdauXcvu3buN/0nMmTOHokWLGn086S/d05g+fTqzZ8/GbDZz48YNfH19Wbdu3QPbh4WFMXLkyKceV0RE0s+JEye4c+cOlStXNrZlypSJ8uXLExkZabxPBQYGWhwXHx/PiBEjWL16NTExMdy9e5ebN28aM7MRERHY2tpSrVq1VMVx8OBBfvvtN4tPKs1mM0lJSZw6dcriPfJBKlWqlOL5tGnTjP7j4+PJmTOnRZubN29y4sQJ43mBAgUs3lMjIiLIly+fkcg+adz+/v7GfpPJhLu7e4pJLGugMoNnoFmzZpw7d45Vq1YRFBREeHg4AQEBzJs374HHxMfHM2DAAIoWLYqrqytOTk5ERkZafDQCKX9xzWYzJtOjb2yKjIy0+J8C3Ptr8dixYyQmJhIZGYmdnR1ly5Y19vv5+Rkzu2D5S5c8A+3k5MSpU6ce+Eu3detWi7b3K114mLZt2xIREcHBgwfZtm0b3t7evP7661y7du2+7YcOHUpsbKzxOHv27GONJyIi1iNr1qwWzwcMGMDy5csZN24cW7duJSIigpIlSxr3bzg6Oj5W//Hx8bz11ltEREQYj4MHD3Ls2DEKFy781PHHx8fj4eFh0X9ERARRUVEMHDjwgef5qPNIbdyZMmWyOM5kMpGUlPTU5/W8aWb2GXFwcKBOnTrUqVOHYcOG0bVrV4YPH258pP9fAwYMYMOGDUyaNAlvb28cHR1p3rx5ihuo/vuC9vX1JTY2lpiYmEfOzj6t5F+68PDwFPv+nfT+O8bAwEAiIiKM525ubo81pouLC97e3gBGkb6HhweLFi2ia9euKdrb29unKO0QERHrUrhwYTJnzsz27duN1Wvu3LnDnj17HrpU5Pbt2+nYsaNxP0Z8fDynT5829pcsWZKkpCS2bNlilBk8TEBAAEeOHDHeh57Ezp07UzxPnhkNCAjg/Pnz2NnZGffQpIa/vz9//vknR48eve/sbFrEnbxiQmJi4hP38bwomX1OihUrxooVK4B7fwn998XxqF/AB2nevDlDhgxhwoQJTJ06NcX+q1ev4urqStGiRdm+fXuKMX19fbG1tcXPz4+7d++yb98+4+ObqKgoi4Wjn+SXztHR8al+mf4ruQb35s2bj3VciVtzsDFnSbM4XganxzdI7xBE5CWVNWtWevTowcCBA8mRIwf58+dnwoQJ3Lhxgy5duljcePxvPj4+LFu2jODgYEwmE8OGDbOYafTy8qJDhw507tyZTz75hFKlSnHmzBkuXrxIy5YtU/Q3ePBg4+bjrl27kjVrVo4cOcKGDRv47LPPUnUu27dvZ8KECTRu3JgNGzawZMkSVq9eDUDt2rWpVKkSjRs3ZsKECfj6+nLu3DlWr15NkyZNUnwam6xatWpUrVqVZs2aMWXKFLy9vfnjjz8wmUwEBQWlSdy5c+fG0dGRn376iXz58uHg4ICLi0uqjn3eVGaQxi5fvkzNmjX55ptv+O233zh16hRLlixhwoQJNGrUCLj3y7Rp0ybOnz/PP//8A/zfL2DyRwFvvvlmqqb6PT09mTp1Kh9//DFdunRhy5YtnDlzhu3bt/PWW28xevRoAN577z02bdrE6NGjOXr0KPPnz+ezzz5jwIABABQpUoSgoCDeeustdu3axb59++jatavFRxn//qVbv349p0+fZseOHXzwwQfs3bv3sa5TfHy88dEHwKlTp4iIiEhRVnHjxg3Onz/P+fPnOXjwID169MDBwYHXX3/9scYTERHrMn78eJo1a0b79u0JCAjg+PHjrFu3juzZsz/wmClTppA9e3ZeffVVgoODqVu3LgEBARZtZsyYQfPmzenZsyd+fn5069btgUtt+fv7s2XLFo4ePUqVKlUoU6YMoaGh5MmTJ9Xn8d5777F3717KlCnDmDFjmDJlCnXr1gXufay/Zs0aqlatSqdOnfD19aV169acOXPmkZ9kLl26lHLlytGmTRuKFSvGoEGDjImytIjbzs6OTz75hFmzZpEnTx4jh3kRmcxmszm9g8hIEhISGDFiBOvXrzcK2D09PWnRogXvv/8+jo6O/O9//6N///6cPn2avHnzcvr0aU6fPk3nzp3ZuXMnr7zyCoMHD2bJkiWULl3aKBR/2Ldxbdy4kUmTJrF7927jSxMaNmxI//79jfKDpUuXEhoayrFjx/Dw8ODdd981klmA8+fP07VrVzZu3Iibmxtjxoxh2LBhFmNeu3aNDz74gKVLl3Lp0iXc3d2pWrUqYWFheHp6MmLECFasWGFRWnA/4eHh1KhRI8X2Dh06GLXF//3ShOzZs+Pv78/w4cPve+z9xMXF4eLigmffxdjYa2b2cWhmVsT63bp1i1OnTj10qUR5dvQtmg/3sNdn8vt3bGwszs7OD+1HyaxkaEpmn5ySWRHrp2Q2fSmZfbi0SmZVZiAiIiLymP67Ws9/H/L86AYwERERkcf039V67ic1N3LL01MyKyIiIvKY0nq1HnlySmblpfD7yLqPrLkRERER66OaWRERkQzOGr/VSTK+tHpdamZWREQkg8qcOTM2NjacO3eOXLlykTlz5lR9BbrIs2Q2m7l9+zaXLl3CxsbG+LaxJ6VkVkREJIOysbGhYMGCxMTEcO7cufQOR8RClixZyJ8/PzY2T1cooGRWREQkA8ucOTP58+fn7t27Kb5KXSS92NraYmdnlyafFCiZFRERyeBMJhOZMmUiU6ZM6R2KSJrTDWAiIiIiYrWUzIqIiIiI1VIyKyIiIiJWSzWzkqGZzWYA4uLi0jkSERERSa3k9+3k9/GHUTIrGdrly5cB8PT0TOdIRERE5HFdu3YNFxeXh7ZRMisZWo4cOQCIjo5+5C+DPJ24uDg8PT05e/asvjr4OdD1fn50rZ8fXevn50W/1mazmWvXrpEnT55HtlUyKxla8kLMLi4uL+Qva0bk7Oysa/0c6Xo/P7rWz4+u9fPzIl/r1E5C6QYwEREREbFaSmZFRERExGopmZUMzd7enuHDh2Nvb5/eoWR4utbPl67386Nr/fzoWj8/Gelam8ypWfNAREREROQFpJlZEREREbFaSmZFRERExGopmRURERERq6VkVkRERESslpJZEREREbFaSmYlQ/v888/x8vLCwcGBChUqsHv37vQOKcMZMWIEJpPJ4uHn55feYWUIv/zyC8HBweTJkweTycSKFSss9pvNZkJDQ/Hw8MDR0ZHatWtz7Nix9Ak2A3jU9e7YsWOK13pQUFD6BGvFwsLCKFeuHNmyZSN37tw0btyYqKgoiza3bt3inXfeIWfOnDg5OdGsWTMuXLiQThFbt9Rc7+rVq6d4bb/99tvpFPHjUzIrGdaiRYvo378/w4cPZ//+/ZQqVYq6dety8eLF9A4twylevDgxMTHGY9u2bekdUoZw/fp1SpUqxeeff37f/RMmTOCTTz5h5syZ7Nq1i6xZs1K3bl1u3br1nCPNGB51vQGCgoIsXuvffffdc4wwY9iyZQvvvPMOO3fuZMOGDdy5c4fXX3+d69evG2369evH//73P5YsWcKWLVs4d+4cTZs2TceorVdqrjdAt27dLF7bEyZMSKeIn4BZJIMqX768+Z133jGeJyYmmvPkyWMOCwtLx6gynuHDh5tLlSqV3mFkeIB5+fLlxvOkpCSzu7u7eeLEica2q1evmu3t7c3fffddOkSYsfz3epvNZnOHDh3MjRo1Spd4MrKLFy+aAfOWLVvMZvO913GmTJnMS5YsMdpERkaaAfOvv/6aXmFmGP+93maz2VytWjVznz590i+op6SZWcmQbt++zb59+6hdu7axzcbGhtq1a/Prr7+mY2QZ07Fjx8iTJw+FChWibdu2REdHp3dIGd6pU6c4f/68xWvcxcWFChUq6DX+DIWHh5M7d26KFClCjx49uHz5cnqHZPViY2MByJEjBwD79u3jzp07Fq9tPz8/8ufPr9d2Gvjv9U62cOFCXnnlFUqUKMHQoUO5ceNGeoT3ROzSOwCRZ+Hvv/8mMTERNzc3i+1ubm788ccf6RRVxlShQgXmzZtHkSJFiImJYeTIkVSpUoXff/+dbNmypXd4Gdb58+cB7vsaT94naSsoKIimTZtSsGBBTpw4wfvvv0+9evX49ddfsbW1Te/wrFJSUhJ9+/alcuXKlChRArj32s6cOTOurq4WbfXafnr3u94Ab775JgUKFCBPnjz89ttvDB48mKioKJYtW5aO0aaeklkReSr16tUzfvb396dChQoUKFCAxYsX06VLl3SMTCRttW7d2vi5ZMmS+Pv7U7hwYcLDw6lVq1Y6Rma93nnnHX7//XfV2T8nD7re3bt3N34uWbIkHh4e1KpVixMnTlC4cOHnHeZjU5mBZEivvPIKtra2Ke5+vXDhAu7u7ukU1cvB1dUVX19fjh8/nt6hZGjJr2O9xtNPoUKFeOWVV/Raf0K9evXixx9/ZPPmzeTLl8/Y7u7uzu3bt7l69apFe722n86Drvf9VKhQAcBqXttKZiVDypw5M2XLlmXTpk3GtqSkJDZt2kSlSpXSMbKMLz4+nhMnTuDh4ZHeoWRoBQsWxN3d3eI1HhcXx65du/Qaf07+/PNPLl++rNf6YzKbzfTq1Yvly5fz888/U7BgQYv9ZcuWJVOmTBav7aioKKKjo/XafgKPut73ExERAWA1r22VGUiG1b9/fzp06EBgYCDly5dn2rRpXL9+nU6dOqV3aBnKgAEDCA4OpkCBApw7d47hw4dja2tLmzZt0js0qxcfH28xM3Lq1CkiIiLIkSMH+fPnp2/fvowZMwYfHx8KFizIsGHDyJMnD40bN06/oK3Yw653jhw5GDlyJM2aNcPd3Z0TJ04waNAgvL29qVu3bjpGbX3eeecdvv32W1auXEm2bNmMOlgXFxccHR1xcXGhS5cu9O/fnxw5cuDs7My7775LpUqVqFixYjpHb30edb1PnDjBt99+S/369cmZMye//fYb/fr1o2rVqvj7+6dz9KmU3sspiDxLn376qTl//vzmzJkzm8uXL2/euXNneoeU4bRq1crs4eFhzpw5szlv3rzmVq1amY8fP57eYWUImzdvNgMpHh06dDCbzfeW5xo2bJjZzc3NbG9vb65Vq5Y5KioqfYO2Yg+73jdu3DC//vrr5ly5cpkzZcpkLlCggLlbt27m8+fPp3fYVud+1xgwz50712hz8+ZNc8+ePc3Zs2c3Z8mSxdykSRNzTExM+gVtxR51vaOjo81Vq1Y158iRw2xvb2/29vY2Dxw40BwbG5u+gT8Gk9lsNj/P5FlEREREJK2oZlZERERErJaSWREREfl/7dYBCQAAAICg/6/bEegKYUtmAQDYklkAALZkFgCALZkFAGBLZgEA2JJZAAC2ZBYAgC2ZBQBgS2YBANgKRE+heZfhbKoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for dataset, sdf in df.groupby('Dataset'):\n", + " fig, ax = plt.subplots()\n", + " ax = sdf.plot(x='Model', y=['baseline_percent', 'bm25_percent', 'oracle_percent'], kind='barh', ax=ax)\n", + " ax.set_title(dataset)\n", + " #ax = pdf.plot(x='Model', y=['% baseline'], kind='barh', ax=ax)\n", + " #df.plot.barh(x='Model', y='% baseline')\n", + "plt.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAGzCAYAAACb/us4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHoUlEQVR4nO3deVRV9d7H8c8RBJHRAQUSQUXTnNLI8TqUJo7XsdIsRdO0sJynnpxLvWZWDo/atStmWmaZecshNdGcczZnuSCmFKYC4gTCfv7w4ax7AhUQORt4v9baa52z92/v/d27s+Lj77cHi2EYhgAAAGAaRexdAAAAAGwR0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAUaoGBgQoNDX1k22/evLmaN2/+yLYPoGAioAEwrcjISA0YMEAVK1ZUsWLF5OHhocaNG+vjjz/WzZs37V2eLBaLBg0aZO8yHpm9e/fqjTfe0FNPPaWiRYvKYrFk2u7mzZt69dVXVaNGDXl6esrNzU21a9fWxx9/rJSUFJu2EydOlMVisU5FihSRr6+v2rdvr927d+fFYQH5gqO9CwCAzPzwww96/vnn5ezsrF69eqlGjRpKTk7W9u3bNXLkSB07dkyffPKJvcss0NauXatFixapVq1aqlixok6fPp1pu5s3b+rYsWNq27atAgMDVaRIEe3cuVNDhw7Vnj17tHz58gzrzJ8/X25ubkpLS9P58+f1z3/+U02bNtXevXv15JNPPuIjA8yPgAbAdKKiotS9e3cFBATop59+kq+vr3VZWFiYzp49qx9++MGOFRYOr7/+ukaPHi0XFxcNGjTongGtZMmSGXq/Bg4cKE9PT82dO1ezZs2Sj4+PzfJu3bqpdOnS1u+dOnVSjRo1tHLlSgIaIIY4AZjQjBkzlJSUpE8//dQmnKULCgrS4MGDJUl37tzRlClTVKlSJTk7OyswMFBvv/22bt++bbOOYRh69913Va5cORUvXlzPPPOMjh07lun+4+PjNWTIEPn7+8vZ2VlBQUH6xz/+obS0tIc+tuTkZI0fP15PPfWUPD095erqqiZNmmjLli027aKjo2WxWDRz5kzNmzdPFStWVPHixdWqVSudP39ehmFoypQpKleunFxcXNSxY0dduXLFZhvfffed2rVrJz8/Pzk7O6tSpUqaMmWKUlNTs1Rr2bJl5eLikuNjDQwMlHT3fD5IeoBzdKTfAJDoQQNgQv/+979VsWJFNWrU6IFt+/XrpyVLlqhbt24aPny49uzZo2nTpunEiRP69ttvre3Gjx+vd999V23btlXbtm114MABtWrVSsnJyTbbu3Hjhpo1a6YLFy5owIABKl++vHbu3KmxY8cqNjZWH3300UMdW2JiohYtWqQePXqof//+unbtmj799FOFhIRkOry3bNkyJScn680339SVK1c0Y8YMvfDCC3r22WcVERGh0aNH6+zZs5ozZ45GjBihf/3rX9Z1w8PD5ebmpmHDhsnNzU0//fSTxo8fr8TERL3//vsPdRyZSU5OVmJiom7evKl9+/Zp5syZCggIUFBQUIa26WEyLS1NFy5c0JQpU1SsWDG98MILuV4XkC8ZAGAiCQkJhiSjY8eOD2x76NAhQ5LRr18/m/kjRowwJBk//fSTYRiGERcXZzg5ORnt2rUz0tLSrO3efvttQ5LRu3dv67wpU6YYrq6uxunTp222OWbMGMPBwcGIiYmxzpNkhIWF3bfGZs2aGc2aNbN+v3PnjnH79m2bNlevXjXKli1r9O3b1zovKirKkGR4e3sb8fHx1vljx441JBm1a9c2UlJSrPN79OhhODk5Gbdu3bLOu3HjRoZ6BgwYYBQvXtymXVaEhYUZD/qT8cUXXxiSrFNwcLBx5MgRmzYTJkywaZM+eXl5GevXr89WTUBBxhAnAFNJTEyUJLm7uz+w7dq1ayVJw4YNs5k/fPhwSbJep7Zp0yZrL9R/34k4ZMiQDNtcuXKlmjRpohIlSujPP/+0Ti1btlRqaqq2bduWo+NK5+DgICcnJ0l3e4+uXLmiO3fuKDg4WAcOHMjQ/vnnn5enp6f1e/369SVJL7/8ss1wYP369ZWcnKwLFy5Y5/338OS1a9f0559/qkmTJrpx44ZOnjz5UMeRmWeeeUYbN27UypUrNXDgQBUtWlTXr1/PtO0333yjjRs36scff9TixYtVpUoVde3aVTt37sz1uoD8iCFOAKbi4eEh6W6geJBz586pSJEiGYbQfHx85OXlpXPnzlnbSVLlypVt2nl7e6tEiRI2886cOaMjR47I29s7033GxcVl7UDuY8mSJfrggw908uRJm8dQVKhQIUPb8uXL23xPD2v+/v6Zzr969ap13rFjx/TOO+/op59+sgbfdAkJCZKkpKQkJSUlWec7ODjc89gfpGzZsipbtqykuzcBTJ06Vc8995zOnDmT4SaBpk2b2twk0K1bN1WuXFlvvvmm9u/fn6P9AwUJAQ2AqXh4eMjPz0+//vprlte51/O5ciItLU3PPfecRo0alenyKlWqPNT2P//8c4WGhqpTp04aOXKkypQpIwcHB02bNk2RkZEZ2js4OGS6nXvNNwxD0t0L85s1ayYPDw9NnjxZlSpVUrFixXTgwAGNHj3aesPDzJkzNWnSJOv6AQEBio6OfqhjTNetWzf9z//8j7777jsNGDDgvm3d3NxUv359fffdd7p+/bpcXV1zpQYgvyKgATCd9u3b65NPPtGuXbvUsGHDe7YLCAhQWlqazpw5o2rVqlnn//HHH4qPj1dAQIC1nXS3d6xixYrWdpcuXbLpcZKkSpUqKSkpSS1btszNQ7L6+uuvVbFiRa1atcomWE6YMCFX9xMREaHLly9r1apVatq0qXV+VFSUTbtevXrpb3/7m/X7w9y1+VfpDxNO7617kDt37ki626tHQENhxzVoAExn1KhRcnV1Vb9+/fTHH39kWB4ZGamPP/5Ybdu2laQMd1bOmjVLktSuXTtJUsuWLVW0aFHNmTPH2sOU2XqS9MILL2jXrl3asGFDhmXx8fHWEJFT6T1f/13Hnj17tGvXrofablb2k5ycrP/93/+1aVexYkW1bNnSOjVu3Djb+/rzzz9t9pNu0aJFkqTg4OAHbuPKlSvauXOnfHx8VKZMmWzXABQ09KABMJ1KlSpp+fLlevHFF1WtWjWbNwns3LlTK1euVGhoqAYPHqzevXvrk08+sQ7p7d27V0uWLFGnTp30zDPPSLp7rdmIESM0bdo0tW/fXm3bttXBgwe1bt06m+ugJGnkyJFas2aN2rdvr9DQUD311FO6fv26jh49qq+//lrR0dE26+zbt0/vvvtuhmNo3ry5Tc9Uuvbt22vVqlXq3Lmz2rVrp6ioKC1YsEBPPPGEzbVgD6tRo0YqUaKEevfurbfeeksWi0VLly7NNEjdy7lz57R06VJJd49TkvVYAwIC9Morr0i6O2y7YMECderUSRUrVtS1a9e0YcMGbdy4UR06dNCzzz6bYdtff/213NzcZBiGLl68qE8//VRXr17VggULcnXIGsi37HgHKQDc1+nTp43+/fsbgYGBhpOTk+Hu7m40btzYmDNnjvUxESkpKcakSZOMChUqGEWLFjX8/f2NsWPHZniMRGpqqjFp0iTD19fXcHFxMZo3b278+uuvRkBAgM1jNgzDMK5du2aMHTvWCAoKMpycnIzSpUsbjRo1MmbOnGkkJydb2ymTx0WkT1OmTDEMI+NjNtLS0oypU6caAQEBhrOzs1GnTh3j+++/N3r37m0EBARY26U/ZuP999+3qW3Lli2GJGPlypU28xcvXmxIMn755RfrvB07dhgNGjQwXFxcDD8/P2PUqFHGhg0bDEnGli1bHnj+0/eV2fTfx/TLL78Yzz//vFG+fHnD2dnZcHV1NerWrWvMmjXL5lEghpH5YzZcXV2Nhg0bGl999dUDawIKC4thZOOfUwAAAHjkuAYNAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyPKg2H0pLS9PFixfl7u7OAx0BAMgnDMPQtWvX5OfnpyJF7t9HRkDLhy5evCh/f397lwEAAHLg/PnzKleu3H3bENDyIXd3d0l3/wN7eHjYuRoAAJAViYmJ8vf3t/4dvx8CWj6UPqzp4eFBQAMAIJ/JyuVJ3CQAAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQc7V0Acq7B8gZycHGwdxkAABQYR3sftXcJkuhBAwAAMB0CGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYjKO9C0DO7T73mzycLfYuAwCQX0xMsHcFyCJ60AAAAEyGgAYAAGAyBLRcFBERIYvFovj4eHuXAgAA8jG7BTSLxXLfaeLEifYqLccaNWqk2NhYeXp6ZnmdiRMn6sknn3x0RQEAgHzHbjcJxMbGWj+vWLFC48eP16lTp6zz3Nzc7FFWjqWkpMjJyUk+Pj72LgUAAORzdutB8/HxsU6enp6yWCzy8fGRu7u7qlSpovXr19u0X716tVxdXXXt2jVFR0fLYrHoyy+/VKNGjVSsWDHVqFFDW7dutVnn119/VZs2beTm5qayZcvqlVde0Z9//mld/vXXX6tmzZpycXFRqVKl1LJlS12/ft26/F//+peqV68uZ2dn+fr6atCgQdZlFotF8+fP19///ne5urrqvffeyzDEGR4eLi8vL61evVqVK1dWsWLFFBISovPnz1uXT5o0SYcPH7b2HIaHh+fymQYAAPmN6a5Bc3V1Vffu3bV48WKb+YsXL1a3bt3k7u5unTdy5EgNHz5cBw8eVMOGDdWhQwddvnxZkhQfH69nn31WderU0b59+7R+/Xr98ccfeuGFFyTd7cHr0aOH+vbtqxMnTigiIkJdunSRYRiSpPnz5yssLEyvvfaajh49qjVr1igoKMimpokTJ6pz5846evSo+vbtm+nx3LhxQ++9954+++wz7dixQ/Hx8erevbsk6cUXX9Tw4cNVvXp1xcbGKjY2Vi+++GKGbdy+fVuJiYk2EwAAKLhM+Ry0fv36Wa/n8vX1VVxcnNauXatNmzbZtBs0aJC6du0q6W6gWr9+vT799FONGjVKc+fOVZ06dTR16lRr+3/961/y9/fX6dOnlZSUpDt37qhLly4KCAiQJNWsWdPa9t1339Xw4cM1ePBg67ynn37aZv8vvfSS+vTpY/3+n//8J8OxpKSkaO7cuapfv74kacmSJapWrZr27t2revXqyc3NTY6OjvcdGp02bZomTZr0wPMGAAAKBtP1oElSvXr1VL16dS1ZskSS9PnnnysgIEBNmza1adewYUPrZ0dHRwUHB+vEiROSpMOHD2vLli1yc3OzTlWrVpUkRUZGqnbt2mrRooVq1qyp559/Xv/85z919epVSVJcXJwuXryoFi1a3LfO4ODgBx6Lo6OjTbCrWrWqvLy8rHVmxdixY5WQkGCd0odIAQBAwWTKgCbd7UVLvx5r8eLF6tOnjyyWrD81PykpSR06dNChQ4dspjNnzqhp06ZycHDQxo0btW7dOj3xxBOaM2eOHn/8cUVFRcnFxSVL+3B1dc3JoWWbs7OzPDw8bCYAAFBwmTagvfzyyzp37pxmz56t48ePq3fv3hna7N692/r5zp072r9/v6pVqyZJqlu3ro4dO6bAwEAFBQXZTOnBymKxqHHjxpo0aZIOHjwoJycnffvtt3J3d1dgYKA2b9780Mdx584d7du3z/r91KlTio+Pt9bp5OSk1NTUh94PAAAoOEwb0EqUKKEuXbpo5MiRatWqlcqVK5ehzbx58/Ttt9/q5MmTCgsL09WrV60X64eFhenKlSvq0aOHfvnlF0VGRmrDhg3q06ePUlNTtWfPHk2dOlX79u1TTEyMVq1apUuXLlmD08SJE/XBBx9o9uzZOnPmjA4cOKA5c+Zk+ziKFi2qN998U3v27NH+/fsVGhqqBg0aqF69epKkwMBARUVF6dChQ/rzzz91+/bthzhrAACgIDBtQJOkV199VcnJyfe8Q3L69OmaPn26ateure3bt2vNmjUqXbq0JMnPz087duxQamqqWrVqpZo1a2rIkCHy8vJSkSJF5OHhoW3btqlt27aqUqWK3nnnHX3wwQdq06aNJKl379766KOP9L//+7+qXr262rdvrzNnzmT7GIoXL67Ro0frpZdeUuPGjeXm5qYVK1ZYl3ft2lWtW7fWM888I29vb33xxRc5OFMAAKAgsRjpz5UwoaVLl2ro0KG6ePGinJycrPOjo6NVoUIFHTx40NRP4Q8PD9eQIUNy/dVPiYmJ8vT0VMIYd3k4Z/26PABAITcxwd4VFGrWv98JCQ+8ntyUj9m4ceOGYmNjNX36dA0YMMAmnAEAABR0pgxoM2bM0HvvvaemTZtq7Nix9i7HtGrc+lRFjOL2LgNAIRA9vZ29SwAKFVMPcSJz6V2k/kO+UhFnAhqAR4+ABjy87AxxmvomAQAAgMKIgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZBztXQBy7tdJIfLw8LB3GQAAIJfRgwYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJuNo7wKQcw2WN5CDi4O9ywAAZMPR3kftXQLyAXrQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGUd7F4Cc233uN3k4W+xdBoCCaGKCvSsACjV60AAAAEyGgJYNoaGh6tSpk73LAAAABVyBDWihoaGyWCyyWCxycnJSUFCQJk+erDt37jxw3ejoaFksFh06dOjRFwoAAPAXBfoatNatW2vx4sW6ffu21q5dq7CwMBUtWlRjx461d2kAAAD3VGB70CTJ2dlZPj4+CggI0Ouvv66WLVvqq6++koeHh77++mubtqtXr5arq6uuXbumChUqSJLq1Kkji8Wi5s2b27SdOXOmfH19VapUKYWFhSklJcW67OrVq+rVq5dKlCih4sWLq02bNjpz5ox1eXh4uLy8vLRhwwZVq1ZNbm5uat26tWJjYx/diQAAAPlKgQ5of+Xi4qIiRYqoe/fuWrx4sc2yxYsXq1u3bnJ3d9fevXslSZs2bVJsbKxWrVplbbdlyxZFRkZqy5YtWrJkicLDwxUeHm5dHhoaqn379mnNmjXatWuXDMNQ27ZtbULcjRs3NHPmTC1dulTbtm1TTEyMRowYcc+6b9++rcTERJsJAAAUXIUioBmGoU2bNmnDhg169tln1a9fP23YsMHaaxUXF6e1a9eqb9++kiRvb29JUqlSpeTj46OSJUtat1WiRAnNnTtXVatWVfv27dWuXTtt3rxZknTmzBmtWbNGixYtUpMmTVS7dm0tW7ZMFy5c0OrVq63bSElJ0YIFCxQcHKy6detq0KBB1m1kZtq0afL09LRO/v7+uX2KAACAiRTogPb999/Lzc1NxYoVU5s2bfTiiy9q4sSJqlevnqpXr64lS5ZIkj7//HMFBASoadOmD9xm9erV5eDgYP3u6+uruLg4SdKJEyfk6Oio+vXrW5eXKlVKjz/+uE6cOGGdV7x4cVWqVCnTbWRm7NixSkhIsE7nz5/P+kkAAAD5ToEOaM8884wOHTqkM2fO6ObNm1qyZIlcXV0lSf369bMOTS5evFh9+vSRxfLgh74WLVrU5rvFYlFaWlq26spsG4Zh3LO9s7OzPDw8bCYAAFBwFeiA5urqqqCgIJUvX16OjrY3rL788ss6d+6cZs+erePHj6t3797WZU5OTpKk1NTUbO2vWrVqunPnjvbs2WOdd/nyZZ06dUpPPPHEQxwJAAAoTAp0QLufEiVKqEuXLho5cqRatWqlcuXKWZeVKVNGLi4uWr9+vf744w8lJGTtlSeVK1dWx44d1b9/f23fvl2HDx/Wyy+/rMcee0wdO3Z8VIcCAAAKmEIb0CTp1VdfVXJysvXmgHSOjo6aPXu2Fi5cKD8/v2yFq8WLF+upp55S+/bt1bBhQxmGobVr12YY1gQAALgXi3G/i58KuKVLl2ro0KG6ePGidVgzP0hMTJSnp6cSxrjzsnQAjwYvSwdynfXvd0LCA68nL9BvEriXGzduKDY2VtOnT9eAAQPyVTgDAAAFX6EMaDNmzNB7772npk2b5uvXPtW49amKGMXtXQbykejp7exdAgAgCwrlNWgTJ05USkqKNm/eLDc3N3uXAwAAYKNQBjQAAAAzI6ABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJpOjgLZt2zbduXMnw/w7d+5o27ZtD10UAABAYWYxDMPI7koODg6KjY1VmTJlbOZfvnxZZcqUUWpqaq4ViIwSExPl6emphIQEeXh42LscAACQBdn5+52jHjTDMGSxWDLMv3z5slxdXXOySQAAAPw/x+w07tKliyTJYrEoNDRUzs7O1mWpqak6cuSIGjVqlLsVAgAAFDLZCmienp6S7vagubu7y8XFxbrMyclJDRo0UP/+/XO3QgAAgEImWwFt8eLFkqTAwECNGDGC4UwAAIBHIEfXoE2YMEHOzs7atGmTFi5cqGvXrkmSLl68qKSkpFwtEAAAoLDJVg9aunPnzql169aKiYnR7du39dxzz8nd3V3/+Mc/dPv2bS1YsCC36wQAACg0ctSDNnjwYAUHB+vq1as216F17txZmzdvzrXiAAAACqMc9aD9/PPP2rlzp5ycnGzmBwYG6sKFC7lSGAAAQGGVox60tLS0TB9G+9tvv8nd3f2hiwIAACjMchTQWrVqpY8++sj63WKxKCkpSRMmTFDbtm1zqzYAAIBCKUevevrtt98UEhIiwzB05swZBQcH68yZMypdurS2bduW4RVQyF286gkAgPwnO3+/cxTQpLsvRl+xYoUOHz6spKQk1a1bVz179rS5aQCPBgENAID8J08CGuyHgAYAQP7zyF+WvmTJEv3www/W76NGjZKXl5caNWqkc+fO5WSTAAAA+H85CmhTp061DmXu2rVLc+fO1YwZM1S6dGkNHTo0VwsEAAAobHL0HLTz588rKChIkrR69Wp169ZNr732mho3bqzmzZvnZn0AAACFTo560Nzc3HT58mVJ0o8//qjnnntOklSsWDHdvHkz96oDAAAohHLUg/bcc8+pX79+qlOnjk6fPm199tmxY8cUGBiYm/UBAAAUOjnqQZs3b54aNmyoS5cu6ZtvvlGpUqUkSfv371ePHj1ytUAAAIDChsds5EM8ZgMAgPwnO3+/czTEme7GjRuKiYlRcnKyzfxatWo9zGYBAAAKtRwFtEuXLik0NFTr16/PdHlmL1IHAABA1uToGrQhQ4YoISFBe/bskYuLi9avX68lS5aocuXKWrNmTW7XCAAAUKjkqAftp59+0nfffafg4GAVKVJEAQEBeu655+Th4aFp06apXbt2uV0nAABAoZGjHrTr16+rTJkykqQSJUro0qVLkqSaNWvqwIEDuVcdAABAIZSjgPb444/r1KlTkqTatWtr4cKFunDhghYsWCBfX99cLRAAAKCwydEQ5+DBgxUbGytJmjBhglq3bq1ly5bJyclJ4eHhuVkfAABAoZMrz0G7ceOGTp48qfLly6t06dK5URfug+egAQCQ/2Tn73eOhjgnT56sGzduWL8XL15cdevWlaurqyZPnpyTTQIAAOD/5agHzcHBQbGxsdYbBdJdvnxZZcqU4Tlojxg9aAAA5D+PvAfNMAxZLJYM8w8fPqySJUvmZJMAAAD4f9m6SaBEiRKyWCyyWCyqUqWKTUhLTU1VUlKSBg4cmOtFAgAAFCbZCmgfffSRDMNQ3759NWnSJHl6elqXOTk5KTAwUA0bNsz1IgEAAAqTbAW03r17S5IqVKigRo0aqWjRoo+kKAAAgMIsR89Ba9asmfXzrVu3lJycbLOcC9cBAAByLkc3Cdy4cUODBg1SmTJl5OrqqhIlSthMAAAAyLkcBbSRI0fqp59+0vz58+Xs7KxFixZp0qRJ8vPz02effZbbNQIAABQqORri/Pe//63PPvtMzZs3V58+fdSkSRMFBQUpICBAy5YtU8+ePXO7TgAAgEIjRz1oV65cUcWKFSXdvd7sypUrkqS//e1v2rZtW+5VBwAAUAjlKKBVrFhRUVFRkqSqVavqq6++knS3Z83LyyvXigMAACiMchTQ+vTpo8OHD0uSxowZo3nz5qlYsWIaOnSoRo4cmasFAgAAFDY5ehfnX507d0779+9XUFCQatWqlRt14T54FycAAPlPdv5+Z/smgbS0NIWHh2vVqlWKjo6WxWJRhQoV1K1bN9WsWTPHRQMAAOCubA1xGoahv//97+rXr58uXLigmjVrqnr16jp37pxCQ0PVuXPnR1UnAABAoZGtHrTw8HBt27ZNmzdv1jPPPGOz7KefflKnTp302WefqVevXrlaJAAAQGGSrR60L774Qm+//XaGcCZJzz77rMaMGaNly5blWnEAAACFUbZ60I4cOaIZM2bcc3mbNm00e/bshy4KWdNgeQM5uDjYuwwUcEd7H7V3CQBQ6GSrB+3KlSsqW7bsPZeXLVtWV69efeiiAAAACrNsBbTU1FQ5Ot67083BwUF37tx56KIAAAAKs2wNcRqGodDQUDk7O2e6/Pbt27lSFAAAQGGWrYDWu3fvB7bhDk4AAICHk62Atnjx4kdVBwAAAP5fjt7FCQAAgEeHgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEwmW28SgLnsPvebPJwt9i4D9jYxwd4VAAByGT1oAAAAJkNAAwAAMBkCGgAAgMkQ0B4gNDRUnTp1sncZAACgECGgAQAAmAwBLRvWr1+vv/3tb/Ly8lKpUqXUvn17RUZGWpc3atRIo0ePtlnn0qVLKlq0qLZt2yZJWrp0qYKDg+Xu7i4fHx+99NJLiouLy9PjAAAA5kZAy4br169r2LBh2rdvnzZv3qwiRYqoc+fOSktLkyT17NlTX375pQzDsK6zYsUK+fn5qUmTJpKklJQUTZkyRYcPH9bq1asVHR2t0NDQ++739u3bSkxMtJkAAEDBZTH+O00gg9DQUMXHx2v16tUZlv3555/y9vbW0aNHVaNGDV26dEl+fn766aefrIGsUaNGatq0qaZPn57p9vft26enn35a165dk5ubW6ZtJk6cqEmTJmWYnzDGneeggeegAUA+kZiYKE9PTyUkJMjDw+O+belBy4YzZ86oR48eqlixojw8PBQYGChJiomJkSR5e3urVatWWrZsmSQpKipKu3btUs+ePa3b2L9/vzp06KDy5cvL3d1dzZo1s9lGZsaOHauEhATrdP78+Ud0hAAAwAwIaNnQoUMHXblyRf/85z+1Z88e7dmzR5KUnJxsbdOzZ099/fXXSklJ0fLly1WzZk3VrFlT0t0h0pCQEHl4eGjZsmX65Zdf9O2332bYxl85OzvLw8PDZgIAAAUXAS2LLl++rFOnTumdd95RixYtVK1aNV29ejVDu44dO+rWrVtav369li9fbtN7dvLkSV2+fFnTp09XkyZNVLVqVW4QAAAAGfAuziwqUaKESpUqpU8++US+vr6KiYnRmDFjMrRzdXVVp06dNG7cOJ04cUI9evSwLitfvrycnJw0Z84cDRw4UL/++qumTJmSl4cBAADyAXrQHiAtLU2Ojo4qUqSIvvzyS+3fv181atTQ0KFD9f7772e6Ts+ePXX48GE1adJE5cuXt8739vZWeHi4Vq5cqSeeeELTp0/XzJkz8+pQAABAPsFdnA/QunVrBQUFae7cufYuxcp6Fwh3cULiLk4AyCeycxcnQ5z3cPXqVe3YsUMREREaOHCgvcvJVI1bn6qIUdzeZRQY0dPb2bsEAAAkEdDuqW/fvvrll180fPhwdezY0d7lAACAQoSAdg/pj78AAADIa9wkAAAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAm42jvApBzv04KkYeHh73LAAAAuYweNAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATMbR3gUAAJATaWlpSk5OtncZgFXRokXl4OCQK9sioAEA8p3k5GRFRUUpLS3N3qUANry8vOTj4yOLxfJQ2yGgAQDyFcMwFBsbKwcHB/n7+6tIEa7Wgf0ZhqEbN24oLi5OkuTr6/tQ2yOgAQDylTt37ujGjRvy8/NT8eLF7V0OYOXi4iJJiouLU5kyZR5quJN/dgAA8pXU1FRJkpOTk50rATJK/0dDSkrKQ22HgAYAyJce9hof4FHIrd8lQ5z5WIPlDeTgkjt3iwAF1dHeR+1dAgBkGz1oAADkgebNm2vIkCF2239oaKg6depkmnpwf/SgAQAKhMAxP+Tp/qKnt8vT/eW2VatWqWjRovYuI98IDAzUkCFD8izUEtAAACiESpYsae8SHpphGEpNTZWjY8GLMwxxAgCQR+7cuaNBgwbJ09NTpUuX1rhx42QYhiRp6dKlCg4Olru7u3x8fPTSSy9Zn6klSVevXlXPnj3l7e0tFxcXVa5cWYsXL7YuP3/+vF544QV5eXmpZMmS6tixo6Kjo+9Zy1+HOAMDAzV16lT17dtX7u7uKl++vD755BObdbK7j/+WPsQ6adIkeXt7y8PDQwMHDrR5G0RaWpqmTZumChUqyMXFRbVr19bXX39tXR4RESGLxaJ169bpqaeekrOzs7Zv3660tDTNmDFDQUFBcnZ2Vvny5fXee+9lue702mbOnClfX1+VKlVKYWFh1jsxmzdvrnPnzmno0KGyWCx5coMKAQ0AgDyyZMkSOTo6au/evfr44481a9YsLVq0SNLdxzJMmTJFhw8f1urVqxUdHa3Q0FDruuPGjdPx48e1bt06nThxQvPnz1fp0qWt64aEhMjd3V0///yzduzYITc3N7Vu3Tpbr8P64IMPFBwcrIMHD+qNN97Q66+/rlOnTuXaPjZv3qwTJ04oIiJCX3zxhVatWqVJkyZZl0+bNk2fffaZFixYoGPHjmno0KF6+eWXtXXrVpvtjBkzRtOnT9eJEydUq1YtjR07VtOnT7eeo+XLl6ts2bLZqnvLli2KjIzUli1btGTJEoWHhys8PFzS3eHgcuXKafLkyYqNjVVsbGyWz2lOFbw+QQAATMrf318ffvihLBaLHn/8cR09elQffvih+vfvr759+1rbVaxYUbNnz9bTTz+tpKQkubm5KSYmRnXq1FFwcLCkuz1e6VasWKG0tDQtWrTI2ruzePFieXl5KSIiQq1atcpSfW3bttUbb7whSRo9erQ+/PBDbdmyRY8//niu7MPJyUn/+te/VLx4cVWvXl2TJ0/WyJEjNWXKFKWkpGjq1KnatGmTGjZsaD0P27dv18KFC9WsWTPrdiZPnqznnntOknTt2jV9/PHHmjt3rnr37i1JqlSpkv72t79l69yUKFFCc+fOlYODg6pWrap27dpp8+bN6t+/v0qWLCkHBwdr72ZeIKABAJBHGjRoYDM81rBhQ33wwQdKTU3VoUOHNHHiRB0+fFhXr161vmc0JiZGTzzxhF5//XV17dpVBw4cUKtWrdSpUyc1atRIknT48GGdPXtW7u7uNvu7deuWIiMjs1xfrVq1rJ8tFot8fHysw6y5sY/atWvbvP2hYcOGSkpK0vnz55WUlKQbN25Yg1e65ORk1alTx2ZeekiVpBMnTuj27dtq0aJFpvvMat3Vq1e3efK/r6+vjh6132N6CGgAANjZrVu3FBISopCQEC1btkze3t6KiYlRSEiIdRiuTZs2OnfunNauXauNGzeqRYsWCgsL08yZM5WUlKSnnnpKy5Yty7Btb2/vLNfx17s6LRaLNSjm1j7uJSkpSZL0ww8/6LHHHrNZ5uzsbPPd1dXV+jn99Ur3225W6r7fsdsDAQ0AgDyyZ88em++7d+9W5cqVdfLkSV2+fFnTp0+Xv7+/JGnfvn0Z1vf29lbv3r3Vu3dvNWnSRCNHjtTMmTNVt25drVixQmXKlJGHh8cjqT039nH48GHdvHnTGqp2794tNzc3+fv7q2TJknJ2dlZMTIzNcOaDVK5cWS4uLtq8ebP69ev3SOqW7g7Ppr9mLC9wkwAAAHkkJiZGw4YN06lTp/TFF19ozpw5Gjx4sMqXLy8nJyfNmTNH//nPf7RmzRpNmTLFZt3x48fru+++09mzZ3Xs2DF9//33qlatmiSpZ8+eKl26tDp27Kiff/5ZUVFRioiI0FtvvaXffvstV2rPjX0kJyfr1Vdf1fHjx7V27VpNmDBBgwYNUpEiReTu7q4RI0Zo6NChWrJkiSIjI3XgwAHNmTNHS5Ysuec2ixUrptGjR2vUqFH67LPPFBkZqd27d+vTTz/N1XMTGBiobdu26cKFC/rzzz+zvF5O0YMGACgQ8sODY3v16qWbN2+qXr16cnBw0ODBg/Xaa6/JYrEoPDxcb7/9tmbPnq26detq5syZ+vvf/25d18nJSWPHjlV0dLRcXFzUpEkTffnll5LuvqB727ZtGj16tLp06aJr167pscceU4sWLXKtRy039tGiRQtVrlxZTZs21e3bt9WjRw9NnDjRunzKlCny9vbWtGnT9J///EdeXl6qW7eu3n777ftud9y4cXJ0dNT48eN18eJF+fr6auDAgblWt3T3xoQBAwaoUqVKun37tvXxKI+KxXjUe0CuS0xMlKenp6rNr8a7OIEH4F2cBc+tW7cUFRWlChUqqFixYvYuB1kUGhqq+Ph4rV692t6lPFL3+32m//1OSEh4YDhkiBMAAMBkGOIEAAAPzc3N7Z7L1q1bl4eVFAwEtHxs97nf5OH86F83AUiSJibYuwIAJnbo0KF7LnvsscfUpEmTvCumACCgAQCAhxYUFGTvEgoUrkEDAAAwGQIaAACAyRDQcsnvv/+uN998UxUrVpSzs7P8/f3VoUMHbd68OUPblStXWt+ftnPnTlWsWDGvywUAACbGNWi5IDo6Wo0bN5aXl5fef/991axZUykpKdqwYYPCwsJ08uRJm/a7du1S48aNJUk///yz9TMAAIBEQMsVb7zxhiwWi/bu3WvzAtfq1aurb9++Gdrv3LlTY8aMkSRt375d7dqZ/+nXAAAg7zDE+ZCuXLmi9evXKywszCacpfPy8pIkLV++XF5eXvLy8tLevXv1yiuvyMvLS2vXrtWIESPk5eWl5cuXZ7qP27dvKzEx0WYCAOQvzZs315AhQ+xdBvIJetAe0tmzZ2UYhqpWrXrfdn//+9/VqFEjbdq0SR999JG+//57HTlyRAMHDtTOnTslSaVLl8503WnTpmnSpEm5XjsAFCgTPfN4f/Z/NmBERIQ+/PBD7d27V4mJiapcubJGjhypnj17WtuEh4erT58+Nus5Ozvr1q1beV1unouOjlaFChV08OBBPfnkk/YuJ1voQXtIWX2VqZubmwIDA3XgwAF17NhRgYGBOnr0qNq2bavAwEAFBgbe8ynMY8eOVUJCgnU6f/58bh4CACCf2rlzp2rVqqVvvvlGR44cUZ8+fdSrVy99//33Nu08PDwUGxtrnc6dO2eniu9KTk626/7zAwLaQ6pcubIsFkuGGwH+W0xMjNzc3OTm5qZPPvlEH3zwgdzc3DRx4kQtXbpUbm5uGjhw4D3Xd3Z2loeHh80EAMh/7ty5o0GDBsnT01OlS5fWuHHjrP/QDwwM1LvvvqtevXrJzc1NAQEBWrNmjS5duqSOHTvKzc1NtWrV0r59+6zbe/vttzVlyhQ1atRIlSpV0uDBg9W6dWutWrXKZr8Wi0U+Pj7WqWzZslmuOTAwUFOmTFGPHj3k6uqqxx57TPPmzbNpEx8fr379+snb21seHh569tlndfjwYevyiRMn6sknn9SiRYtsXiIeHx+vAQMGqGzZsipWrJhq1KhhEy63b9+uJk2ayMXFRf7+/nrrrbd0/fp1m9qmTp2qvn37yt3dXeXLl9cnn3xiXV6hQgVJUp06dWSxWNS8efMsH7e9EdAeUsmSJRUSEqJ58+bZ/GjSxcfHy8/PT4cOHdL69evl6OioQ4cOac+ePZLu3sV56NAhTZ48Oa9LBwDksSVLlsjR0VF79+7Vxx9/rFmzZmnRokXW5R9++KEaN26sgwcPql27dnrllVfUq1cvvfzyyzpw4IAqVaqkXr163Xf0JiEhQSVLlrSZl5SUpICAAPn7+6tjx446duxYtup+//33Vbt2bR08eFBjxozR4MGDtXHjRuvy559/XnFxcVq3bp3279+vunXrqkWLFrpy5Yq1zdmzZ/XNN99o1apVOnTokNLS0tSmTRvt2LFDn3/+uY4fP67p06fLwcFBkhQZGanWrVura9euOnLkiFasWKHt27dr0KBBNrV98MEHCg4O1sGDB/XGG2/o9ddf16lTpyRJe/fulSRt2rRJsbGxGYKrmVmMrI7R4Z7+85//qHHjxipZsqQmT56sWrVq6c6dO9q4caPmz5+vEydOSJK+/PJLzZ8/X1u3btW2bdvUv39/648oOxITE+Xp6amEMe68ixN5xwTX2wCSdOvWLUVFRdn0xEgy/TVozZs3V1xcnI4dOyaL5e7/u8eMGaM1a9bo+PHjCgwMVJMmTbR06VJJd5+v6evrq3Hjxln/Eb979241bNhQsbGx8vHxybCPr776Sq+88ooOHDig6tWrS7r7aKczZ86oVq1aSkhI0MyZM7Vt2zYdO3ZM5cqVe2DdgYGBqlatms0Lz7t3767ExEStXbvW+jSCuLg4OTs7W9sEBQVp1KhReu211zRx4kRNnTpVFy5ckLe3tyTpxx9/VJs2bXTixAlVqVIlw3779esnBwcHLVy40Dpv+/btatasma5fv65ixYplOGeGYcjHx0eTJk3SwIED7XIN2j1/n/qvv98JCQ8cDaMHLRdUrFhRBw4c0DPPPKPhw4erRo0aeu6557R582bNnz/f2i4iIkJNmzaVJG3dutX6GQBQODRo0MAaziSpYcOGOnPmjFJTUyVJtWrVsi5LH4asWbNmhnlxcXEZtr1lyxb16dNH//znP63hLH0fvXr10pNPPqlmzZpp1apV8vb2tgk+D9KwYcMM39M7Hw4fPqykpCSVKlXKejmPm5uboqKiFBkZaV0nICDAGs6kuy9XL1euXKbhLH274eHhNtsMCQlRWlqaoqKirO3++5ylD+Vmdn7yG+7izCW+vr6aO3eu5s6de882CxYssH4eN25cXpQFAMhHihYtav2cHuQym5eWlmaz3tatW9WhQwd9+OGH6tWr1wP3UadOHZ09ezZXak5KSpKvr68iIiIyLEt/1JSkDI+icnFxeeB2BwwYoLfeeivDsvLly1s///f5ke6eo7+en/yIgAYAQB5Jv/443e7du1W5cmXrdVc5ERERofbt2+sf//iHXnvttQe2T01NtT5FIKt2796d4Xu1atUkSXXr1tXvv/8uR0dHBQYGZnmbtWrV0m+//abTp09n2otWt25dHT9+XEFBQVne5l85OTlJkrWHMj8hoOVjNW59qiJGcXuXUeBET+fNDgAejZiYGA0bNkwDBgzQgQMHNGfOHH3wwQc53t6WLVvUvn17DR48WF27dtXvv/8u6W4wSb9RYPLkyWrQoIGCgoIUHx+v999/X+fOnVO/fv2yvJ8dO3ZoxowZ6tSpkzZu3KiVK1fqhx9+kCS1bNlSDRs2VKdOnTRjxgxVqVJFFy9e1A8//KDOnTsrODg40202a9ZMTZs2VdeuXTVr1iwFBQXp5MmTslgsat26tUaPHq0GDRpo0KBB6tevn1xdXXX8+HFt3LjxvqNV/61MmTJycXHR+vXrVa5cORUrVkyennl8rWIOcQ0aAAB5pFevXrp586bq1aunsLAwDR48OEu9XveyZMkS3bhxQ9OmTZOvr6916tKli7XN1atX1b9/f1WrVk1t27ZVYmKidu7cqSeeeCLL+xk+fLj27dunOnXq6N1339WsWbMUEhIi6e6Q4tq1a9W0aVP16dNHVapUUffu3XXu3LkHPs7jm2++0dNPP60ePXroiSee0KhRo2yux9u6datOnz6tJk2aqE6dOho/frz8/PyyXLejo6Nmz56thQsXys/PTx07dszyuvbGXZz5UPpdIP5DvlIRZ3rQchs9aIC53e8uOeS+wMBADRkyhNdUZRF3cQIAABRQBDQAAAqpn3/+2eYxFn+dYD/cJAAAQCEVHBysQ4cO3bdNdHR0ntQCWwQ0AAAKKRcXl4d6jAUeHYY4AQAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAABRgERERslgsio+Pt3cpyAYeswEAKBBqLqmZp/s72vtonu4PDy86OloVKlTQwYMH9eSTT9q7nPuiBw0AABMyDEN37tyxdxl5Ijk52d4lmA49aPnYr5NCHviyVQCAedy+fVsjR47Ul19+qcTERAUHB+vDDz/U008/rYiICD3zzDNau3at3nnnHR09elQ//vij/P39NWzYMO3evVvXr19XtWrVNG3aNLVs2dJmu+PHj9fy5csVFxcnf39/jR07Vq+++mqmdWzfvl1jx47Vvn37VLp0aXXu3FnTpk2Tq6vrA48hMDBQr776qo4fP641a9bIy8tLb7/9tsLCwqxt4uPjNWLECH333Xe6ffu29Thr164tSZo4caJWr16tQYMG6b333tO5c+eUlpam+Ph4jR49WqtXr1ZCQoKCgoI0ffp0tW/fPkt1BwYG6rXXXtPZs2e1cuVKlShRQu+8845ee+01SVKFChUkSXXq1JEkNWvWTBEREdn8r5g36EEDACCPjBo1St98842WLFmiAwcOKCgoSCEhIbpy5Yq1zZgxYzR9+nSdOHFCtWrVUlJSktq2bavNmzfr4MGDat26tTp06KCYmBjrOr169dIXX3yh2bNn68SJE1q4cOE936UZGRmp1q1bq2vXrjpy5IhWrFih7du3a9CgQVk+jvfff1+1a9fWwYMHNWbMGA0ePFgbN260Ln/++ecVFxendevWaf/+/apbt65atGhhc5xnz57VN998o1WrVunQoUNKS0tTmzZttGPHDn3++ec6fvy4pk+fLgcHh2zV/cEHHyg4OFgHDx7UG2+8oddff12nTp2SJO3du1eStGnTJsXGxmrVqlVZPua8ZjEMw7B3EciexMREeXp6KiEhgR40AIXOrVu3FBUVpQoVKqhYsWLW+Wa/Bu369esqUaKEwsPD9dJLL0mSUlJSFBgYqCFDhujpp5/WM888o9WrV6tjx4733VaNGjU0cOBADRo0SKdPn9bjjz+ujRs32vSqpUvvmbt69aq8vLzUr18/OTg4aOHChdY227dvV7NmzXT9+nWbc5qZwMBAVatWTevWrbPO6969uxITE7V27Vpt375d7dq1U1xcnJydna1tgoKCNGrUKL322muaOHGipk6dqgsXLsjb21uS9OOPP6pNmzY6ceKEqlSpkmG/Wak7MDBQTZo00dKlSyXdHSb28fHRpEmTNHDgwDy5Bu1ev08pe3+/6UEDACAPREZGKiUlRY0bN7bOK1q0qOrVq6cTJ05Y5wUHB9usl5SUpBEjRqhatWry8vKSm5ubTpw4Ye1BO3TokBwcHNSsWbMs1XH48GGFh4fLzc3NOoWEhCgtLU1RUVFZ2kbDhg0zfE8/hsOHDyspKUmlSpWy2UdUVJQiIyOt6wQEBFjDWfpxlCtXLtNwlp26a9WqZf1ssVjk4+OjuLi4LB2XmXANGgAAJvLX68BGjBihjRs3aubMmQoKCpKLi4u6detmvbDexcUlW9tPSkrSgAED9NZbb2VYVr58+ZwX/l/b9/X1zfTaLi8vL+vnvx7ng44jq3UXLVrUZpnFYlFaWloWKjcXAhoAAHmgUqVKcnJy0o4dOxQQECDp7hDnL7/8oiFDhtxzvR07dig0NFSdO3eWdDeoREdHW5fXrFlTaWlp2rp1a6ZDnH9Vt25dHT9+XEFBQTk+lt27d2f4Xq1aNev2f//9dzk6OiowMDDL26xVq5Z+++03nT59OtNetNyo28nJSZKUmpqa423kFYY4AQDIA66urnr99dc1cuRIrV+/XsePH1f//v1148aNe95tKUmVK1e2Xkh/+PBhvfTSSzY9QoGBgerdu7f69u2r1atXKyoqShEREfrqq68y3d7o0aO1c+dODRo0SIcOHdKZM2f03XffZesmgR07dmjGjBk6ffq05s2bp5UrV2rw4MGSpJYtW6phw4bq1KmTfvzxR0VHR2vnzp36n//5H+3bt++e22zWrJmaNm2qrl27auPGjYqKitK6deu0fv36XKu7TJkycnFx0fr16/XHH38oISEhy+vmNQIaAAB5ZPr06eratateeeUV1a1bV2fPntWGDRtUokSJe64za9YslShRQo0aNVKHDh0UEhKiunXr2rSZP3++unXrpjfeeENVq1ZV//79df369Uy3V6tWLW3dulWnT59WkyZNVKdOHY0fP15+fn5ZPo7hw4dr3759qlOnjt59913NmjVLISEhku4OKa5du1ZNmzZVnz59VKVKFXXv3l3nzp1T2bJl77vdb775Rk8//bR69OihJ554QqNGjbL2duVG3Y6Ojpo9e7YWLlwoPz+/B96MYU/cxZkPcRcngMLsfnfJ4dFLv+v0fsOyhRl3cQIAABRQBDQAACBJ+vnnn20eY/HXCXmHuzgBAICku89gO3To0H3b/PcdpHh0CGgAAEDS3WeRPcxjLJB7GOIEAAAwGQIaACBf4iEEMKPcemsBQ5wAgHylaNGislgsunTpkry9vWWxWOxdEiDDMJScnKxLly6pSJEi1rcW5BQBDQCQrzg4OKhcuXL67bffuGAdplO8eHGVL19eRYo83CAlAQ0AkO+4ubmpcuXKSklJsXcpgJWDg4McHR1zpVeXgAYAyJccHBzk4OBg7zKAR4KbBAAAAEyGgAYAAGAyBDQAAACT4Rq0fCj92T+JiYl2rgQAAGRV+t/trDzDj4CWD12+fFmS5O/vb+dKAABAdl27dk2enp73bUNAy4dKliwpSYqJiXngf2A8nMTERPn7++v8+fPy8PCwdzkFGuc6b3G+8w7nOu+Y/VwbhqFr167Jz8/vgW0JaPlQ+sPvPD09TfkDLIg8PDw413mEc523ON95h3Odd8x8rrPascJNAgAAACZDQAMAADAZAlo+5OzsrAkTJsjZ2dnepRR4nOu8w7nOW5zvvMO5zjsF6VxbjKzc6wkAAIA8Qw8aAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAS0fmjdvngIDA1WsWDHVr19fe/futXdJBc7EiRNlsVhspqpVq9q7rAJh27Zt6tChg/z8/GSxWLR69Wqb5YZhaPz48fL19ZWLi4tatmypM2fO2KfYfO5B5zo0NDTD77x169b2KTafmzZtmp5++mm5u7urTJky6tSpk06dOmXT5tatWwoLC1OpUqXk5uamrl276o8//rBTxflXVs518+bNM/y2Bw4caKeKc4aAls+sWLFCw4YN04QJE3TgwAHVrl1bISEhiouLs3dpBU716tUVGxtrnbZv327vkgqE69evq3bt2po3b16my2fMmKHZs2drwYIF2rNnj1xdXRUSEqJbt27lcaX534POtSS1bt3a5nf+xRdf5GGFBcfWrVsVFham3bt3a+PGjUpJSVGrVq10/fp1a5uhQ4fq3//+t1auXKmtW7fq4sWL6tKlix2rzp+ycq4lqX///ja/7RkzZtip4hwykK/Uq1fPCAsLs35PTU01/Pz8jGnTptmxqoJnwoQJRu3ate1dRoEnyfj222+t39PS0gwfHx/j/ffft86Lj483nJ2djS+++MIOFRYcfz3XhmEYvXv3Njp27GiXegq6uLg4Q5KxdetWwzDu/o6LFi1qrFy50trmxIkThiRj165d9iqzQPjruTYMw2jWrJkxePBg+xWVC+hBy0eSk5O1f/9+tWzZ0jqvSJEiatmypXbt2mXHygqmM2fOyM/PTxUrVlTPnj0VExNj75IKvKioKP3+++82v3FPT0/Vr1+f3/gjEhERoTJlyujxxx/X66+/rsuXL9u7pAIhISFBklSyZElJ0v79+5WSkmLz265atarKly/Pb/sh/fVcp1u2bJlKly6tGjVqaOzYsbpx44Y9yssxR3sXgKz7888/lZqaqrJly9rML1u2rE6ePGmnqgqm+vXrKzw8XI8//rhiY2M1adIkNWnSRL/++qvc3d3tXV6B9fvvv0tSpr/x9GXIPa1bt1aXLl1UoUIFRUZG6u2331abNm20a9cuOTg42Lu8fCstLU1DhgxR48aNVaNGDUl3f9tOTk7y8vKyactv++Fkdq4l6aWXXlJAQID8/Px05MgRjR49WqdOndKqVavsWG32ENCATLRp08b6uVatWqpfv74CAgL01Vdf6dVXX7VjZUDu6d69u/VzzZo1VatWLVWqVEkRERFq0aKFHSvL38LCwvTrr79y3WoeuNe5fu2116yfa9asKV9fX7Vo0UKRkZGqVKlSXpeZIwxx5iOlS5eWg4NDhrt+/vjjD/n4+NipqsLBy8tLVapU0dmzZ+1dSoGW/jvmN24fFStWVOnSpfmdP4RBgwbp+++/15YtW1SuXDnrfB8fHyUnJys+Pt6mPb/tnLvXuc5M/fr1JSlf/bYJaPmIk5OTnnrqKW3evNk6Ly0tTZs3b1bDhg3tWFnBl5SUpMjISPn6+tq7lAKtQoUK8vHxsfmNJyYmas+ePfzG88Bvv/2my5cv8zvPAcMwNGjQIH377bf66aefVKFCBZvlTz31lIoWLWrz2z516pRiYmL4bWfTg851Zg4dOiRJ+eq3zRBnPjNs2DD17t1bwcHBqlevnj766CNdv35dffr0sXdpBcqIESPUoUMHBQQE6OLFi5owYYIcHBzUo0cPe5eW7yUlJdn8KzYqKkqHDh1SyZIlVb58eQ0ZMkTvvvuuKleurAoVKmjcuHHy8/NTp06d7Fd0PnW/c12yZElNmjRJXbt2lY+PjyIjIzVq1CgFBQUpJCTEjlXnT2FhYVq+fLm+++47ubu7W68r8/T0lIuLizw9PfXqq69q2LBhKlmypDw8PPTmm2+qYcOGatCggZ2rz18edK4jIyO1fPlytW3bVqVKldKRI0c0dOhQNW3aVLVq1bJz9dlg79tIkX1z5swxypcvbzg5ORn16tUzdu/ebe+SCpwXX3zR8PX1NZycnIzHHnvMePHFF42zZ8/au6wCYcuWLYakDFPv3r0Nw7j7qI1x48YZZcuWNZydnY0WLVoYp06dsm/R+dT9zvWNGzeMVq1aGd7e3kbRokWNgIAAo3///sbvv/9u77LzpczOsyRj8eLF1jY3b9403njjDaNEiRJG8eLFjc6dOxuxsbH2KzqfetC5jomJMZo2bWqULFnScHZ2NoKCgoyRI0caCQkJ9i08myyGYRh5GQgBAABwf1yDBgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJjM/wEwq8ETyGXiIAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAGzCAYAAACb/us4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFp0lEQVR4nO3deVhV5d7/8c8WBJFZRYFEUNE0pzQ0h4NamjgeNeukWYKmaeHJeerJudRj2uDwmJ06QqZlppmn1HJCc84xU5w4IKYUpgKiKQjr94cP+3d2OAAieyHv13Wt69p7rXut9V17u+PTfa/BYhiGIQAAAJhGKXsXAAAAAFsENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAC4haCgIEVERNy37bdu3VqtW7e+b9sHULwR0AAUO3FxcRo4cKCqVaumMmXKyMPDQy1atND777+vP/74w97lyWKxaPDgwfYu476xWCy3nZ566ilru5iYmFzLy5Urp6ZNm2rJkiV2PALA/BztXQAA5Me3336rZ599Vs7OzurTp4/q1q2rjIwMbdu2TaNGjdKRI0f04Ycf2rvMB9rixYtzzdu7d6/ef/99tWvXLtey1157TY0bN5YkXbhwQcuWLdMLL7yglJQURUZG3vd6geKIgAag2IiPj1fPnj0VGBioTZs2yc/Pz7osMjJSp06d0rfffmvHCkuGF154Ide8nN6yXr165VoWGhqqZ555xvr+lVdeUbVq1bR06VICGnAbDHECKDZmzpyp9PR0ffzxxzbhLEdwcLCGDBkiSbpx44amTp2q6tWry9nZWUFBQXr99dd1/fp1m3UMw9Cbb76pypUrq2zZsnriiSd05MiRW+4/JSVFQ4cOVUBAgJydnRUcHKx//OMfys7Ovudjy8jI0IQJE/TYY4/J09NTrq6uCg0N1ebNm23aJSQkyGKxaNasWZo/f76qVaumsmXLql27djpz5owMw9DUqVNVuXJlubi4qGvXrrp48aLNNr7++mt16tRJ/v7+cnZ2VvXq1TV16lRlZWUVqPbr169rxYoVatWqlSpXrnzX9k5OTvL29pajI30EwO3w6wBQbPz73/9WtWrV1Lx587u27d+/v6Kjo/XMM89oxIgR2r17t6ZPn67Y2Fh99dVX1nYTJkzQm2++qY4dO6pjx47av3+/2rVrp4yMDJvtXb16Va1atdLZs2c1cOBAValSRTt27NC4ceOUlJSk9957756OLS0tTR999JF69eqlAQMG6PLly/r4448VFhamPXv26NFHH7Vpv2TJEmVkZOjvf/+7Ll68qJkzZ+pvf/ubnnzyScXExGjMmDE6deqU5s6dq5EjR+pf//qXdd2oqCi5ublp+PDhcnNz06ZNmzRhwgSlpaXp7bffznfta9asUUpKinr37n3L5ZcvX9bvv/8uSbp48aKWLl2qn3/+WR9//HG+9wWUGAYAFAOpqamGJKNr1653bXvw4EFDktG/f3+b+SNHjjQkGZs2bTIMwzCSk5MNJycno1OnTkZ2dra13euvv25IMsLDw63zpk6dari6uhonTpyw2ebYsWMNBwcHIzEx0TpPkhEZGXnHGlu1amW0atXK+v7GjRvG9evXbdpcunTJqFSpktGvXz/rvPj4eEOS4ePjY6SkpFjnjxs3zpBkNGjQwMjMzLTO79Wrl+Hk5GRcu3bNOu/q1au56hk4cKBRtmxZm3Z51aNHD8PZ2dm4dOmSzfzNmzcbknJNpUqVMt5666187wcoSRjiBFAspKWlSZLc3d3v2nbNmjWSpOHDh9vMHzFihCRZz1PbsGGDtRfKYrFY2w0dOjTXNpcvX67Q0FB5e3vr999/t05t27ZVVlaWtm7dWqDjyuHg4CAnJydJUnZ2ti5evKgbN24oJCRE+/fvz9X+2Weflaenp/X9448/Lunm+WH/PXT4+OOPKyMjQ2fPnrXOc3Fxsb7O6d0KDQ3V1atXdezYsXzVnZaWpm+//VYdO3aUl5fXLdtMmDBB69ev1/r167Vs2TL16tVL//M//6P3338/X/sCShKGOAEUCx4eHpJuBoq7OX36tEqVKqXg4GCb+b6+vvLy8tLp06et7SSpRo0aNu18fHzk7e1tM+/kyZP66aef5OPjc8t9Jicn5+1A7iA6OlqzZ8/WsWPHlJmZaZ1ftWrVXG2rVKli8z4nrAUEBNxy/qVLl6zzjhw5ojfeeEObNm2yBt8cqampkqT09HSlp6db5zs4ONzy2FesWKFr167ddnhTkurVq6e2bdta3//tb39Tamqqxo4dq+eff/62nylQkhHQABQLHh4e8vf3188//5zndf67V+xeZWdn66mnntLo0aNvubxmzZr3tP1PP/1UERER6tatm0aNGqWKFSvKwcFB06dPV1xcXK72Dg4Ot9zO7eYbhiHp5oUOrVq1koeHh6ZMmaLq1aurTJky2r9/v8aMGWO94GHWrFmaPHmydf3AwEAlJCTk2u6SJUvk6empzp075+t427Rpo2+++UZ79uxRp06d8rUuUBIQ0AAUG507d9aHH36onTt3qlmzZrdtFxgYqOzsbJ08eVK1a9e2zv/tt9+UkpKiwMBAazvpZu9YtWrVrO3Onz9v0+MkSdWrV1d6erpNT1Bh+vLLL1WtWjWtXLnSJlhOnDixUPcTExOjCxcuaOXKlWrZsqV1fnx8vE27Pn366C9/+Yv1/X8Pi+ZISkrS5s2bFRERIWdn53zVcePGDUmy6aUD8P9xDhqAYmP06NFydXVV//799dtvv+VaHhcXp/fff18dO3aUpFxXVr7zzjuSZO2xadu2rUqXLq25c+dae5hutZ50c1hu586d+u6773ItS0lJsQaOgsrp+frvOnbv3q2dO3fe03bzsp+MjAz97//+r027atWqqW3bttapRYsWubb1+eefKzs7+47Dm7fzzTffSJIaNGiQ73WBkoAeNADFRvXq1bV06VI999xzql27ts2TBHbs2KHly5crIiJCQ4YMUXh4uD788EPrkN6ePXsUHR2tbt266YknnpB081yzkSNHavr06ercubM6duyoAwcOaO3atapQoYLNvkeNGqXVq1erc+fOioiI0GOPPaYrV67o8OHD+vLLL5WQkGCzzt69e/Xmm2/mOobWrVvb9Ezl6Ny5s1auXKnu3burU6dOio+P1wcffKBHHnmkUHuZmjdvLm9vb4WHh+u1116TxWLR4sWLbQJbXi1ZskT+/v53faboDz/8oGvXrkm6eZuN1atXa8uWLerZs6dq1apVkMMAHnx2vYYUAArgxIkTxoABA4ygoCDDycnJcHd3N1q0aGHMnTvXepuIzMxMY/LkyUbVqlWN0qVLGwEBAca4ceNy3UYiKyvLmDx5suHn52e4uLgYrVu3Nn7++WcjMDDQ5jYbhmEYly9fNsaNG2cEBwcbTk5ORoUKFYzmzZsbs2bNMjIyMqztdItbS+RMU6dONQwj9202srOzjWnTphmBgYGGs7Oz0bBhQ+Obb74xwsPDjcDAQGu7nNtsvP322za15dzSYvny5TbzFy1aZEgyfvzxR+u87du3G02bNjVcXFwMf39/Y/To0cZ3331nSDI2b96cp+/g2LFjhiRj+PDht21zq9tsODk5GbVq1TLeeustm88MgC2LYRTgf5sAAABw33AOGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZLhRbTGUnZ2tc+fOyd3dvVCfNQgAAO4fwzB0+fJl+fv7q1SpO/eREdCKoXPnzikgIMDeZQAAgAI4c+aMKleufMc2BLRiyN3dXdLNL9jDw8PO1QAAgLxIS0tTQECA9e/4nRDQiqGcYU0PDw8CGgAAxUxeTk/iIgEAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJuNo7wJQcE2XNpWDi4O9ywAA4IFxOPywvUuQRA8aAACA6RDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkHO1dAApu1+lf5OFssXcZAADYmpRq7wqKPXrQAAAATIaABgAAYDIEtEIUExMji8WilJQUe5cCAACKMbsFNIvFcsdp0qRJ9iqtwJo3b66kpCR5enrmeZ1Jkybp0UcfvX9FAQCAYsduFwkkJSVZXy9btkwTJkzQ8ePHrfPc3NzsUVaBZWZmysnJSb6+vvYuBQAAFHN260Hz9fW1Tp6enrJYLPL19ZW7u7tq1qypdevW2bRftWqVXF1ddfnyZSUkJMhisejzzz9X8+bNVaZMGdWtW1dbtmyxWefnn39Whw4d5ObmpkqVKunFF1/U77//bl3+5Zdfql69enJxcVH58uXVtm1bXblyxbr8X//6l+rUqSNnZ2f5+flp8ODB1mUWi0ULFizQX//6V7m6uuqtt97KNcQZFRUlLy8vrVq1SjVq1FCZMmUUFhamM2fOWJdPnjxZhw4dsvYcRkVFFfInDQAAihvTnYPm6uqqnj17atGiRTbzFy1apGeeeUbu7u7WeaNGjdKIESN04MABNWvWTF26dNGFCxckSSkpKXryySfVsGFD7d27V+vWrdNvv/2mv/3tb5Ju9uD16tVL/fr1U2xsrGJiYvT000/LMAxJ0oIFCxQZGamXX35Zhw8f1urVqxUcHGxT06RJk9S9e3cdPnxY/fr1u+XxXL16VW+99ZY++eQTbd++XSkpKerZs6ck6bnnntOIESNUp04dJSUlKSkpSc8991yubVy/fl1paWk2EwAAeHCZ8j5o/fv3t57P5efnp+TkZK1Zs0YbNmywaTd48GD16NFD0s1AtW7dOn388ccaPXq05s2bp4YNG2ratGnW9v/6178UEBCgEydOKD09XTdu3NDTTz+twMBASVK9evWsbd98802NGDFCQ4YMsc5r3Lixzf6ff/559e3b1/r+P//5T65jyczM1Lx58/T4449LkqKjo1W7dm3t2bNHTZo0kZubmxwdHe84NDp9+nRNnjz5rp8bAAB4MJiuB02SmjRpojp16ig6OlqS9OmnnyowMFAtW7a0adesWTPra0dHR4WEhCg2NlaSdOjQIW3evFlubm7WqVatWpKkuLg4NWjQQG3atFG9evX07LPP6p///KcuXbokSUpOTta5c+fUpk2bO9YZEhJy12NxdHS0CXa1atWSl5eXtc68GDdunFJTU61TzhApAAB4MJkyoEk3e9FyzsdatGiR+vbtK4sl73fNT09PV5cuXXTw4EGb6eTJk2rZsqUcHBy0fv16rV27Vo888ojmzp2rhx9+WPHx8XJxccnTPlxdXQtyaPnm7OwsDw8PmwkAADy4TBvQXnjhBZ0+fVpz5szR0aNHFR4enqvNrl27rK9v3Lihffv2qXbt2pKkRo0a6ciRIwoKClJwcLDNlBOsLBaLWrRoocmTJ+vAgQNycnLSV199JXd3dwUFBWnjxo33fBw3btzQ3r17re+PHz+ulJQUa51OTk7Kysq65/0AAIAHh2kDmre3t55++mmNGjVK7dq1U+XKlXO1mT9/vr766isdO3ZMkZGRunTpkvVk/cjISF28eFG9evXSjz/+qLi4OH333Xfq27evsrKytHv3bk2bNk179+5VYmKiVq5cqfPnz1uD06RJkzR79mzNmTNHJ0+e1P79+zV37tx8H0fp0qX197//Xbt379a+ffsUERGhpk2bqkmTJpKkoKAgxcfH6+DBg/r99991/fr1e/jUAADAg8C0AU2SXnrpJWVkZNz2CskZM2ZoxowZatCggbZt26bVq1erQoUKkiR/f39t375dWVlZateunerVq6ehQ4fKy8tLpUqVkoeHh7Zu3aqOHTuqZs2aeuONNzR79mx16NBBkhQeHq733ntP//u//6s6deqoc+fOOnnyZL6PoWzZshozZoyef/55tWjRQm5ublq2bJl1eY8ePdS+fXs98cQT8vHx0WeffVaATwoAADxILEbOfSVMaPHixRo2bJjOnTsnJycn6/yEhARVrVpVBw4cMPVd+KOiojR06NBCf/RTWlqaPD09lTrWXR7OeT8vDwCAIjEp1d4VmJL173dq6l3PJzflbTauXr2qpKQkzZgxQwMHDrQJZwAAAA86Uwa0mTNn6q233lLLli01btw4e5djWnWvfaxSRll7lwEAt5Qwo5O9SwCKLVMPceLWcrpIA4Z+oVLOBDQA5kRAA2zlZ4jT1BcJAAAAlEQENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAm42jvAlBwP08Ok4eHh73LAAAAhYweNAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGUd7F4CCa7q0qRxcHOxdBgDgPjkcftjeJcBO6EEDAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkHO1dAApu1+lf5OFssXcZAFAwk1LtXQFgWvSgAQAAmAwBLR8iIiLUrVs3e5cBAAAecA9sQIuIiJDFYpHFYpGTk5OCg4M1ZcoU3bhx467rJiQkyGKx6ODBg/e/UAAAgD95oM9Ba9++vRYtWqTr169rzZo1ioyMVOnSpTVu3Dh7lwYAAHBbD2wPmiQ5OzvL19dXgYGBeuWVV9S2bVt98cUX8vDw0JdffmnTdtWqVXJ1ddXly5dVtWpVSVLDhg1lsVjUunVrm7azZs2Sn5+fypcvr8jISGVmZlqXXbp0SX369JG3t7fKli2rDh066OTJk9blUVFR8vLy0nfffafatWvLzc1N7du3V1JS0v37IAAAQLHyQAe0P3NxcVGpUqXUs2dPLVq0yGbZokWL9Mwzz8jd3V179uyRJG3YsEFJSUlauXKltd3mzZsVFxenzZs3Kzo6WlFRUYqKirIuj4iI0N69e7V69Wrt3LlThmGoY8eONiHu6tWrmjVrlhYvXqytW7cqMTFRI0eOvG3d169fV1pams0EAAAeXCUioBmGoQ0bNui7777Tk08+qf79++u7776z9lolJydrzZo16tevnyTJx8dHklS+fHn5+vqqXLly1m15e3tr3rx5qlWrljp37qxOnTpp48aNkqSTJ09q9erV+uijjxQaGqoGDRpoyZIlOnv2rFatWmXdRmZmpj744AOFhISoUaNGGjx4sHUbtzJ9+nR5enpap4CAgML+iAAAgIk80AHtm2++kZubm8qUKaMOHTroueee06RJk9SkSRPVqVNH0dHRkqRPP/1UgYGBatmy5V23WadOHTk4OFjf+/n5KTk5WZIUGxsrR0dHPf7449bl5cuX18MPP6zY2FjrvLJly6p69eq33MatjBs3TqmpqdbpzJkzef8QAABAsfNAB7QnnnhCBw8e1MmTJ/XHH38oOjparq6ukqT+/ftbhyYXLVqkvn37ymK5+01fS5cubfPeYrEoOzs7X3XdahuGYdy2vbOzszw8PGwmAADw4HqgA5qrq6uCg4NVpUoVOTraXrD6wgsv6PTp05ozZ46OHj2q8PBw6zInJydJUlZWVr72V7t2bd24cUO7d++2zrtw4YKOHz+uRx555B6OBAAAlCQPdEC7E29vbz399NMaNWqU2rVrp8qVK1uXVaxYUS4uLlq3bp1+++03pabm7XEkNWrUUNeuXTVgwABt27ZNhw4d0gsvvKCHHnpIXbt2vV+HAgAAHjAlNqBJ0ksvvaSMjAzrxQE5HB0dNWfOHC1cuFD+/v75CleLFi3SY489ps6dO6tZs2YyDENr1qzJNawJAABwOxbjTic/PeAWL16sYcOG6dy5c9ZhzeIgLS1Nnp6eSh3rzsPSARRfPCwdJYz173dq6l3PJ3+gnyRwO1evXlVSUpJmzJihgQMHFqtwBgAAHnwlMqDNnDlTb731llq2bFmsH/tU99rHKmWUtXcZeIAkzOhk7xIAACqh56BNmjRJmZmZ2rhxo9zc3OxdDgAAgI0SGdAAAADMjIAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmEyBAtrWrVt148aNXPNv3LihrVu33nNRAAAAJZnFMAwjvys5ODgoKSlJFStWtJl/4cIFVaxYUVlZWYVWIHJLS0uTp6enUlNT5eHhYe9yAABAHuTn73eBetAMw5DFYsk1/8KFC3J1dS3IJgEAAPB/HPPT+Omnn5YkWSwWRUREyNnZ2bosKytLP/30k5o3b164FQIAAJQw+Qponp6ekm72oLm7u8vFxcW6zMnJSU2bNtWAAQMKt0IAAIASJl8BbdGiRZKkoKAgjRw5kuFMAACA+6BA56BNnDhRzs7O2rBhgxYuXKjLly9Lks6dO6f09PRCLRAAAKCkyVcPWo7Tp0+rffv2SkxM1PXr1/XUU0/J3d1d//jHP3T9+nV98MEHhV0nAABAiVGgHrQhQ4YoJCREly5dsjkPrXv37tq4cWOhFQcAAFASFagH7YcfftCOHTvk5ORkMz8oKEhnz54tlMIAAABKqgL1oGVnZ9/yZrS//PKL3N3d77koAACAkqxAAa1du3Z67733rO8tFovS09M1ceJEdezYsbBqAwAAKJEK9KinX375RWFhYTIMQydPnlRISIhOnjypChUqaOvWrbkeAYXCxaOeAAAofvLz97tAAU26+WD0ZcuW6dChQ0pPT1ejRo3Uu3dvm4sGcH8Q0AAAKH6KJKDBfghoAAAUP/f9YenR0dH69ttvre9Hjx4tLy8vNW/eXKdPny7IJgEAAPB/ChTQpk2bZh3K3Llzp+bNm6eZM2eqQoUKGjZsWKEWCAAAUNIU6D5oZ86cUXBwsCRp1apVeuaZZ/Tyyy+rRYsWat26dWHWBwAAUOIUqAfNzc1NFy5ckCR9//33euqppyRJZcqU0R9//FF41QEAAJRABepBe+qpp9S/f381bNhQJ06csN777MiRIwoKCirM+gAAAEqcAvWgzZ8/X82aNdP58+e1YsUKlS9fXpK0b98+9erVq1ALBAAAKGm4zUYxxG02AAAofvLz97tAQ5w5rl69qsTERGVkZNjMr1+//r1sFgAAoEQrUEA7f/68IiIitG7dulsuv9WD1AEAAJA3BToHbejQoUpNTdXu3bvl4uKidevWKTo6WjVq1NDq1asLu0YAAIASpUA9aJs2bdLXX3+tkJAQlSpVSoGBgXrqqafk4eGh6dOnq1OnToVdJwAAQIlRoB60K1euqGLFipIkb29vnT9/XpJUr1497d+/v/CqAwAAKIEKFNAefvhhHT9+XJLUoEEDLVy4UGfPntUHH3wgPz+/Qi0QAACgpCnQEOeQIUOUlJQkSZo4caLat2+vJUuWyMnJSVFRUYVZHwAAQIlTKPdBu3r1qo4dO6YqVaqoQoUKhVEX7oD7oAEAUPzk5+93gYY4p0yZoqtXr1rfly1bVo0aNZKrq6umTJlSkE0CAADg/xSoB83BwUFJSUnWCwVyXLhwQRUrVuQ+aPcZPWgAABQ/970HzTAMWSyWXPMPHTqkcuXKFWSTAAAA+D/5ukjA29tbFotFFotFNWvWtAlpWVlZSk9P16BBgwq9SAAAgJIkXwHtvffek2EY6tevnyZPnixPT0/rMicnJwUFBalZs2aFXiQAAEBJkq+AFh4eLkmqWrWqmjdvrtKlS9+XogAAAEqyAt0HrVWrVtbX165dU0ZGhs1yTlwHAAAouAJdJHD16lUNHjxYFStWlKurq7y9vW0mAAAAFFyBAtqoUaO0adMmLViwQM7Ozvroo480efJk+fv765NPPinsGgEAAEqUAg1x/vvf/9Ynn3yi1q1bq2/fvgoNDVVwcLACAwO1ZMkS9e7du7DrBAAAKDEK1IN28eJFVatWTdLN880uXrwoSfrLX/6irVu3Fl51AAAAJVCBAlq1atUUHx8vSapVq5a++OILSTd71ry8vAqtOAAAgJKoQAGtb9++OnTokCRp7Nixmj9/vsqUKaNhw4Zp1KhRhVogAABASVOgZ3H+2enTp7Vv3z4FBwerfv36hVEX7oBncQIAUPzk5+93vi8SyM7OVlRUlFauXKmEhARZLBZVrVpVzzzzjOrVq1fgogEAAHBTvoY4DcPQX//6V/Xv319nz55VvXr1VKdOHZ0+fVoRERHq3r37/aoTAACgxMhXD1pUVJS2bt2qjRs36oknnrBZtmnTJnXr1k2ffPKJ+vTpU6hFAgAAlCT56kH77LPP9Prrr+cKZ5L05JNPauzYsVqyZEmhFQcAAFAS5asH7aefftLMmTNvu7xDhw6aM2fOPReFvGm6tKkcXBzsXQZwS4fDD9u7BAAotvLVg3bx4kVVqlTptssrVaqkS5cu3XNRAAAAJVm+AlpWVpYcHW/f6ebg4KAbN27cc1EAAAAlWb6GOA3DUEREhJydnW+5/Pr164VSFAAAQEmWr4AWHh5+1zZcwQkAAHBv8hXQFi1adL/qAAAAwP8p0LM4AQAAcP8Q0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMnk60kCMJddp3+Rh7PF3mWguJqUau8KAAC3QQ8aAACAyRDQAAAATIaABgAAYDIEtLuIiIhQt27d7F0GAAAoQQhoAAAAJkNAy4d169bpL3/5i7y8vFS+fHl17txZcXFx1uXNmzfXmDFjbNY5f/68Spcura1bt0qSFi9erJCQELm7u8vX11fPP/+8kpOTi/Q4AACAuRHQ8uHKlSsaPny49u7dq40bN6pUqVLq3r27srOzJUm9e/fW559/LsMwrOssW7ZM/v7+Cg0NlSRlZmZq6tSpOnTokFatWqWEhARFRETccb/Xr19XWlqazQQAAB5cFuO/0wRyiYiIUEpKilatWpVr2e+//y4fHx8dPnxYdevW1fnz5+Xv769NmzZZA1nz5s3VsmVLzZgx45bb37t3rxo3bqzLly/Lzc3tlm0mTZqkyZMn55qfOtad+6Ch4LgPGgAUqbS0NHl6eio1NVUeHh53bEsPWj6cPHlSvXr1UrVq1eTh4aGgoCBJUmJioiTJx8dH7dq105IlSyRJ8fHx2rlzp3r37m3dxr59+9SlSxdVqVJF7u7uatWqlc02bmXcuHFKTU21TmfOnLlPRwgAAMyAgJYPXbp00cWLF/XPf/5Tu3fv1u7duyVJGRkZ1ja9e/fWl19+qczMTC1dulT16tVTvXr1JN0cIg0LC5OHh4eWLFmiH3/8UV999VWubfyZs7OzPDw8bCYAAPDgIqDl0YULF3T8+HG98cYbatOmjWrXrq1Lly7late1a1ddu3ZN69at09KlS216z44dO6YLFy5oxowZCg0NVa1atbhAAAAA5MKzOPPI29tb5cuX14cffig/Pz8lJiZq7Nixudq5urqqW7duGj9+vGJjY9WrVy/rsipVqsjJyUlz587VoEGD9PPPP2vq1KlFeRgAAKAYoAftLrKzs+Xo6KhSpUrp888/1759+1S3bl0NGzZMb7/99i3X6d27tw4dOqTQ0FBVqVLFOt/Hx0dRUVFavny5HnnkEc2YMUOzZs0qqkMBAADFBFdx3kX79u0VHBysefPm2bsUK+tVIFzFiXvBVZwAUKTycxUnQ5y3cenSJW3fvl0xMTEaNGiQvcu5pbrXPlYpo6y9yyh2EmZ0sncJAADcEQHtNvr166cff/xRI0aMUNeuXe1dDgAAKEEIaLeRc/sLAACAosZFAgAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMo72LgAF9/PkMHl4eNi7DAAAUMjoQQMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQc7V0AAAAFkZ2drYyMDHuXAViVLl1aDg4OhbItAhoAoNjJyMhQfHy8srOz7V0KYMPLy0u+vr6yWCz3tB0CGgCgWDEMQ0lJSXJwcFBAQIBKleJsHdifYRi6evWqkpOTJUl+fn73tD0CGgCgWLlx44auXr0qf39/lS1b1t7lAFYuLi6SpOTkZFWsWPGehjv53w4AQLGSlZUlSXJycrJzJUBuOf/TkJmZeU/bIaABAIqlez3HB7gfCuvfJUOcxVjTpU3l4FI4V4sAJdnh8MP2LgEAbNCDBgBAEWjdurWGDh1qt/1HRESoW7dupqkHd0YPGgDggRA09tsi3V/CjE5Fur/CtnLlSpUuXdreZRQbQUFBGjp0aJGFWgIaAAAlULly5exdwj0zDENZWVlydHzw4gxDnAAAFJEbN25o8ODB8vT0VIUKFTR+/HgZhiFJWrx4sUJCQuTu7i5fX189//zz1ntqSdKlS5fUu3dv+fj4yMXFRTVq1NCiRYusy8+cOaO//e1v8vLyUrly5dS1a1clJCTctpY/D3EGBQVp2rRp6tevn9zd3VWlShV9+OGHNuvkdx//LWeIdfLkyfLx8ZGHh4cGDRpk8zSI7OxsTZ8+XVWrVpWLi4saNGigL7/80ro8JiZGFotFa9eu1WOPPSZnZ2dt27ZN2dnZmjlzpoKDg+Xs7KwqVarorbfeynPdObXNmjVLfn5+Kl++vCIjI61XYrZu3VqnT5/WsGHDZLFYiuQCFQIaAABFJDo6Wo6OjtqzZ4/ef/99vfPOO/roo48k3bwtw9SpU3Xo0CGtWrVKCQkJioiIsK47fvx4HT16VGvXrlVsbKwWLFigChUqWNcNCwuTu7u7fvjhB23fvl1ubm5q3759vh6HNXv2bIWEhOjAgQN69dVX9corr+j48eOFto+NGzcqNjZWMTEx+uyzz7Ry5UpNnjzZunz69On65JNP9MEHH+jIkSMaNmyYXnjhBW3ZssVmO2PHjtWMGTMUGxur+vXra9y4cZoxY4b1M1q6dKkqVaqUr7o3b96suLg4bd68WdHR0YqKilJUVJSkm8PBlStX1pQpU5SUlKSkpKQ8f6YF9eD1CQIAYFIBAQF69913ZbFY9PDDD+vw4cN69913NWDAAPXr18/arlq1apozZ44aN26s9PR0ubm5KTExUQ0bNlRISIikmz1eOZYtW6bs7Gx99NFH1t6dRYsWycvLSzExMWrXrl2e6uvYsaNeffVVSdKYMWP07rvvavPmzXr44YcLZR9OTk7617/+pbJly6pOnTqaMmWKRo0apalTpyozM1PTpk3Thg0b1KxZM+vnsG3bNi1cuFCtWrWybmfKlCl66qmnJEmXL1/W+++/r3nz5ik8PFySVL16df3lL3/J12fj7e2tefPmycHBQbVq1VKnTp20ceNGDRgwQOXKlZODg4O1d7MoENAAACgiTZs2tRkea9asmWbPnq2srCwdPHhQkyZN0qFDh3Tp0iXrc0YTExP1yCOP6JVXXlGPHj20f/9+tWvXTt26dVPz5s0lSYcOHdKpU6fk7u5us79r164pLi4uz/XVr1/f+tpiscjX19c6zFoY+2jQoIHN0x+aNWum9PR0nTlzRunp6bp69ao1eOXIyMhQw4YNbeblhFRJio2N1fXr19WmTZtb7jOvddepU8fmzv9+fn46fNh+t+AhoAEAYGfXrl1TWFiYwsLCtGTJEvn4+CgxMVFhYWHWYbgOHTro9OnTWrNmjdavX682bdooMjJSs2bNUnp6uh577DEtWbIk17Z9fHzyXMefr+q0WCzWoFhY+7id9PR0SdK3336rhx56yGaZs7OzzXtXV1fr65zHK91pu3mp+07Hbg8ENAAAisju3btt3u/atUs1atTQsWPHdOHCBc2YMUMBAQGSpL179+Za38fHR+Hh4QoPD1doaKhGjRqlWbNmqVGjRlq2bJkqVqwoDw+P+1J7Yezj0KFD+uOPP6yhateuXXJzc1NAQIDKlSsnZ2dnJSYm2gxn3k2NGjXk4uKijRs3qn///velbunm8GzOY8aKAhcJAABQRBITEzV8+HAdP35cn332mebOnashQ4aoSpUqcnJy0ty5c/Wf//xHq1ev1tSpU23WnTBhgr7++mudOnVKR44c0TfffKPatWtLknr37q0KFSqoa9eu+uGHHxQfH6+YmBi99tpr+uWXXwql9sLYR0ZGhl566SUdPXpUa9as0cSJEzV48GCVKlVK7u7uGjlypIYNG6bo6GjFxcVp//79mjt3rqKjo2+7zTJlymjMmDEaPXq0PvnkE8XFxWnXrl36+OOPC/WzCQoK0tatW3X27Fn9/vvveV6voOhBAwA8EIrDjWP79OmjP/74Q02aNJGDg4OGDBmil19+WRaLRVFRUXr99dc1Z84cNWrUSLNmzdJf//pX67pOTk4aN26cEhIS5OLiotDQUH3++eeSbj6ge+vWrRozZoyefvppXb58WQ899JDatGlTaD1qhbGPNm3aqEaNGmrZsqWuX7+uXr16adKkSdblU6dOlY+Pj6ZPn67//Oc/8vLyUqNGjfT666/fcbvjx4+Xo6OjJkyYoHPnzsnPz0+DBg0qtLqlmxcmDBw4UNWrV9f169ett0e5XyzG/d4DCl1aWpo8PT1Ve0FtnsUJFAKexVm8XLt2TfHx8apatarKlClj73KQRxEREUpJSdGqVavsXcp9dad/nzl/v1NTU+8aDhniBAAAMBmGOAEAwD1zc3O77bK1a9cWYSUPBgJaMbbr9C/ycL7/j5sANCnV3hUAMLmDBw/edtlDDz2k0NDQoivmAUBAAwAA9yw4ONjeJTxQOAcNAADAZAhoAAAAJkNAKyS//vqr/v73v6tatWpydnZWQECAunTpoo0bN+Zqu3z5cuvz03bs2KFq1aoVdbkAAMDEOAetECQkJKhFixby8vLS22+/rXr16ikzM1PfffedIiMjdezYMZv2O3fuVIsWLSRJP/zwg/U1AACAREArFK+++qosFov27Nlj8wDXOnXqqF+/frna79ixQ2PHjpUkbdu2TZ06mf/u1wAAoOgwxHmPLl68qHXr1ikyMtImnOXw8vKSJC1dulReXl7y8vLSnj179OKLL8rLy0tr1qzRyJEj5eXlpaVLl95yH9evX1daWprNBAAoXlq3bq2hQ4fauwwUE/Sg3aNTp07JMAzVqlXrju3++te/qnnz5tqwYYPee+89ffPNN/rpp580aNAg7dixQ5JUoUKFW647ffp0TZ48udBrB4AHyiTPIt6f/e8PGBMTo3fffVd79uxRWlqaatSooVGjRql3797WNlFRUerbt6/Nes7Ozrp27VpRl1vkEhISVLVqVR04cECPPvqovcvJF3rQ7lFeH2Xq5uamoKAg7d+/X127dlVQUJAOHz6sjh07KigoSEFBQbe9C/O4ceOUmppqnc6cOVOYhwAAKKZ27Nih+vXra8WKFfrpp5/Ut29f9enTR998841NOw8PDyUlJVmn06dP26nimzIyMuy6/+KAgHaPatSoIYvFkutCgP+WmJgoNzc3ubm56cMPP9Ts2bPl5uamSZMmafHixXJzc9OgQYNuu76zs7M8PDxsJgBA8XPjxg0NHjxYnp6eqlChgsaPH2/9H/2goCC9+eab6tOnj9zc3BQYGKjVq1fr/Pnz6tq1q9zc3FS/fn3t3bvXur3XX39dU6dOVfPmzVW9enUNGTJE7du318qVK232a7FY5Ovra50qVaqU55qDgoI0depU9erVS66urnrooYc0f/58mzYpKSnq37+/fHx85OHhoSeffFKHDh2yLp80aZIeffRRffTRRzYPEU9JSdHAgQNVqVIllSlTRnXr1rUJl9u2bVNoaKhcXFwUEBCg1157TVeuXLGpbdq0aerXr5/c3d1VpUoVffjhh9blVatWlSQ1bNhQFotFrVu3zvNx2xsB7R6VK1dOYWFhmj9/vs0/mhwpKSny9/fXwYMHtW7dOjk6OurgwYPavXu3pJtXcR48eFBTpkwp6tIBAEUsOjpajo6O2rNnj95//3298847+uijj6zL3333XbVo0UIHDhxQp06d9OKLL6pPnz564YUXtH//flWvXl19+vS54+hNamqqypUrZzMvPT1dgYGBCggIUNeuXXXkyJF81f3222+rQYMGOnDggMaOHashQ4Zo/fr11uXPPvuskpOTtXbtWu3bt0+NGjVSmzZtdPHiRWubU6dOacWKFVq5cqUOHjyo7OxsdejQQdu3b9enn36qo0ePasaMGXJwcJAkxcXFqX379urRo4d++uknLVu2TNu2bdPgwYNtaps9e7ZCQkJ04MABvfrqq3rllVd0/PhxSdKePXskSRs2bFBSUlKu4GpmFiOvY3S4rf/85z9q0aKFypUrpylTpqh+/fq6ceOG1q9frwULFig2NlaS9Pnnn2vBggXasmWLtm7dqgEDBlj/EeVHWlqaPD09lTrWnWdxomiY4FwbIMe1a9cUHx9v0xMjyfTnoLVu3VrJyck6cuSILJab/+0eO3asVq9eraNHjyooKEihoaFavHixpJv31/Tz89P48eOt/xO/a9cuNWvWTElJSfL19c21jy+++EIvvvii9u/frzp16ki6eWunkydPqn79+kpNTdWsWbO0detWHTlyRJUrV75r3UFBQapdu7bNA8979uyptLQ0rVmzxno3guTkZDk7O1vbBAcHa/To0Xr55Zc1adIkTZs2TWfPnpWPj48k6fvvv1eHDh0UGxurmjVr5tpv//795eDgoIULF1rnbdu2Ta1atdKVK1dUpkyZXJ+ZYRjy9fXV5MmTNWjQILucg3bbf5/6r7/fqal3HQ2jB60QVKtWTfv379cTTzyhESNGqG7dunrqqae0ceNGLViwwNouJiZGLVu2lCRt2bLF+hoAUDI0bdrUGs4kqVmzZjp58qSysrIkSfXr17cuyxmGrFevXq55ycnJuba9efNm9e3bV//85z+t4SxnH3369NGjjz6qVq1aaeXKlfLx8bEJPnfTrFmzXO9zOh8OHTqk9PR0lS9f3no6j5ubm+Lj4xUXF2ddJzAw0BrOpJsPV69cufItw1nOdqOiomy2GRYWpuzsbMXHx1vb/fdnljOUe6vPp7jhKs5C4ufnp3nz5mnevHm3bfPBBx9YX48fP74oygIAFCOlS5e2vs4Jcreal52dbbPeli1b1KVLF7377rvq06fPXffRsGFDnTp1qlBqTk9Pl5+fn2JiYnIty7nVlKRct6JycXG563YHDhyo1157LdeyKlWqWF//9+cj3fyM/vz5FEcENAAAikjO+cc5du3apRo1aljPuyqImJgYde7cWf/4xz/08ssv37V9VlaW9S4CebVr165c72vXri1JatSokX799Vc5OjoqKCgoz9usX7++fvnlF504ceKWvWiNGjXS0aNHFRwcnOdt/pmTk5MkWXsoixMCWjFW99rHKmWUtXcZppYwg6c0ADCPxMREDR8+XAMHDtT+/fs1d+5czZ49u8Db27x5szp37qwhQ4aoR48e+vXXXyXdDCY5FwpMmTJFTZs2VXBwsFJSUvT222/r9OnT6t+/f573s337ds2cOVPdunXT+vXrtXz5cn377beSpLZt26pZs2bq1q2bZs6cqZo1a+rcuXP69ttv1b17d4WEhNxym61atVLLli3Vo0cPvfPOOwoODtaxY8dksVjUvn17jRkzRk2bNtXgwYPVv39/ubq66ujRo1q/fv0dR6v+W8WKFeXi4qJ169apcuXKKlOmjDw9i/hcxQLiHDQAAIpInz599Mcff6hJkyaKjIzUkCFD8tTrdTvR0dG6evWqpk+fLj8/P+v09NNPW9tcunRJAwYMUO3atdWxY0elpaVpx44deuSRR/K8nxEjRmjv3r1q2LCh3nzzTb3zzjsKCwuTdHNIcc2aNWrZsqX69u2rmjVrqmfPnjp9+vRdb+exYsUKNW7cWL169dIjjzyi0aNH25yPt2XLFp04cUKhoaFq2LChJkyYIH9//zzX7ejoqDlz5mjhwoXy9/dX165d87yuvXEVZzGUcxVIwNAvVMqZHrQ7oQcNePDc6So5FL6goCANHTqUx1TlEVdxAgAAPKAIaAAAlFA//PCDzW0s/jzBfrhIAACAEiokJEQHDx68Y5uEhIQiqQW2CGgAAJRQLi4u93QbC9w/DHECAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAeIDFxMTIYrEoJSXF3qUgH7jNBgDggVAvul6R7u9w+OEi3R/uXUJCgqpWraoDBw7o0UcftXc5d0QPGgAAJmQYhm7cuGHvMopERkaGvUswHXrQirGfJ4fd9WGrAADzuH79ukaNGqXPP/9caWlpCgkJ0bvvvqvGjRsrJiZGTzzxhNasWaM33nhDhw8f1vfff6+AgAANHz5cu3bt0pUrV1S7dm1Nnz5dbdu2tdnuhAkTtHTpUiUnJysgIEDjxo3TSy+9dMs6tm3bpnHjxmnv3r2qUKGCunfvrunTp8vV1fWuxxAUFKSXXnpJR48e1erVq+Xl5aXXX39dkZGR1jYpKSkaOXKkvv76a12/ft16nA0aNJAkTZo0SatWrdLgwYP11ltv6fTp08rOzlZKSorGjBmjVatWKTU1VcHBwZoxY4Y6d+6cp7qDgoL08ssv69SpU1q+fLm8vb31xhtv6OWXX5YkVa1aVZLUsGFDSVKrVq0UExOTz2+xaNCDBgBAERk9erRWrFih6Oho7d+/X8HBwQoLC9PFixetbcaOHasZM2YoNjZW9evXV3p6ujp27KiNGzfqwIEDat++vbp06aLExETrOn369NFnn32mOXPmKDY2VgsXLrztszTj4uLUvn179ejRQz/99JOWLVumbdu2afDgwXk+jrffflsNGjTQgQMHNHbsWA0ZMkTr16+3Ln/22WeVnJystWvXat++fWrUqJHatGljc5ynTp3SihUrtHLlSh08eFDZ2dnq0KGDtm/frk8//VRHjx7VjBkz5ODgkK+6Z8+erZCQEB04cECvvvqqXnnlFR0/flyStGfPHknShg0blJSUpJUrV+b5mIuaxTAMw95FIH/S0tLk6emp1NRUetAAlDjXrl1TfHy8qlatqjJlyljnm/0ctCtXrsjb21tRUVF6/vnnJUmZmZkKCgrS0KFD1bhxYz3xxBNatWqVunbtesdt1a1bV4MGDdLgwYN14sQJPfzww1q/fr1Nr1qOnJ65S5cuycvLS/3795eDg4MWLlxobbNt2za1atVKV65csflMbyUoKEi1a9fW2rVrrfN69uyptLQ0rVmzRtu2bVOnTp2UnJwsZ2dna5vg4GCNHj1aL7/8siZNmqRp06bp7Nmz8vHxkSR9//336tChg2JjY1WzZs1c+81L3UFBQQoNDdXixYsl3Rwm9vX11eTJkzVo0KAiOQftdv8+pfz9/aYHDQCAIhAXF6fMzEy1aNHCOq906dJq0qSJYmNjrfNCQkJs1ktPT9fIkSNVu3ZteXl5yc3NTbGxsdYetIMHD8rBwUGtWrXKUx2HDh1SVFSU3NzcrFNYWJiys7MVHx+fp200a9Ys1/ucYzh06JDS09NVvnx5m33Ex8crLi7Ouk5gYKA1nOUcR+XKlW8ZzvJTd/369a2vLRaLfH19lZycnKfjMhPOQQMAwET+fB7YyJEjtX79es2aNUvBwcFycXHRM888Yz2x3sXFJV/bT09P18CBA/Xaa6/lWlalSpWCF/5f2/fz87vluV1eXl7W138+zrsdR17rLl26tM0yi8Wi7OzsPFRuLgQ0AACKQPXq1eXk5KTt27crMDBQ0s0hzh9//FFDhw697Xrbt29XRESEunfvLulmUElISLAur1evnrKzs7Vly5ZbDnH+WaNGjXT06FEFBwcX+Fh27dqV633t2rWt2//111/l6OiooKCgPG+zfv36+uWXX3TixIlb9qIVRt1OTk6SpKysrAJvo6gwxAkAQBFwdXXVK6+8olGjRmndunU6evSoBgwYoKtXr972aktJqlGjhvVE+kOHDun555+36REKCgpSeHi4+vXrp1WrVik+Pl4xMTH64osvbrm9MWPGaMeOHRo8eLAOHjyokydP6uuvv87XRQLbt2/XzJkzdeLECc2fP1/Lly/XkCFDJElt27ZVs2bN1K1bN33//fdKSEjQjh079D//8z/au3fvbbfZqlUrtWzZUj169ND69esVHx+vtWvXat26dYVWd8WKFeXi4qJ169bpt99+U2pqap7XLWoENAAAisiMGTPUo0cPvfjii2rUqJFOnTql7777Tt7e3rdd55133pG3t7eaN2+uLl26KCwsTI0aNbJps2DBAj3zzDN69dVXVatWLQ0YMEBXrly55fbq16+vLVu26MSJEwoNDVXDhg01YcIE+fv75/k4RowYob1796phw4Z688039c477ygsLEzSzSHFNWvWqGXLlurbt69q1qypnj176vTp06pUqdIdt7tixQo1btxYvXr10iOPPKLRo0dbe7sKo25HR0fNmTNHCxculL+//10vxrAnruIshriKE0BJdqer5HD/5Vx1eqdh2ZKMqzgBAAAeUAQ0AAAgSfrhhx9sbmPx5wlFh6s4AQCApJv3YDt48OAd2/z3FaS4fwhoAABA0s17kd3LbSxQeBjiBAAAMBkCGgCgWOImBDCjwnpqAUOcAIBipXTp0rJYLDp//rx8fHxksVjsXRIgwzCUkZGh8+fPq1SpUtanFhQUAQ0AUKw4ODiocuXK+uWXXzhhHaZTtmxZValSRaVK3dsgJQENAFDsuLm5qUaNGsrMzLR3KYCVg4ODHB0dC6VXl4AGACiWHBwc5ODgYO8ygPuCiwQAAABMhoAGAABgMgQ0AAAAk+EctGIo594/aWlpdq4EAADkVc7f7bzcw4+AVgxduHBBkhQQEGDnSgAAQH5dvnxZnp6ed2xDQCuGypUrJ0lKTEy86xeMopeWlqaAgACdOXNGHh4e9i4H/4Xvxtz4fsyL76ZwGIahy5cvy9/f/65tCWjFUM7N7zw9PfmhmJiHhwffj0nx3Zgb34958d3cu7x2rHCRAAAAgMkQ0AAAAEyGgFYMOTs7a+LEiXJ2drZ3KbgFvh/z4rsxN74f8+K7KXoWIy/XegIAAKDI0IMGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQCuG5s+fr6CgIJUpU0aPP/649uzZY++SSrxJkybJYrHYTLVq1bJ3WSXW1q1b1aVLF/n7+8tisWjVqlU2yw3D0IQJE+Tn5ycXFxe1bdtWJ0+etE+xJczdvpuIiIhcv6X27dvbp9gSZvr06WrcuLHc3d1VsWJFdevWTcePH7dpc+3aNUVGRqp8+fJyc3NTjx499Ntvv9mp4gcbAa2YWbZsmYYPH66JEydq//79atCggcLCwpScnGzv0kq8OnXqKCkpyTpt27bN3iWVWFeuXFGDBg00f/78Wy6fOXOm5syZow8++EC7d++Wq6urwsLCdO3atSKutOS523cjSe3bt7f5LX322WdFWGHJtWXLFkVGRmrXrl1av369MjMz1a5dO125csXaZtiwYfr3v/+t5cuXa8uWLTp37pyefvppO1b9ADNQrDRp0sSIjIy0vs/KyjL8/f2N6dOn27EqTJw40WjQoIG9y8AtSDK++uor6/vs7GzD19fXePvtt63zUlJSDGdnZ+Ozzz6zQ4Ul15+/G8MwjPDwcKNr1652qQe2kpOTDUnGli1bDMO4+TspXbq0sXz5cmub2NhYQ5Kxc+dOe5X5wKIHrRjJyMjQvn371LZtW+u8UqVKqW3bttq5c6cdK4MknTx5Uv7+/qpWrZp69+6txMREe5eEW4iPj9evv/5q8zvy9PTU448/zu/IJGJiYlSxYkU9/PDDeuWVV3ThwgV7l1QipaamSpLKlSsnSdq3b58yMzNtfju1atVSlSpV+O3cBwS0YuT3339XVlaWKlWqZDO/UqVK+vXXX+1UFSTp8ccfV1RUlNatW6cFCxYoPj5eoaGhunz5sr1Lw5/k/Fb4HZlT+/bt9cknn2jjxo36xz/+oS1btqhDhw7Kysqyd2klSnZ2toYOHaoWLVqobt26km7+dpycnOTl5WXTlt/O/eFo7wKAB0GHDh2sr+vXr6/HH39cgYGB+uKLL/TSSy/ZsTKgeOnZs6f1db169VS/fn1Vr15dMTExatOmjR0rK1kiIyP1888/cy6tHdGDVoxUqFBBDg4Oua6Y+e233+Tr62unqnArXl5eqlmzpk6dOmXvUvAnOb8VfkfFQ7Vq1VShQgV+S0Vo8ODB+uabb7R582ZVrlzZOt/X11cZGRlKSUmxac9v5/4goBUjTk5Oeuyxx7Rx40brvOzsbG3cuFHNmjWzY2X4s/T0dMXFxcnPz8/epeBPqlatKl9fX5vfUVpamnbv3s3vyIR++eUXXbhwgd9SETAMQ4MHD9ZXX32lTZs2qWrVqjbLH3vsMZUuXdrmt3P8+HElJiby27kPGOIsZoYPH67w8HCFhISoSZMmeu+993TlyhX17dvX3qWVaCNHjlSXLl0UGBioc+fOaeLEiXJwcFCvXr3sXVqJlJ6ebtPjEh8fr4MHD6pcuXKqUqWKhg4dqjfffFM1atRQ1apVNX78ePn7+6tbt272K7qEuNN3U65cOU2ePFk9evSQr6+v4uLiNHr0aAUHByssLMyOVZcMkZGRWrp0qb7++mu5u7tbzyvz9PSUi4uLPD099dJLL2n48OEqV66cPDw89Pe//13NmjVT06ZN7Vz9A8jel5Ei/+bOnWtUqVLFcHJyMpo0aWLs2rXL3iWVeM8995zh5+dnODk5GQ899JDx3HPPGadOnbJ3WSXW5s2bDUm5pvDwcMMwbt5qY/z48UalSpUMZ2dno02bNsbx48ftW3QJcafv5urVq0a7du0MHx8fo3Tp0kZgYKAxYMAA49dff7V32SXCrb4XScaiRYusbf744w/j1VdfNby9vY2yZcsa3bt3N5KSkuxX9APMYhiGUfSxEAAAALfDOWgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyfw/rdZbp/ZPrZwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAGzCAYAAACb/us4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOu0lEQVR4nO3deVwVdd//8feRXVYXFFAUFbfMNXPNpbTQXMuu0kzFLU0sNTW1O3OrpNQs09vsqsSlxUwzr3IJFzT33Mjc9WJxQXEDxBVhfn94c36dAAVEGPT1fDzOI87Md77zmTPQefudzWIYhiEAAACYRpGCLgAAAAC2CGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAcJ+EhYXJYrFo586dBV2KDYvFovHjxxd0GQDugIAGINfSA0j6y9nZWX5+fgoKCtKMGTN0+fLlgi6xUNm7d69eeeUV+fv7y8nJScWLF1fr1q01d+5cpaamFnR5OZacnKxx48apTZs2Kl68uCwWi8LCwrK9/MaNG9WxY0f5+/vL2dlZPj4+atOmjTZv3pyhbUBAQIbfxcqVK2vkyJG6ePFiHm4VkD/sC7oAAIXfxIkTVaFCBaWkpOjMmTOKiIjQ0KFD9fHHH2v58uWqVatWQZdoel9++aUGDhyo0qVLq0ePHqpcubIuX76stWvXqm/fvoqLi9Pbb79d0GXmyPnz5zVx4kSVK1dOtWvXVkRERI6WP3LkiIoUKaKBAwfKx8dHly5d0sKFC9W8eXP9+uuvatOmjU37OnXqaPjw4ZKk69eva9euXfrkk0+0YcMG7dixI682C8gXBDQA96xt27aqX7++9f2YMWO0bt06tW/fXh07dtTBgwfl4uJSgBWa27Zt2zRw4EA1btxYK1askLu7u3Xe0KFDtXPnTv31118FWGHWrl+/LkdHRxUpkvGAjK+vr+Li4uTj46OdO3fq8ccfz1Hf/fr1U79+/WymDRo0SBUrVtQnn3ySIaCVKVNGr7zyis3ybm5umjp1qo4eParKlSvnaP1AQeIQJ4D74qmnntLYsWMVExOjhQsXWqcfOnRIL7zwgooXLy5nZ2fVr19fy5cvz7B8QkKChg4daj3cFxgYqA8//FBpaWnWNtHR0bJYLJo6daqmT5+u8uXLy8XFRS1atMgQaM6cOaPevXurbNmycnJykq+vrzp16qTo6GibditXrlSzZs3k6uoqd3d3tWvXTvv3789QX3a3458uXbqkBg0aqGzZsjp8+LAkacKECbJYLPrmm29swlm6+vXrKzg42Pr+ypUrGj58uPWzqVq1qqZOnSrDMGyWu3HjhoYNGyZvb2+5u7urY8eOOnnyZKZ1nTp1Sn369FHp0qXl5OSkGjVq6Ouvv7ZpExERIYvFou+//17vvPOOypQpo6JFiyopKSnTPp2cnOTj43PXzyQnihYtKm9vbyUkJGSrffr67e0Zj0Dhwm8sgPumR48eevvtt/Xbb7+pf//+2r9/v5o2baoyZcpo9OjRcnV11Q8//KDOnTtryZIleu655yRJV69eVYsWLXTq1CkNGDBA5cqV05YtWzRmzBjFxcXpk08+sVnP/PnzdfnyZYWEhOj69ev69NNP9dRTT2nfvn0qXbq0JKlLly7av3+/Xn/9dQUEBCg+Pl7h4eGKjY1VQECAJGnBggXq1auXgoKC9OGHH+rq1auaPXu2nnjiCe3Zs8faLrvb8U/nz5/X008/rYsXL2rDhg2qVKmSrl69qrVr16p58+YqV67cXT9TwzDUsWNHrV+/Xn379lWdOnW0evVqjRw5UqdOndL06dOtbfv166eFCxfq5ZdfVpMmTbRu3Tq1a9cuQ59nz55Vo0aNZLFYNHjwYHl7e2vlypXq27evkpKSNHToUJv2kyZNkqOjo0aMGKEbN27I0dHxrnXfi6SkJN28eVPnz5/X/Pnz9ddff2V6uDclJUXnz5+XdHtkb8+ePfr444/VvHlzVahQ4b7WCOQ5AwByae7cuYYk448//siyjaenp1G3bl3DMAyjVatWRs2aNY3r169b56elpRlNmjQxKleubJ02adIkw9XV1Thy5IhNX6NHjzbs7OyM2NhYwzAMIyoqypBkuLi4GCdPnrS22759uyHJGDZsmGEYhnHp0iVDkjFlypQs67x8+bLh5eVl9O/f32b6mTNnDE9PT5vp2d2Ov38+cXFxRo0aNYyKFSsa0dHR1jaRkZGGJGPIkCFZ1vZ3y5YtMyQZ7733ns30F154wbBYLMaxY8cMwzCMvXv3GpKMQYMG2bR7+eWXDUnGuHHjrNP69u1r+Pr6GufPn7dp27VrV8PT09O4evWqYRiGsX79ekOSUbFiReu07Prjjz8MScbcuXNztJxhGEZQUJAhyZBkODo6GgMGDDCuXbtm06Z8+fLWNn9/NW3aNMN2AYUBhzgB3Fdubm66fPmyLl68qHXr1unFF1/U5cuXdf78eZ0/f14XLlxQUFCQjh49qlOnTkmSFi9erGbNmqlYsWLWdufPn1fr1q2VmpqqjRs32qyjc+fOKlOmjPV9gwYN1LBhQ61YsUKS5OLiIkdHR0VEROjSpUuZ1hkeHq6EhAR169bNZp12dnZq2LCh1q9fL0k52o50J0+eVIsWLZSSkqKNGzeqfPny1nnphwczO7SZmRUrVsjOzk5vvPGGzfThw4fLMAytXLnS2k5Shnb/HA0zDENLlixRhw4dZBiGzbYHBQUpMTFRu3fvtlmmV69e+XpOYWhoqH777Td99dVXatSokW7evKlbt25laNewYUOFh4crPDxcv/zyi95//33t379fHTt21LVr1/KtXiAvcIgTwH2VnJysUqVK6dixYzIMQ2PHjtXYsWMzbRsfH68yZcro6NGj+vPPP+Xt7Z1lu7/L7OTvKlWq6IcffpB0+1yoDz/8UMOHD1fp0qXVqFEjtW/fXj179rSeo3T06FFJt8+dy4yHh4ck5Wg70vXo0UP29vY6ePBghnOy0vvN7i1JYmJi5OfnlyHQVa9e3To//b9FihRRpUqVbNpVrVrV5v25c+eUkJCgL774Ql988UWW2/N3fz9cmJqaqnPnztnML168eJ4e9qxTp47151deeUX16tVTcHCwfvzxR5t2JUuWVOvWra3v27Vrp6pVq+qFF17Ql19+qddffz3PagLuNwIagPvm5MmTSkxMVGBgoPXk/hEjRigoKCjT9oGBgZKktLQ0Pf3003rrrbcybVelSpUc1zJ06FB16NBBy5Yt0+rVqzV27FhNnjxZ69atU926da31LViwINMT29NPMs/JdqR7/vnnNX/+fH366aeaPHlyhrb29vbat29fjrcpL6RvzyuvvKJevXpl2uaft0n5++jZiRMnMpzftX79erVs2TJvC/0/jo6O6tixo0JDQ3Xt2rW7juS1atVK0u17qhHQUJgQ0ADcNwsWLJAkBQUFqWLFipIkBwcHm1GOzFSqVEnJycl3bZcuffTr744cOWI9qf/v/Q4fPlzDhw/X0aNHVadOHU2bNk0LFy60jjSVKlXqjuvNyXake/311xUYGKh3331Xnp6eGj16tHVe0aJF9dRTT2ndunU6ceKE/P3979hX+fLltWbNGl2+fNlmFO3QoUPW+en/TUtL0/Hjx21GzdKvHE2XfoVnampqtrfn73x8fBQeHm4zrXbt2jnuJyeuXbsmwzB0+fLluwa09EOhycnJ97UmIK9xDhqA+2LdunWaNGmSKlSooO7du6tUqVJq2bKl5syZo7i4uAzt/36Y7MUXX9TWrVu1evXqDO0SEhIynH+0bNkym/O+duzYoe3bt6tt27aSbl8Vev36dZtlKlWqJHd3d924cUPS7RDp4eGhDz74QCkpKVnWl5Pt+LuxY8dqxIgRGjNmjGbPnm0zb9y4cTIMQz169Mg0SOzatUvz5s2TJD377LNKTU3VzJkzbdpMnz5dFovFus3p/50xY4ZNu39eAWtnZ6cuXbpoyZIlmd5rLavtSefs7KzWrVvbvIoVK3bHZTITFxenQ4cO2Xz2/zy0Kt3e/0uWLJG/v79KlSp1137/85//SLr/oRHIa4ygAbhnK1eu1KFDh3Tr1i2dPXtW69atU3h4uMqXL6/ly5fL2dlZkjRr1iw98cQTqlmzpvr376+KFSvq7Nmz2rp1q06ePKnIyEhJ0siRI7V8+XK1b99ewcHBeuyxx3TlyhXt27dPP/74o6Kjo1WyZEnr+gMDA/XEE0/otdde040bN/TJJ5+oRIkS1kOkR44cUatWrfTiiy/qkUcekb29vX766SedPXtWXbt2lXT7XLDZs2erR48eqlevnrp27Spvb2/Fxsbq119/VdOmTa2hKLvb8U9TpkxRYmKiQkJC5O7ubr2papMmTTRr1iwNGjRI1apVs3mSQEREhJYvX6733ntPktShQwc9+eST+p//+R9FR0erdu3a+u233/Tzzz9r6NCh1pHAOnXqqFu3bvrf//1fJSYmqkmTJlq7dq2OHTuWoa7Q0FCtX79eDRs2VP/+/fXII4/o4sWL2r17t9asWXNPj0qaOXOmEhISdPr0aUm3A1P6vdhef/11eXp6Srp9c+N58+YpKirKOvLZtm1blS1bVg0bNlSpUqUUGxuruXPn6vTp01q0aFGGdZ06dcp6z72bN28qMjJSc+bMUcmSJTm8icKnAK8gBVDIpd9GQn+7BYKPj4/x9NNPG59++qmRlJSUYZnjx48bPXv2NHx8fAwHBwejTJkyRvv27Y0ff/zRpt3ly5eNMWPGGIGBgYajo6NRsmRJo0mTJsbUqVONmzdvGobx/2+zMWXKFGPatGmGv7+/4eTkZDRr1syIjIy09nX+/HkjJCTEqFatmuHq6mp4enoaDRs2NH744YcM9a1fv94ICgoyPD09DWdnZ6NSpUpGcHCwsXPnzhxvR2a3IUlNTTW6detm2NvbG8uWLbPpc9euXcbLL79s+Pn5GQ4ODkaxYsWMVq1aGfPmzTNSU1NtPpthw4ZZ21WuXNmYMmWKkZaWZtPftWvXjDfeeMMoUaKE4erqanTo0ME4ceJEhttsGIZhnD171ggJCTH8/f0NBwcHw8fHx2jVqpXxxRdf2Hw2kozFixdn+NyyktXtLyQZUVFR1na9evXKMG3mzJnGE088YZQsWdKwt7c3vL29jQ4dOhgbN26863qKFClilCpVyujWrZv11iNAYWIxjH/cehoACono6GhVqFBBU6ZM0YgRIwq6HADIM5yDBgAAYDIENAAAAJMhoAEAAJgM56ABAACYDCNoAAAAJkNAAwAAMBluVFsIpaWl6fTp03J3d5fFYinocgAAQDYY//eIMj8/PxUpcucxMgJaIXT69Om7Pq8PAACY04kTJ1S2bNk7tiGgFULpD0g+ceKEPDw8CrgaAACQHUlJSfL397d+j98JAa0QSj+s6eHhQUADAKCQyc7pSVwkAAAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBk7Au6AOReo28byc7FrqDLAADggbGv176CLkESI2gAAACmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJOxL+gCkHvbYk7Kw8lS0GUAAMxofGJBV4B7wAgaAACAyRDQAAAATIaAlociIiJksViUkJBQ0KUAAIBCrMACmsViueNr/PjxBVVarjVp0kRxcXHy9PTM9jLjx49XnTp17l9RAACg0CmwiwTi4uKsPy9atEjvvvuuDh8+bJ3m5uZWEGXlWkpKihwdHeXj41PQpQAAgEKuwEbQfHx8rC9PT09ZLBb5+PjI3d1dVapU0apVq2zaL1u2TK6urrp8+bKio6NlsVj0/fffq0mTJnJ2dtajjz6qDRs22Czz119/qW3btnJzc1Pp0qXVo0cPnT9/3jr/xx9/VM2aNeXi4qISJUqodevWunLlinX+119/rRo1asjJyUm+vr4aPHiwdZ7FYtHs2bPVsWNHubq66v33389wiDMsLExeXl5atmyZKleuLGdnZwUFBenEiRPW+RMmTFBkZKR15DAsLCyPP2kAAFDYmO4cNFdXV3Xt2lVz5861mT537ly98MILcnd3t04bOXKkhg8frj179qhx48bq0KGDLly4IElKSEjQU089pbp162rnzp1atWqVzp49qxdffFHS7RG8bt26qU+fPjp48KAiIiL0/PPPyzAMSdLs2bMVEhKiV199Vfv27dPy5csVGBhoU9P48eP13HPPad++ferTp0+m23P16lW9//77mj9/vjZv3qyEhAR17dpVkvTSSy9p+PDhqlGjhuLi4hQXF6eXXnopQx83btxQUlKSzQsAADy4THkftH79+lnP5/L19VV8fLxWrFihNWvW2LQbPHiwunTpIul2oFq1apW++uorvfXWW5o5c6bq1q2rDz74wNr+66+/lr+/v44cOaLk5GTdunVLzz//vMqXLy9JqlmzprXte++9p+HDh2vIkCHWaY8//rjN+l9++WX17t3b+v6///1vhm1JSUnRzJkz1bBhQ0nSvHnzVL16de3YsUMNGjSQm5ub7O3t73hodPLkyZowYcJdPzcAAPBgMN0ImiQ1aNBANWrU0Lx58yRJCxcuVPny5dW8eXObdo0bN7b+bG9vr/r16+vgwYOSpMjISK1fv15ubm7WV7Vq1SRJx48fV+3atdWqVSvVrFlT//rXv/Tvf/9bly5dkiTFx8fr9OnTatWq1R3rrF+//l23xd7e3ibYVatWTV5eXtY6s2PMmDFKTEy0vtIPkQIAgAeTKQOadHsULf18rLlz56p3796yWLJ/1/zk5GR16NBBe/futXkdPXpUzZs3l52dncLDw7Vy5Uo98sgj+uyzz1S1alVFRUXJxcUlW+twdXXNzablmJOTkzw8PGxeAADgwWXagPbKK68oJiZGM2bM0IEDB9SrV68MbbZt22b9+datW9q1a5eqV68uSapXr57279+vgIAABQYG2rzSg5XFYlHTpk01YcIE7dmzR46Ojvrpp5/k7u6ugIAArV279p6349atW9q5c6f1/eHDh5WQkGCt09HRUampqfe8HgAA8OAwbUArVqyYnn/+eY0cOVLPPPOMypYtm6HNrFmz9NNPP+nQoUMKCQnRpUuXrCfrh4SE6OLFi+rWrZv++OMPHT9+XKtXr1bv3r2Vmpqq7du364MPPtDOnTsVGxurpUuX6ty5c9bgNH78eE2bNk0zZszQ0aNHtXv3bn322Wc53g4HBwe9/vrr2r59u3bt2qXg4GA1atRIDRo0kCQFBAQoKipKe/fu1fnz53Xjxo17+NQAAMCDwLQBTZL69u2rmzdvZnmFZGhoqEJDQ1W7dm1t2rRJy5cvV8mSJSVJfn5+2rx5s1JTU/XMM8+oZs2aGjp0qLy8vFSkSBF5eHho48aNevbZZ1WlShW98847mjZtmtq2bStJ6tWrlz755BP97//+r2rUqKH27dvr6NGjOd6GokWLatSoUXr55ZfVtGlTubm5adGiRdb5Xbp0UZs2bfTkk0/K29tb3333XS4+KQAA8CCxGOn3lTChBQsWaNiwYTp9+rQcHR2t06Ojo1WhQgXt2bPH1HfhDwsL09ChQ/P80U9JSUny9PRU4mh3eThl/7w8AMBDZHxiQVeAf7B+fycm3vV8clPeZuPq1auKi4tTaGioBgwYYBPOAAAAHnSmDGgfffSR3n//fTVv3lxjxowp6HJM69HrX6mIUbSgywDwkIsObVfQJQAPHFMf4kTm0odI/Yf+oCJOBDQABYuABmRPTg5xmvoiAQAAgIcRAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAydgXdAHIvb8mBMnDw6OgywAAAHmMETQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBn7gi4Audfo20ayc7Er6DIAAHewr9e+gi4BhRAjaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmIx9QReA3NsWc1IeTpaCLgPAg2R8YkFXAECMoAEAAJgOAS0HgoOD1blz54IuAwAAPOAe2IAWHBwsi8Uii8UiR0dHBQYGauLEibp169Zdl42OjpbFYtHevXvvf6EAAAD/8ECfg9amTRvNnTtXN27c0IoVKxQSEiIHBweNGTOmoEsDAADI0gM7giZJTk5O8vHxUfny5fXaa6+pdevW+uGHH+Th4aEff/zRpu2yZcvk6uqqy5cvq0KFCpKkunXrymKxqGXLljZtp06dKl9fX5UoUUIhISFKSUmxzrt06ZJ69uypYsWKqWjRomrbtq2OHj1qnR8WFiYvLy+tXr1a1atXl5ubm9q0aaO4uLj790EAAIBC5YEOaP/k4uKiIkWKqGvXrpo7d67NvLlz5+qFF16Qu7u7duzYIUlas2aN4uLitHTpUmu79evX6/jx41q/fr3mzZunsLAwhYWFWecHBwdr586dWr58ubZu3SrDMPTss8/ahLirV69q6tSpWrBggTZu3KjY2FiNGDEiy7pv3LihpKQkmxcAAHhwPRQBzTAMrVmzRqtXr9ZTTz2lfv36afXq1dZRq/j4eK1YsUJ9+vSRJHl7e0uSSpQoIR8fHxUvXtzaV7FixTRz5kxVq1ZN7du3V7t27bR27VpJ0tGjR7V8+XJ9+eWXatasmWrXrq1vvvlGp06d0rJly6x9pKSk6PPPP1f9+vVVr149DR482NpHZiZPnixPT0/ry9/fP68/IgAAYCIPdED75Zdf5ObmJmdnZ7Vt21YvvfSSxo8frwYNGqhGjRqaN2+eJGnhwoUqX768mjdvftc+a9SoITs7O+t7X19fxcfHS5IOHjwoe3t7NWzY0Dq/RIkSqlq1qg4ePGidVrRoUVWqVCnTPjIzZswYJSYmWl8nTpzI/ocAAAAKnQc6oD355JPau3evjh49qmvXrmnevHlydXWVJPXr1896aHLu3Lnq3bu3LJa73/TVwcHB5r3FYlFaWlqO6sqsD8Mwsmzv5OQkDw8PmxcAAHhwPdABzdXVVYGBgSpXrpzs7W0vWH3llVcUExOjGTNm6MCBA+rVq5d1nqOjoyQpNTU1R+urXr26bt26pe3bt1unXbhwQYcPH9YjjzxyD1sCAAAeJg90QLuTYsWK6fnnn9fIkSP1zDPPqGzZstZ5pUqVkouLi1atWqWzZ88qMTF7jz6pXLmyOnXqpP79+2vTpk2KjIzUK6+8ojJlyqhTp073a1MAAMAD5qENaJLUt29f3bx503pxQDp7e3vNmDFDc+bMkZ+fX47C1dy5c/XYY4+pffv2aty4sQzD0IoVKzIc1gQAAMiKxbjTyU8PuAULFmjYsGE6ffq09bBmYZCUlCRPT08ljnbnYekA8hYPSwfuG+v3d2LiXc8nf6CfJJCVq1evKi4uTqGhoRowYEChCmcAAODB91AGtI8++kjvv/++mjdvXqgf+/To9a9UxCha0GUgn0SHtivoEgAA+eShPAdt/PjxSklJ0dq1a+Xm5lbQ5QAAANh4KAMaAACAmRHQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJPJVUDbuHGjbt26lWH6rVu3tHHjxnsuCgAA4GFmMQzDyOlCdnZ2iouLU6lSpWymX7hwQaVKlVJqamqeFYiMkpKS5OnpqcTERHl4eBR0OQAAIBty8v2dqxE0wzBksVgyTL9w4YJcXV1z0yUAAAD+j31OGj///POSJIvFouDgYDk5OVnnpaam6s8//1STJk3ytkIAAICHTI4Cmqenp6TbI2ju7u5ycXGxznN0dFSjRo3Uv3//vK0QAADgIZOjgDZ37lxJUkBAgEaMGMHhTAAAgPsgV+egjRs3Tk5OTlqzZo3mzJmjy5cvS5JOnz6t5OTkPC0QAADgYZOjEbR0MTExatOmjWJjY3Xjxg09/fTTcnd314cffqgbN27o888/z+s6AQAAHhq5GkEbMmSI6tevr0uXLtmch/bcc89p7dq1eVYcAADAwyhXI2i///67tmzZIkdHR5vpAQEBOnXqVJ4UBgAA8LDK1QhaWlpapjejPXnypNzd3e+5KAAAgIdZrgLaM888o08++cT63mKxKDk5WePGjdOzzz6bV7UBAAA8lHL1qKeTJ08qKChIhmHo6NGjql+/vo4ePaqSJUtq48aNGR4BhbzFo54AACh8cvL9nauAJt1+MPqiRYsUGRmp5ORk1atXT927d7e5aAD3BwENAIDCJ18CGgoOAQ0AgMLnvj8sfd68efr111+t79966y15eXmpSZMmiomJyU2XAAAA+D+5CmgffPCB9VDm1q1bNXPmTH300UcqWbKkhg0blqcFAgAAPGxydR+0EydOKDAwUJK0bNkyvfDCC3r11VfVtGlTtWzZMi/rAwAAeOjkagTNzc1NFy5ckCT99ttvevrppyVJzs7OunbtWt5VBwAA8BDK1Qja008/rX79+qlu3bo6cuSI9d5n+/fvV0BAQF7WBwAA8NDJ1QjarFmz1LhxY507d05LlixRiRIlJEm7du1St27d8rRAAACAhw232SiEuM0GAACFT06+v3N1iDPd1atXFRsbq5s3b9pMr1Wr1r10CwAA8FDLVUA7d+6cgoODtWrVqkznZ/YgdQAAAGRPrs5BGzp0qBITE7V9+3a5uLho1apVmjdvnipXrqzly5fndY0AAAAPlVyNoK1bt04///yz6tevryJFiqh8+fJ6+umn5eHhocmTJ6tdu3Z5XScAAMBDI1cjaFeuXFGpUqUkScWKFdO5c+ckSTVr1tTu3bvzrjoAAICHUK4CWtWqVXX48GFJUu3atTVnzhydOnVKn3/+uXx9ffO0QAAAgIdNrg5xDhkyRHFxcZKkcePGqU2bNvrmm2/k6OiosLCwvKwPAADgoZMn90G7evWqDh06pHLlyqlkyZJ5URfugPugAQBQ+OTk+ztXhzgnTpyoq1evWt8XLVpU9erVk6urqyZOnJibLgEAAPB/cjWCZmdnp7i4OOuFAukuXLigUqVKcR+0+4wRNAAACp/7PoJmGIYsFkuG6ZGRkSpevHhuugQAAMD/ydFFAsWKFZPFYpHFYlGVKlVsQlpqaqqSk5M1cODAPC8SAADgYZKjgPbJJ5/IMAz16dNHEyZMkKenp3Weo6OjAgIC1Lhx4zwvEgAA4GGSo4DWq1cvSVKFChXUpEkTOTg43JeiAAAAHma5ug9aixYtrD9fv35dN2/etJnPiesAAAC5l6uLBK5evarBgwerVKlScnV1VbFixWxeAAAAyL1cBbSRI0dq3bp1mj17tpycnPTll19qwoQJ8vPz0/z58/O6RgAAgIdKrg5x/uc//9H8+fPVsmVL9e7dW82aNVNgYKDKly+vb775Rt27d8/rOgEAAB4auRpBu3jxoipWrCjp9vlmFy9elCQ98cQT2rhxY95VBwAA8BDKVUCrWLGioqKiJEnVqlXTDz/8IOn2yJqXl1eeFQcAAPAwylVA6927tyIjIyVJo0eP1qxZs+Ts7Kxhw4Zp5MiReVogAADAwyZXz+L8p5iYGO3atUuBgYGqVatWXtSFO+BZnAAAFD45+f7O8UUCaWlpCgsL09KlSxUdHS2LxaIKFSrohRdeUM2aNXNdNAAAAG7L0SFOwzDUsWNH9evXT6dOnVLNmjVVo0YNxcTEKDg4WM8999z9qhMAAOChkaMRtLCwMG3cuFFr167Vk08+aTNv3bp16ty5s+bPn6+ePXvmaZEAAAAPkxyNoH333Xd6++23M4QzSXrqqac0evRoffPNN3lWHAAAwMMoRyNof/75pz766KMs57dt21YzZsy456KQPY2+bSQ7F7uCLgOFyL5e+wq6BABANuRoBO3ixYsqXbp0lvNLly6tS5cu3XNRAAAAD7McBbTU1FTZ22c96GZnZ6dbt27dc1EAAAAPsxwd4jQMQ8HBwXJycsp0/o0bN/KkKAAAgIdZjgJar1697tqGKzgBAADuTY4C2ty5c+9XHQAAAPg/uXoWJwAAAO4fAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADCZHD1JAOayLeakPJwsBV0G7ofxiQVdAQCgADGCBgAAYDIENAAAAJMhoAEAAJgMAe0ugoOD1blz54IuAwAAPEQIaAAAACZDQMuBVatW6YknnpCXl5dKlCih9u3b6/jx49b5TZo00ahRo2yWOXfunBwcHLRx40ZJ0oIFC1S/fn25u7vLx8dHL7/8suLj4/N1OwAAgLkR0HLgypUrevPNN7Vz506tXbtWRYoU0XPPPae0tDRJUvfu3fX999/LMAzrMosWLZKfn5+aNWsmSUpJSdGkSZMUGRmpZcuWKTo6WsHBwXdc740bN5SUlGTzAgAADy6L8fc0gQyCg4OVkJCgZcuWZZh3/vx5eXt7a9++fXr00Ud17tw5+fn5ad26ddZA1qRJEzVv3lyhoaGZ9r9z5049/vjjunz5stzc3DJtM378eE2YMCHD9MTR7twH7UHFfdAA4IGTlJQkT09PJSYmysPD445tGUHLgaNHj6pbt26qWLGiPDw8FBAQIEmKjY2VJHl7e+uZZ57RN998I0mKiorS1q1b1b17d2sfu3btUocOHVSuXDm5u7urRYsWNn1kZsyYMUpMTLS+Tpw4cZ+2EAAAmAEBLQc6dOigixcv6t///re2b9+u7du3S5Ju3rxpbdO9e3f9+OOPSklJ0bfffquaNWuqZs2akm4fIg0KCpKHh4e++eYb/fHHH/rpp58y9PFPTk5O8vDwsHkBAIAHFwEtmy5cuKDDhw/rnXfeUatWrVS9enVdunQpQ7tOnTrp+vXrWrVqlb799lub0bNDhw7pwoULCg0NVbNmzVStWjUuEAAAABnwLM5sKlasmEqUKKEvvvhCvr6+io2N1ejRozO0c3V1VefOnTV27FgdPHhQ3bp1s84rV66cHB0d9dlnn2ngwIH666+/NGnSpPzcDAAAUAgwgnYXaWlpsre3V5EiRfT9999r165devTRRzVs2DBNmTIl02W6d++uyMhINWvWTOXKlbNO9/b2VlhYmBYvXqxHHnlEoaGhmjp1an5tCgAAKCS4ivMu2rRpo8DAQM2cObOgS7GyXgXCVZwPLq7iBIAHTk6u4uQQZxYuXbqkzZs3KyIiQgMHDizocjL16PWvVMQoWtBl3BfRoe0KugQAAAoMAS0Lffr00R9//KHhw4erU6dOBV0OAAB4iBDQspB++wsAAID8xkUCAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAy9gVdAHLvrwlB8vDwKOgyAABAHmMEDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAk7Ev6AIAAMiNtLQ03bx5s6DLAKwcHBxkZ2eXJ30R0AAAhc7NmzcVFRWltLS0gi4FsOHl5SUfHx9ZLJZ76oeABgAoVAzDUFxcnOzs7OTv768iRThbBwXPMAxdvXpV8fHxkiRfX9976o+ABgAoVG7duqWrV6/Kz89PRYsWLehyACsXFxdJUnx8vEqVKnVPhzv5ZwcAoFBJTU2VJDk6OhZwJUBG6f9oSElJuad+CGgAgELpXs/xAe6HvPq95BBnIdbo20ayc8mbq0WAh9G+XvsKugQAyBQjaAAA5IOWLVtq6NChBbb+4OBgde7c2TT14M4YQQMAPBACRv+ar+uLDm2Xr+vLa0uXLpWDg0NBl1FoBAQEaOjQofkWagloAAA8hIoXL17QJdwzwzCUmpoqe/sHL85wiBMAgHxy69YtDR48WJ6enipZsqTGjh0rwzAkSQsWLFD9+vXl7u4uHx8fvfzyy9Z7aknSpUuX1L17d3l7e8vFxUWVK1fW3LlzrfNPnDihF198UV5eXipevLg6deqk6OjoLGv55yHOgIAAffDBB+rTp4/c3d1Vrlw5ffHFFzbL5HQdf5d+iHXChAny9vaWh4eHBg4caPM0iLS0NE2ePFkVKlSQi4uLateurR9//NE6PyIiQhaLRStXrtRjjz0mJycnbdq0SWlpafroo48UGBgoJycnlStXTu+//362606vberUqfL19VWJEiUUEhJivRKzZcuWiomJ0bBhw2SxWPLlAhUCGgAA+WTevHmyt7fXjh079Omnn+rjjz/Wl19+Ken2bRkmTZqkyMhILVu2TNHR0QoODrYuO3bsWB04cEArV67UwYMHNXv2bJUsWdK6bFBQkNzd3fX7779r8+bNcnNzU5s2bXL0OKxp06apfv362rNnjwYNGqTXXntNhw8fzrN1rF27VgcPHlRERIS+++47LV26VBMmTLDOnzx5subPn6/PP/9c+/fv17Bhw/TKK69ow4YNNv2MHj1aoaGhOnjwoGrVqqUxY8YoNDTU+hl9++23Kl26dI7qXr9+vY4fP67169dr3rx5CgsLU1hYmKTbh4PLli2riRMnKi4uTnFxcdn+THPrwRsTBADApPz9/TV9+nRZLBZVrVpV+/bt0/Tp09W/f3/16dPH2q5ixYqaMWOGHn/8cSUnJ8vNzU2xsbGqW7eu6tevL+n2iFe6RYsWKS0tTV9++aV1dGfu3Lny8vJSRESEnnnmmWzV9+yzz2rQoEGSpFGjRmn69Olav369qlatmifrcHR01Ndff62iRYuqRo0amjhxokaOHKlJkyYpJSVFH3zwgdasWaPGjRtbP4dNmzZpzpw5atGihbWfiRMn6umnn5YkXb58WZ9++qlmzpypXr16SZIqVaqkJ554IkefTbFixTRz5kzZ2dmpWrVqateundauXav+/furePHisrOzs45u5gcCGgAA+aRRo0Y2h8caN26sadOmKTU1VXv37tX48eMVGRmpS5cuWZ8zGhsbq0ceeUSvvfaaunTpot27d+uZZ55R586d1aRJE0lSZGSkjh07Jnd3d5v1Xb9+XcePH892fbVq1bL+bLFY5OPjYz3MmhfrqF27ts3THxo3bqzk5GSdOHFCycnJunr1qjV4pbt586bq1q1rMy09pErSwYMHdePGDbVq1SrTdWa37ho1atjc+d/X11f79hXcrXgIaAAAFLDr168rKChIQUFB+uabb+Tt7a3Y2FgFBQVZD8O1bdtWMTExWrFihcLDw9WqVSuFhIRo6tSpSk5O1mOPPaZvvvkmQ9/e3t7ZruOfV3VaLBZrUMyrdWQlOTlZkvTrr7+qTJkyNvOcnJxs3ru6ulp/Tn+80p36zU7dd9r2gkBAAwAgn2zfvt3m/bZt21S5cmUdOnRIFy5cUGhoqPz9/SVJO3fuzLC8t7e3evXqpV69eqlZs2YaOXKkpk6dqnr16mnRokUqVaqUPDw87kvtebGOyMhIXbt2zRqqtm3bJjc3N/n7+6t48eJycnJSbGyszeHMu6lcubJcXFy0du1a9evX777ULd0+PJv+mLH8wEUCAADkk9jYWL355ps6fPiwvvvuO3322WcaMmSIypUrJ0dHR3322Wf673//q+XLl2vSpEk2y7777rv6+eefdezYMe3fv1+//PKLqlevLknq3r27SpYsqU6dOun3339XVFSUIiIi9MYbb+jkyZN5UnterOPmzZvq27evDhw4oBUrVmjcuHEaPHiwihQpInd3d40YMULDhg3TvHnzdPz4ce3evVufffaZ5s2bl2Wfzs7OGjVqlN566y3Nnz9fx48f17Zt2/TVV1/l6WcTEBCgjRs36tSpUzp//ny2l8stRtAAAA+EwnDj2J49e+ratWtq0KCB7OzsNGTIEL366quyWCwKCwvT22+/rRkzZqhevXqaOnWqOnbsaF3W0dFRY8aMUXR0tFxcXNSsWTN9//33km4/oHvjxo0aNWqUnn/+eV2+fFllypRRq1at8mxELS/W0apVK1WuXFnNmzfXjRs31K1bN40fP946f9KkSfL29tbkyZP13//+V15eXqpXr57efvvtO/Y7duxY2dvb691339Xp06fl6+urgQMH5lnd0u0LEwYMGKBKlSrpxo0b1tuj3C8W436vAXkuKSlJnp6eqj67Os/iBO4Bz+IsnK5fv66oqChVqFBBzs7OBV0Osik4OFgJCQlatmxZQZdyX93p9zP9+zsxMfGu4ZBDnAAAACbDIU4AAHDP3Nzcspy3cuXKfKzkwUBAK8S2xZyUh9P9f9wEHlLjEwu6AgCFyN69e7OcV6ZMGTVr1iz/inkAENAAAMA9CwwMLOgSHiicgwYAAGAyBDQAAACTIaDlkTNnzuj1119XxYoV5eTkJH9/f3Xo0EFr167N0Hbx4sXW56dt2bJFFStWzO9yAQCAiXEOWh6Ijo5W06ZN5eXlpSlTpqhmzZpKSUnR6tWrFRISokOHDtm037p1q5o2bSpJ+v33360/AwAASAS0PDFo0CBZLBbt2LHD5gGuNWrUUJ8+fTK037Jli0aPHi1J2rRpk9q1M//drwEAQP7hEOc9unjxolatWqWQkBCbcJbOy8tLkvTtt9/Ky8tLXl5e2rFjh3r06CEvLy+tWLFCI0aMkJeXl7799ttM13Hjxg0lJSXZvAAAhUvLli01dOjQgi4DhQQjaPfo2LFjMgxD1apVu2O7jh07qkmTJlqzZo0++eQT/fLLL/rzzz81cOBAbdmyRZJUsmTJTJedPHmyJkyYkOe1A8ADZbxnPq+v4O8VGBERoenTp2vHjh1KSkpS5cqVNXLkSHXv3t3aJiwsTL1797ZZzsnJSdevX8/vcvNddHS0KlSooD179qhOnToFXU6OMIJ2j7L7KFM3NzcFBARo9+7d6tSpkwICArRv3z49++yzCggIUEBAQJZ3YR4zZowSExOtrxMnTuTlJgAACqktW7aoVq1aWrJkif7880/17t1bPXv21C+//GLTzsPDQ3FxcdZXTExMAVV8282bNwt0/YUBAe0eVa5cWRaLJcOFAH8XGxsrNzc3ubm56YsvvtC0adPk5uam8ePHa8GCBXJzc9PAgQOzXN7JyUkeHh42LwBA4XPr1i0NHjxYnp6eKlmypMaOHWv9h35AQIDee+899ezZU25ubipfvryWL1+uc+fOqVOnTnJzc1OtWrW0c+dOa39vv/22Jk2apCZNmqhSpUoaMmSI2rRpo6VLl9qs12KxyMfHx/oqXbp0tmsOCAjQpEmT1K1bN7m6uqpMmTKaNWuWTZuEhAT169dP3t7e8vDw0FNPPaXIyEjr/PHjx6tOnTr68ssvbR4inpCQoAEDBqh06dJydnbWo48+ahMuN23apGbNmsnFxUX+/v564403dOXKFZvaPvjgA/Xp00fu7u4qV66cvvjiC+v8ChUqSJLq1q0ri8Wili1bZnu7CxoB7R4VL15cQUFBmjVrls0vTbqEhAT5+flp7969WrVqlezt7bV3715t375d0u2rOPfu3auJEyfmd+kAgHw2b9482dvba8eOHfr000/18ccf68svv7TOnz59upo2bao9e/aoXbt26tGjh3r27KlXXnlFu3fvVqVKldSzZ887Hr1JTExU8eLFbaYlJyerfPny8vf3V6dOnbR///4c1T1lyhTVrl1be/bs0ejRozVkyBCFh4db5//rX/9SfHy8Vq5cqV27dqlevXpq1aqVLl68aG1z7NgxLVmyREuXLtXevXuVlpamtm3bavPmzVq4cKEOHDig0NBQ2dnZSZKOHz+uNm3aqEuXLvrzzz+1aNEibdq0SYMHD7apbdq0aapfv7727NmjQYMG6bXXXtPhw4clSTt27JAkrVmzRnFxcRmCq5lZjOweo0OW/vvf/6pp06YqXry4Jk6cqFq1aunWrVsKDw/X7NmzdfDgQUnS999/r9mzZ2vDhg3auHGj+vfvb/0lyomkpCR5enoqcbQ7z+LE/WOC82uAzFy/fl1RUVE2IzGSTH8OWsuWLRUfH6/9+/fLYrn9/+7Ro0dr+fLlOnDggAICAtSsWTMtWLBA0u37a/r6+mrs2LHWf8Rv27ZNjRs3VlxcnHx8fDKs44cfflCPHj20e/du1ahRQ9LtWzsdPXpUtWrVUmJioqZOnaqNGzdq//79Klu27F3rDggIUPXq1W0eeN61a1clJSVpxYoV1rsRxMfHy8nJydomMDBQb731ll599VWNHz9eH3zwgU6dOiVvb29J0m+//aa2bdvq4MGDqlKlSob19uvXT3Z2dpozZ4512qZNm9SiRQtduXJFzs7OGT4zwzDk4+OjCRMmaODAgQVyDlqWv5/62/d3YuJdj4YxgpYHKlasqN27d+vJJ5/U8OHD9eijj+rpp5/W2rVrNXv2bGu7iIgINW/eXJK0YcMG688AgIdDo0aNrOFMkho3bqyjR48qNTVVklSrVi3rvPTDkDVr1swwLT4+PkPf69evV+/evfXvf//bGs7S19GzZ0/VqVNHLVq00NKlS+Xt7W0TfO6mcePGGd6nDz5ERkYqOTlZJUqUsJ7O4+bmpqioKB0/fty6TPny5a3hTLr9cPWyZctmGs7S+w0LC7PpMygoSGlpaYqKirK2+/tnln4oN7PPp7DhKs484uvrq5kzZ2rmzJlZtvn888+tP48dOzY/ygIAFCIODg7Wn9ODXGbT0tLSbJbbsGGDOnTooOnTp6tnz553XUfdunV17NixPKk5OTlZvr6+ioiIyDAv/VZTkjLcisrFxeWu/Q4YMEBvvPFGhnnlypWz/vz3z0e6/Rn98/MpjAhoAADkk/Tzj9Nt27ZNlStXtp53lRsRERFq3769PvzwQ7366qt3bZ+ammq9i0B2bdu2LcP76tWrS5Lq1aunM2fOyN7eXgEBAdnus1atWjp58qSOHDmS6ShavXr1dODAAQUGBma7z39ydHSUJOsIZWFCQCvEHr3+lYoYRQu6DNOKDuUJDQDMJTY2Vm+++aYGDBig3bt367PPPtO0adNy3d/69evVvn17DRkyRF26dNGZM2ck3Q4m6RcKTJw4UY0aNVJgYKASEhI0ZcoUxcTEqF+/ftlez+bNm/XRRx+pc+fOCg8P1+LFi/Xrr79Kklq3bq3GjRurc+fO+uijj1SlShWdPn1av/76q5577jnVr18/0z5btGih5s2bq0uXLvr4448VGBioQ4cOyWKxqE2bNho1apQaNWqkwYMHq1+/fnJ1ddWBAwcUHh5+x6NVf1eqVCm5uLho1apVKlu2rJydneXpmc/nKuYS56ABAJBPevbsqWvXrqlBgwYKCQnRkCFDsjXqlZV58+bp6tWrmjx5snx9fa2v559/3trm0qVL6t+/v6pXr65nn31WSUlJ2rJlix555JFsr2f48OHauXOn6tatq/fee08ff/yxgoKCJN0+pLhixQo1b95cvXv3VpUqVdS1a1fFxMTc9XYeS5Ys0eOPP65u3brpkUce0VtvvWVzPt6GDRt05MgRNWvWTHXr1tW7774rPz+/bNdtb2+vGTNmaM6cOfLz81OnTp2yvWxB4yrOQij9KhD/oT+oiBMjaFlhBA14MN3pKjnkvYCAAA0dOpTHVGUTV3ECAAA8oAhoAAA8pH7//Xeb21j884WCw0UCAAA8pOrXr6+9e/fesU10dHS+1AJbBDQAAB5SLi4u93QbC9w/HOIEAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEA8ACLiIiQxWJRQkJCQZeCHOA2GwCAB0LNeTXzdX37eu3L1/Xh3kVHR6tChQras2eP6tSpU9Dl3BEjaAAAmJBhGLp161ZBl5Evbt68WdAlmA4jaIXYXxOC7vqwVQCAedy4cUMjR47U999/r6SkJNWvX1/Tp0/X448/roiICD355JNasWKF3nnnHe3bt0+//fab/P399eabb2rbtm26cuWKqlevrsmTJ6t169Y2/b777rv69ttvFR8fL39/f40ZM0Z9+/bNtI5NmzZpzJgx2rlzp0qWLKnnnntOkydPlqur6123ISAgQH379tWBAwe0fPlyeXl56e2331ZISIi1TUJCgkaMGKGff/5ZN27csG5n7dq1JUnjx4/XsmXLNHjwYL3//vuKiYlRWlqaEhISNGrUKC1btkyJiYkKDAxUaGio2rdvn626AwIC9Oqrr+rYsWNavHixihUrpnfeeUevvvqqJKlChQqSpLp160qSWrRooYiIiBzuxfzBCBoAAPnkrbfe0pIlSzRv3jzt3r1bgYGBCgoK0sWLF61tRo8erdDQUB08eFC1atVScnKynn32Wa1du1Z79uxRmzZt1KFDB8XGxlqX6dmzp7777jvNmDFDBw8e1Jw5c7J8lubx48fVpk0bdenSRX/++acWLVqkTZs2afDgwdnejilTpqh27dras2ePRo8erSFDhig8PNw6/1//+pfi4+O1cuVK7dq1S/Xq1VOrVq1stvPYsWNasmSJli5dqr179yotLU1t27bV5s2btXDhQh04cEChoaGys7PLUd3Tpk1T/fr1tWfPHg0aNEivvfaaDh8+LEnasWOHJGnNmjWKi4vT0qVLs73N+c1iGIZR0EUgZ5KSkuTp6anExERG0AA8dK5fv66oqChVqFBBzs7O1ulmPwftypUrKlasmMLCwvTyyy9LklJSUhQQEKChQ4fq8ccf15NPPqlly5apU6dOd+zr0Ucf1cCBAzV48GAdOXJEVatWVXh4uM2oWrr0kblLly7Jy8tL/fr1k52dnebMmWNts2nTJrVo0UJXrlyx+UwzExAQoOrVq2vlypXWaV27dlVSUpJWrFihTZs2qV27doqPj5eTk5O1TWBgoN566y29+uqrGj9+vD744AOdOnVK3t7ekqTffvtNbdu21cGDB1WlSpUM681O3QEBAWrWrJkWLFgg6fZhYh8fH02YMEEDBw7Ml3PQsvr9lHL2/c0IGgAA+eD48eNKSUlR06ZNrdMcHBzUoEEDHTx40Dqtfv36NsslJydrxIgRql69ury8vOTm5qaDBw9aR9D27t0rOzs7tWjRIlt1REZGKiwsTG5ubtZXUFCQ0tLSFBUVla0+GjdunOF9+jZERkYqOTlZJUqUsFlHVFSUjh8/bl2mfPny1nCWvh1ly5bNNJzlpO5atWpZf7ZYLPLx8VF8fHy2tstMOAcNAAAT+ed5YCNGjFB4eLimTp2qwMBAubi46IUXXrCeWO/i4pKj/pOTkzVgwAC98cYbGeaVK1cu94X/rX9fX99Mz+3y8vKy/vzP7bzbdmS3bgcHB5t5FotFaWlp2ajcXAhoAADkg0qVKsnR0VGbN29W+fLlJd0+xPnHH39o6NChWS63efNmBQcH67nnnpN0O6hER0db59esWVNpaWnasGFDpoc4/6levXo6cOCAAgMDc70t27Zty/C+evXq1v7PnDkje3t7BQQEZLvPWrVq6eTJkzpy5Eimo2h5Ubejo6MkKTU1Ndd95BcOcQIAkA9cXV312muvaeTIkVq1apUOHDig/v376+rVq1lebSlJlStXtp5IHxkZqZdfftlmRCggIEC9evVSnz59tGzZMkVFRSkiIkI//PBDpv2NGjVKW7Zs0eDBg7V3714dPXpUP//8c44uEti8ebM++ugjHTlyRLNmzdLixYs1ZMgQSVLr1q3VuHFjde7cWb/99puio6O1ZcsW/c///I927tyZZZ8tWrRQ8+bN1aVLF4WHhysqKkorV67UqlWr8qzuUqVKycXFRatWrdLZs2eVmJiY7WXzGwENAIB8Ehoaqi5duqhHjx6qV6+ejh07ptWrV6tYsWJZLvPxxx+rWLFiatKkiTp06KCgoCDVq1fPps3s2bP1wgsvaNCgQapWrZr69++vK1euZNpfrVq1tGHDBh05ckTNmjVT3bp19e6778rPzy/b2zF8+HDt3LlTdevW1XvvvaePP/5YQUFBkm4fUlyxYoWaN2+u3r17q0qVKuratatiYmJUunTpO/a7ZMkSPf744+rWrZseeeQRvfXWW9bRrryo297eXjNmzNCcOXPk5+d314sxChJXcRZCXMUJ4GF2p6vkcP+lX3V6p8OyDzOu4gQAAHhAEdAAAIAk6ffff7e5jcU/X8g/XMUJAAAk3b4H2969e+/Y5u9XkOL+IaABAABJt+9Fdi+3sUDe4RAnAACAyRDQAACFEjchgBnl1VMLOMQJAChUHBwcZLFYdO7cOXl7e8tisRR0SYAMw9DNmzd17tw5FSlSxPrUgtwioAEAChU7OzuVLVtWJ0+e5IR1mE7RokVVrlw5FSlybwcpCWgAgELHzc1NlStXVkpKSkGXAljZ2dnJ3t4+T0Z1CWgAgELJzs5OdnZ2BV0GcF9wkQAAAIDJENAAAABMhoAGAABgMpyDVgil3/snKSmpgCsBAADZlf69nZ17+BHQCqELFy5Ikvz9/Qu4EgAAkFOXL1+Wp6fnHdsQ0Aqh4sWLS5JiY2PvuoMLo6SkJPn7++vEiRPy8PAo6HLyHNtXuLF9hRvbV7gV9u0zDEOXL1+Wn5/fXdsS0Aqh9JvfeXp6Fspf0Ozy8PBg+woxtq9wY/sKN7bPvLI7sMJFAgAAACZDQAMAADAZAloh5OTkpHHjxsnJyamgS7kv2L7Cje0r3Ni+wo3te3BYjOxc6wkAAIB8wwgaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAc2kZs2apYCAADk7O6thw4basWPHHdsvXrxY1apVk7Ozs2rWrKkVK1bkU6U5M3nyZD3++ONyd3dXqVKl1LlzZx0+fPiOy4SFhclisdi8nJ2d86ninBk/fnyGWqtVq3bHZQrLvpOkgICADNtnsVgUEhKSaXuz77uNGzeqQ4cO8vPzk8Vi0bJly2zmG4ahd999V76+vnJxcVHr1q119OjRu/ab07/f++VO25eSkqJRo0apZs2acnV1lZ+fn3r27KnTp0/fsc/c/I7fL3fbf8HBwRlqbdOmzV37LQz7T1Kmf4sWi0VTpkzJsk+z7L/sfBdcv35dISEhKlGihNzc3NSlSxedPXv2jv3m9m/WjAhoJrRo0SK9+eabGjdunHbv3q3atWsrKChI8fHxmbbfsmWLunXrpr59+2rPnj3q3LmzOnfurL/++iufK7+7DRs2KCQkRNu2bVN4eLhSUlL0zDPP6MqVK3dczsPDQ3FxcdZXTExMPlWcczVq1LCpddOmTVm2LUz7TpL++OMPm20LDw+XJP3rX//Kchkz77srV66odu3amjVrVqbzP/roI82YMUOff/65tm/fLldXVwUFBen69etZ9pnTv9/76U7bd/XqVe3evVtjx47V7t27tXTpUh0+fFgdO3a8a785+R2/n+62/ySpTZs2NrV+9913d+yzsOw/STbbFRcXp6+//loWi0VdunS5Y79m2H/Z+S4YNmyY/vOf/2jx4sXasGGDTp8+reeff/6O/ebmb9a0DJhOgwYNjJCQEOv71NRUw8/Pz5g8eXKm7V988UWjXbt2NtMaNmxoDBgw4L7WmRfi4+MNScaGDRuybDN37lzD09Mz/4q6B+PGjTNq166d7faFed8ZhmEMGTLEqFSpkpGWlpbp/MK07yQZP/30k/V9Wlqa4ePjY0yZMsU6LSEhwXBycjK+++67LPvJ6d9vfvnn9mVmx44dhiQjJiYmyzY5/R3PL5ltX69evYxOnTrlqJ/CvP86depkPPXUU3dsY9b998/vgoSEBMPBwcFYvHixtc3BgwcNScbWrVsz7SO3f7NmxQiaydy8eVO7du1S69atrdOKFCmi1q1ba+vWrZkus3XrVpv2khQUFJRlezNJTEyUJBUvXvyO7ZKTk1W+fHn5+/urU6dO2r9/f36UlytHjx6Vn5+fKlasqO7duys2NjbLtoV53928eVMLFy5Unz59ZLFYsmxXmPbd30VFRenMmTM2+8fT01MNGzbMcv/k5u/XTBITE2WxWOTl5XXHdjn5HS9oERERKlWqlKpWrarXXntNFy5cyLJtYd5/Z8+e1a+//qq+ffveta0Z998/vwt27dqllJQUm31RrVo1lStXLst9kZu/WTMjoJnM+fPnlZqaqtKlS9tML126tM6cOZPpMmfOnMlRe7NIS0vT0KFD1bRpUz366KNZtqtataq+/vpr/fzzz1q4cKHS0tLUpEkTnTx5Mh+rzZ6GDRsqLCxMq1at0uzZsxUVFaVmzZrp8uXLmbYvrPtOkpYtW6aEhAQFBwdn2aYw7bt/St8HOdk/ufn7NYvr169r1KhR6tatmzw8PLJsl9Pf8YLUpk0bzZ8/X2vXrtWHH36oDRs2qG3btkpNTc20fWHef/PmzZO7u/tdDwGacf9l9l1w5swZOTo6ZvjHwt2+C9PbZHcZM7Mv6ALw8AoJCdFff/111/MfGjdurMaNG1vfN2nSRNWrV9ecOXM0adKk+11mjrRt29b6c61atdSwYUOVL19eP/zwQ7b+ZVuYfPXVV2rbtq38/PyybFOY9t3DLCUlRS+++KIMw9Ds2bPv2LYw/Y537drV+nPNmjVVq1YtVapUSREREWrVqlUBVpb3vv76a3Xv3v2uF+GYcf9l97vgYcMImsmULFlSdnZ2Ga5UOXv2rHx8fDJdxsfHJ0ftzWDw4MH65ZdftH79epUtWzZHyzo4OKhu3bo6duzYfaou73h5ealKlSpZ1loY950kxcTEaM2aNerXr1+OlitM+y59H+Rk/+Tm77egpYezmJgYhYeH33H0LDN3+x03k4oVK6pkyZJZ1loY958k/f777zp8+HCO/x6lgt9/WX0X+Pj46ObNm0pISLBpf7fvwvQ22V3GzAhoJuPo6KjHHntMa9eutU5LS0vT2rVrbUYi/q5x48Y27SUpPDw8y/YFyTAMDR48WD/99JPWrVunChUq5LiP1NRU7du3T76+vvehwryVnJys48ePZ1lrYdp3fzd37lyVKlVK7dq1y9FyhWnfVahQQT4+Pjb7JykpSdu3b89y/+Tm77cgpYezo0ePas2aNSpRokSO+7jb77iZnDx5UhcuXMiy1sK2/9J99dVXeuyxx1S7du0cL1tQ++9u3wWPPfaYHBwcbPbF4cOHFRsbm+W+yM3frKkV8EUKyMT3339vODk5GWFhYcaBAweMV1991fDy8jLOnDljGIZh9OjRwxg9erS1/ebNmw17e3tj6tSpxsGDB41x48YZDg4Oxr59+wpqE7L02muvGZ6enkZERIQRFxdnfV29etXa5p/bN2HCBGP16tXG8ePHjV27dhldu3Y1nJ2djf379xfEJtzR8OHDjYiICCMqKsrYvHmz0bp1a6NkyZJGfHy8YRiFe9+lS01NNcqVK2eMGjUqw7zCtu8uX75s7Nmzx9izZ48hyfj444+NPXv2WK9iDA0NNby8vIyff/7Z+PPPP41OnToZFSpUMK5du2bt46mnnjI+++wz6/u7/f2aZftu3rxpdOzY0Shbtqyxd+9em7/HGzduZLl9d/sdN8v2Xb582RgxYoSxdetWIyoqylizZo1Rr149o3Llysb169ez3L7Csv/SJSYmGkWLFjVmz56daR9m3X/Z+S4YOHCgUa5cOWPdunXGzp07jcaNGxuNGze26adq1arG0qVLre+z8zdbWBDQTOqzzz4zypUrZzg6OhoNGjQwtm3bZp3XokULo1evXjbtf/jhB6NKlSqGo6OjUaNGDePXX3/N54qzR1Kmr7lz51rb/HP7hg4dav0sSpcubTz77LPG7t2787/4bHjppZcMX19fw9HR0ShTpozx0ksvGceOHbPOL8z7Lt3q1asNScbhw4czzCts+279+vWZ/j6mb0NaWpoxduxYo3Tp0oaTk5PRqlWrDNtdvnx5Y9y4cTbT7vT3m5/utH1RUVFZ/j2uX7/e2sc/t+9uv+P56U7bd/XqVeOZZ54xvL29DQcHB6N8+fJG//79MwStwrr/0s2ZM8dwcXExEhISMu3DrPsvO98F165dMwYNGmQUK1bMKFq0qPHcc88ZcXFxGfr5+zLZ+ZstLCyGYRj3Z2wOAAAAucE5aAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJ/D9ATY6Xkx6//AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAGzCAYAAACb/us4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLrElEQVR4nO3deVwW9d7/8fclCCKrKAq4AIpbbmnkmktp4pqmnXLJfcnEUnNJO5lbpblkmR6z00nNtMU085RabmiaS25kihtHwAV3AZHcYH5/eHP9ugIVELkGeD0fj+txrmvmOzOfmea+efudme9YDMMwBAAAANMoZO8CAAAAYIuABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAPycKFC2WxWLR79257l2LDYrFowoQJ9i4DwD0Q0ABkW1oASfsUKVJE/v7+Cg0N1ezZs3X16lV7l5in7N+/Xy+++KLKli0rZ2dneXt7q0WLFlqwYIFSUlLsXV627d27V88884y8vb1VtGhRVa9eXbNnz77vcoGBgTbn118/FStWtLaLjo5ON9/Dw0OPPvqo5syZk6ePHQouR3sXACDvmzRpkoKCgnTr1i2dPXtW4eHhGjZsmN5//32tWrVKNWvWtHeJpvfpp59q0KBBKlWqlHr06KGKFSvq6tWr2rBhg/r166e4uDi98cYb9i4zy37++We1b99etWvX1rhx4+Tm5qaoqCidOnXqvst+8MEHSkpKspkWExOjN998Uy1btkzXvmvXrmrTpo0kKSEhQatXr9Yrr7yimJgYTZ8+PWd2CMglBDQAD6x169YKCQmx/h47dqw2btyodu3a6ZlnnlFkZKRcXFzsWKG57dixQ4MGDVKDBg20evVqubu7W+cNGzZMu3fv1h9//GHHCu/u+vXrcnJyUqFC6S/IJCYmqmfPnmrbtq2+/fbbDNvcS8eOHdNNe/vttyVJ3bt3TzevTp06evHFF62/Bw8erHr16mnp0qUENOQ5XOIE8FA89dRTGjdunGJiYvTFF19Ypx8+fFjPPfecvL29VaRIEYWEhGjVqlXplo+Pj9ewYcOsl/uCg4P13nvvKTU11dom7dLWjBkzNGvWLAUEBMjFxUVNmzZNF2jOnj2rPn36qEyZMnJ2dpafn586dOig6Ohom3Zr1qxR48aN5erqKnd3d7Vt21YHDx5MV19m9+Pvrly5orp166pMmTI6cuSIJGnixImyWCxasmSJTThLExISot69e1t/X7t2TSNGjLAem8qVK2vGjBkyDMNmuRs3bmj48OHy8fGRu7u7nnnmmbv2XJ0+fVp9+/ZVqVKl5OzsrGrVqumzzz6zaRMeHi6LxaKvvvpKb775pkqXLq2iRYsqMTExw3UuXbpU586d0zvvvKNChQrp2rVrNv/9smPp0qUKCgpSw4YN79vWYrGoVKlScnSkLwJ5D2ctgIemR48eeuONN/Tzzz9rwIABOnjwoBo1aqTSpUtrzJgxcnV11TfffKOOHTtq+fLlevbZZyVJycnJatq0qU6fPq2XXnpJ5cqV06+//qqxY8cqLi5OH3zwgc12Pv/8c129elVhYWG6fv26PvzwQz311FM6cOCASpUqJUnq3LmzDh48qFdeeUWBgYE6f/681q1bp9jYWAUGBkqSFi9erF69eik0NFTvvfeekpOTNW/ePD3xxBPat2+ftV1m9+PvLl68qKefflqXL1/W5s2bVaFCBSUnJ2vDhg1q0qSJypUrd99jahiGnnnmGW3atEn9+vXTo48+qp9++kmjRo3S6dOnNWvWLGvb/v3764svvlC3bt3UsGFDbdy4UW3btk23znPnzql+/fqyWCwaMmSIfHx8tGbNGvXr10+JiYkaNmyYTfvJkyfLyclJI0eO1I0bN+Tk5JRhrevXr5eHh4dOnz6tjh076ujRo3J1dVWPHj00a9YsFSlS5L77+1f79u1TZGSk/vnPf2Y4Pzk5WRcvXpR0p/duzZo1Wrt2rcaOHZul7QCmYABANi1YsMCQZPz22293bePp6WnUrl3bMAzDaN68uVGjRg3j+vXr1vmpqalGw4YNjYoVK1qnTZ482XB1dTWOHj1qs64xY8YYDg4ORmxsrGEYhnHixAlDkuHi4mKcOnXK2m7nzp2GJGP48OGGYRjGlStXDEnG9OnT71rn1atXDS8vL2PAgAE208+ePWt4enraTM/sfvz1+MTFxRnVqlUzypcvb0RHR1vbREREGJKMoUOH3rW2v1q5cqUhyXj77bdtpj/33HOGxWIxjh8/bhiGYezfv9+QZAwePNimXbdu3QxJxvjx463T+vXrZ/j5+RkXL160adulSxfD09PTSE5ONgzDMDZt2mRIMsqXL2+ddi81a9Y0ihYtahQtWtR45ZVXjOXLlxuvvPKKIcno0qVLpvb3r0aMGGFIMg4dOmQzPe08yOjz8ssvG6mpqVneFmBvXOIE8FC5ubnp6tWrunz5sjZu3Kjnn39eV69e1cWLF3Xx4kVdunRJoaGhOnbsmE6fPi1JWrZsmRo3bqxixYpZ2128eFEtWrRQSkqKtmzZYrONjh07qnTp0tbfdevWVb169bR69WpJkouLi5ycnBQeHq4rV65kWOe6desUHx+vrl272mzTwcFB9erV06ZNmyQpS/uR5tSpU2ratKlu3bqlLVu2KCAgwDov7fJgRpc2M7J69Wo5ODjo1VdftZk+YsQIGYahNWvWWNtJStfu771hhmFo+fLlat++vQzDsNn30NBQJSQkaO/evTbL9OrVK1P3FCYlJSk5OVk9e/bU7Nmz1alTJ82ePVsvvfSSvvrqKx07dixT+yxJqamp+uqrr1S7dm1VrVo1wzYDBw7UunXrtG7dOi1fvlxhYWGaP3++XnvttUxvBzALLnECeKiSkpJUsmRJHT9+XIZhaNy4cRo3blyGbc+fP6/SpUvr2LFj+v333+Xj43PXdn/11yEX0lSqVEnffPONJMnZ2VnvvfeeRowYoVKlSql+/fpq166devbsKV9fX0myhoWnnnoqw216eHhIUpb2I02PHj3k6OioyMhI6/b+vt7MDkkSExMjf3//dIEuLbTExMRY/7dQoUKqUKGCTbvKlSvb/L5w4YLi4+P1ySef6JNPPrnr/vxVUFCQ9XtKSoouXLhgM9/b21tOTk7WENe1a1eb+d26ddP8+fO1ffv2DP/bZWTz5s06ffq0hg8fftc2FStWVIsWLay/O3XqJIvFog8++EB9+/ZVjRo1MrUtwAwIaAAemlOnTikhIUHBwcHWm8NHjhyp0NDQDNsHBwdLutNb8vTTT2v06NEZtqtUqVKWaxk2bJjat2+vlStX6qefftK4ceM0ZcoUbdy4UbVr17bWt3jx4nQhSpL1RvOs7EeaTp066fPPP9eHH36oKVOmpGvr6OioAwcOZHmfckLa/rz44ovq1atXhm3+PkzKX3vPTp48aRPYJGnTpk1q1qyZ/P39dfDgQet9gGlKliwpSXftzczIkiVLVKhQoXRh736aN2+uOXPmaMuWLQQ05CkENAAPzeLFiyVJoaGhKl++vCSpcOHCNr0cGalQoYKSkpLu2y5NRpfKjh49ar2p/6/rHTFihEaMGKFjx47p0Ucf1cyZM/XFF19Ye5pKlix5z+1mZT/SvPLKKwoODtZbb70lT09PjRkzxjqvaNGieuqpp7Rx40adPHlSZcuWvee6AgICtH79el29etWmF+3w4cPW+Wn/m5qaqqioKJtes7QnR9OkPeGZkpKS6f35K19fX61bt85mWq1atSRJjz32mNatW6fTp0/b1HDmzBnrtjPjxo0bWr58uTX0ZcXt27clKd14aoDZcQ8agIdi48aNmjx5soKCgtS9e3eVLFlSzZo10/z58xUXF5eu/V8vkz3//PPavn27fvrpp3Tt4uPjrX9006xcudLmvq9du3Zp586dat26taQ7T/ddv37dZpkKFSrI3d1dN27ckHQnRHp4eOjdd9/VrVu37lpfVvbjr8aNG6eRI0dq7Nixmjdvns288ePHyzAM9ejRI8MgsWfPHi1atEiS1KZNG6WkpGjOnDk2bWbNmiWLxWLd57T//fuI/X9/AtbBwUGdO3fW8uXLMxxr7W77k6ZIkSJq0aKFzadYsWKS7vx3lKT//Oc/Nst8+umncnR0VLNmzazTYmNjrSHz71avXq34+PgMxz67n//+97+S/n9oBPIKetAAPLA1a9bo8OHDun37ts6dO6eNGzdq3bp1CggI0KpVq6zDKcydO1dPPPGEatSooQEDBqh8+fI6d+6ctm/frlOnTikiIkKSNGrUKK1atUrt2rVT79699dhjj+natWs6cOCAvv32W0VHR6tEiRLW7QcHB+uJJ57Qyy+/rBs3buiDDz5Q8eLFrZdIjx49qubNm+v555/XI488IkdHR3333Xc6d+6cunTpIunOvWDz5s1Tjx49VKdOHXXp0kU+Pj6KjY3Vjz/+qEaNGllDUWb34++mT5+uhIQEhYWFyd3d3TqoasOGDTV37lwNHjxYVapUsXmTQHh4uFatWmUdoLV9+/Z68skn9c9//lPR0dGqVauWfv75Z33//fcaNmyYtSfw0UcfVdeuXfWvf/1LCQkJatiwoTZs2KDjx4+nq2vq1KnatGmT6tWrpwEDBuiRRx7R5cuXtXfvXq1fv16XL1/O1nlRu3Zt9e3bV5999plu376tpk2bKjw8XMuWLdPYsWNtesN69uypzZs3pxvLTbpzedPZ2VmdO3e+5/b27t1rHXMv7S0My5cvV8OGDTN88wBganZ8ghRAHpc2jETax8nJyfD19TWefvpp48MPPzQSExPTLRMVFWX07NnT8PX1NQoXLmyULl3aaNeunfHtt9/atLt69aoxduxYIzg42HBycjJKlChhNGzY0JgxY4Zx8+ZNwzD+//AK06dPN2bOnGmULVvWcHZ2Nho3bmxERERY13Xx4kUjLCzMqFKliuHq6mp4enoa9erVM7755pt09W3atMkIDQ01PD09jSJFihgVKlQwevfubezevTvL+5HRMCQpKSlG165dDUdHR2PlypU269yzZ4/RrVs3w9/f3yhcuLBRrFgxo3nz5saiRYuMlJQUm2MzfPhwa7uKFSsa06dPTzecxJ9//mm8+uqrRvHixQ1XV1ejffv2xsmTJ9MNs2EYhnHu3DkjLCzMKFu2rFG4cGHD19fXaN68ufHJJ5/YHBtJxrJly9Idt7u5efOmMWHCBCMgIMAoXLiwERwcbMyaNStdu6ZNmxoZ/UlKSEgwihQpYnTq1Omu28homA1HR0ejfPnyxqhRo4yrV69mul7ALCyGkcE/VwAgD4iOjlZQUJCmT5+ukSNH2rscAMgx3IMGAABgMgQ0AAAAkyGgAQAAmAz3oAEAAJgMPWgAAAAmQ0ADAAAwGQaqzYNSU1N15swZubu7y2Kx2LscAACQCYZh6OrVq/L391ehQvfuIyOg5UFnzpy57/v6AACAOZ08eVJlypS5ZxsCWh6U9oLkkydPysPDw87VAACAzEhMTFTZsmWtf8fvhYCWB6Vd1vTw8CCgAQCQx2Tm9iQeEgAAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMo72LgDZV39pfTm4ONi7DAAA8o0DvQ7YuwRJ9KABAACYDgENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEzG0d4FIPt2xJySh7PF3mUAAPKTCQn2rgCiBw0AAMB0CGgAAAAmQ0DLQeHh4bJYLIqPj7d3KQAAIA+zW0CzWCz3/EyYMMFepWVbw4YNFRcXJ09Pz0wvM2HCBD366KMPrygAAJDn2O0hgbi4OOv3r7/+Wm+99ZaOHDlinebm5maPsrLt1q1bcnJykq+vr71LAQAAeZzdetB8fX2tH09PT1ksFvn6+srd3V2VKlXS2rVrbdqvXLlSrq6uunr1qqKjo2WxWPTVV1+pYcOGKlKkiKpXr67NmzfbLPPHH3+odevWcnNzU6lSpdSjRw9dvHjROv/bb79VjRo15OLiouLFi6tFixa6du2adf5nn32matWqydnZWX5+fhoyZIh1nsVi0bx58/TMM8/I1dVV77zzTrpLnAsXLpSXl5dWrlypihUrqkiRIgoNDdXJkyet8ydOnKiIiAhrz+HChQtz+EgDAIC8xnT3oLm6uqpLly5asGCBzfQFCxboueeek7u7u3XaqFGjNGLECO3bt08NGjRQ+/btdenSJUlSfHy8nnrqKdWuXVu7d+/W2rVrde7cOT3//POS7vTgde3aVX379lVkZKTCw8PVqVMnGYYhSZo3b57CwsI0cOBAHThwQKtWrVJwcLBNTRMmTNCzzz6rAwcOqG/fvhnuT3Jyst555x19/vnn2rZtm+Lj49WlSxdJ0gsvvKARI0aoWrVqiouLU1xcnF544YV067hx44YSExNtPgAAIP8y5Tho/fv3t97P5efnp/Pnz2v16tVav369TbshQ4aoc+fOku4EqrVr1+o///mPRo8erTlz5qh27dp69913re0/++wzlS1bVkePHlVSUpJu376tTp06KSAgQJJUo0YNa9u3335bI0aM0NChQ63THn/8cZvtd+vWTX369LH+/t///pduX27duqU5c+aoXr16kqRFixapatWq2rVrl+rWrSs3Nzc5Ojre89LolClTNHHixPseNwAAkD+YrgdNkurWratq1app0aJFkqQvvvhCAQEBatKkiU27Bg0aWL87OjoqJCREkZGRkqSIiAht2rRJbm5u1k+VKlUkSVFRUapVq5aaN2+uGjVq6B//+If+/e9/68qVK5Kk8+fP68yZM2revPk96wwJCbnvvjg6OtoEuypVqsjLy8taZ2aMHTtWCQkJ1k/aJVIAAJA/mTKgSXd60dLux1qwYIH69OkjiyXzo+YnJSWpffv22r9/v83n2LFjatKkiRwcHLRu3TqtWbNGjzzyiD766CNVrlxZJ06ckIuLS6a24erqmp1dyzJnZ2d5eHjYfAAAQP5l2oD24osvKiYmRrNnz9ahQ4fUq1evdG127Nhh/X779m3t2bNHVatWlSTVqVNHBw8eVGBgoIKDg20+acHKYrGoUaNGmjhxovbt2ycnJyd99913cnd3V2BgoDZs2PDA+3H79m3t3r3b+vvIkSOKj4+31unk5KSUlJQH3g4AAMg/TBvQihUrpk6dOmnUqFFq2bKlypQpk67N3Llz9d133+nw4cMKCwvTlStXrDfrh4WF6fLly+ratat+++03RUVF6aefflKfPn2UkpKinTt36t1339Xu3bsVGxurFStW6MKFC9bgNGHCBM2cOVOzZ8/WsWPHtHfvXn300UdZ3o/ChQvrlVde0c6dO7Vnzx717t1b9evXV926dSVJgYGBOnHihPbv36+LFy/qxo0bD3DUAABAfmDagCZJ/fr1082bN+/6hOTUqVM1depU1apVS1u3btWqVatUokQJSZK/v7+2bdumlJQUtWzZUjVq1NCwYcPk5eWlQoUKycPDQ1u2bFGbNm1UqVIlvfnmm5o5c6Zat24tSerVq5c++OAD/etf/1K1atXUrl07HTt2LMv7ULRoUb3++uvq1q2bGjVqJDc3N3399dfW+Z07d1arVq305JNPysfHR19++WU2jhQAAMhPLEbauBImtHjxYg0fPlxnzpyRk5OTdXp0dLSCgoK0b98+U4/Cv3DhQg0bNizHX/2UmJgoT09PJYxxl4dz5u/LAwDgviYk2LuCfMv69zsh4b73k5tymI3k5GTFxcVp6tSpeumll2zCGQAAQH5nyoA2bdo0vfPOO2rSpInGjh1r73JMq/r1/6iQUdTeZQBAtkRPbWvvEgDTMvUlTmQsrYu07LBvVMiZgAYgbyKgoaDJyiVOUz8kAAAAUBAR0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYjKO9C0D2/TExVB4eHvYuAwAA5DB60AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZBztXQCyr/7S+nJwcbB3GQAAEzvQ64C9S0A20IMGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJONq7AGTfjphT8nC22LsMAMi8CQn2rgDIE+hBAwAAMBkCWhb07t1bHTt2tHcZAAAgn8u3Aa13796yWCyyWCxycnJScHCwJk2apNu3b9932ejoaFksFu3fv//hFwoAAPA3+foetFatWmnBggW6ceOGVq9erbCwMBUuXFhjx461d2kAAAB3lW970CTJ2dlZvr6+CggI0Msvv6wWLVrom2++kYeHh7799lubtitXrpSrq6uuXr2qoKAgSVLt2rVlsVjUrFkzm7YzZsyQn5+fihcvrrCwMN26dcs678qVK+rZs6eKFSumokWLqnXr1jp27Jh1/sKFC+Xl5aWffvpJVatWlZubm1q1aqW4uLiHdyAAAECekq8D2t+5uLioUKFC6tKlixYsWGAzb8GCBXruuefk7u6uXbt2SZLWr1+vuLg4rVixwtpu06ZNioqK0qZNm7Ro0SItXLhQCxcutM7v3bu3du/erVWrVmn79u0yDENt2rSxCXHJycmaMWOGFi9erC1btig2NlYjR468a903btxQYmKizQcAAORfBSKgGYah9evX66efftJTTz2l/v3766effrL2Wp0/f16rV69W3759JUk+Pj6SpOLFi8vX11fe3t7WdRUrVkxz5sxRlSpV1K5dO7Vt21YbNmyQJB07dkyrVq3Sp59+qsaNG6tWrVpasmSJTp8+rZUrV1rXcevWLX388ccKCQlRnTp1NGTIEOs6MjJlyhR5enpaP2XLls3pQwQAAEwkXwe0H374QW5ubipSpIhat26tF154QRMmTFDdunVVrVo1LVq0SJL0xRdfKCAgQE2aNLnvOqtVqyYHBwfrbz8/P50/f16SFBkZKUdHR9WrV886v3jx4qpcubIiIyOt04oWLaoKFSpkuI6MjB07VgkJCdbPyZMnM38QAABAnpOvA9qTTz6p/fv369ixY/rzzz+1aNEiubq6SpL69+9vvTS5YMEC9enTRxbL/Qd9LVy4sM1vi8Wi1NTULNWV0ToMw7hre2dnZ3l4eNh8AABA/pWvA5qrq6uCg4NVrlw5OTraPrD64osvKiYmRrNnz9ahQ4fUq1cv6zwnJydJUkpKSpa2V7VqVd2+fVs7d+60Trt06ZKOHDmiRx555AH2BAAAFCT5OqDdS7FixdSpUyeNGjVKLVu2VJkyZazzSpYsKRcXF61du1bnzp1TQkLmXk1SsWJFdejQQQMGDNDWrVsVERGhF198UaVLl1aHDh0e1q4AAIB8psAGNEnq16+fbt68aX04II2jo6Nmz56t+fPny9/fP0vhasGCBXrsscfUrl07NWjQQIZhaPXq1ekuawIAANyNxbjXzU/53OLFizV8+HCdOXPGelkzL0hMTJSnp6cSxrjzsnQAeQsvS0cBZv37nZBw3/vJ8/WbBO4mOTlZcXFxmjp1ql566aU8Fc4AAED+VyAD2rRp0/TOO++oSZMmefq1T9Wv/0eFjKL2LgO4p+ipbe1dAgDkOQXyHrQJEybo1q1b2rBhg9zc3OxdDgAAgI0CGdAAAADMjIAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmEy2AtqWLVt0+/btdNNv376tLVu2PHBRAAAABZnFMAwjqws5ODgoLi5OJUuWtJl+6dIllSxZUikpKTlWINJLTEyUp6enEhIS5OHhYe9yAABAJmTl73e2etAMw5DFYkk3/dKlS3J1dc3OKgEAAPB/HLPSuFOnTpIki8Wi3r17y9nZ2TovJSVFv//+uxo2bJizFQIAABQwWQponp6eku70oLm7u8vFxcU6z8nJSfXr19eAAQNytkIAAIACJksBbcGCBZKkwMBAjRw5ksuZAAAAD0G27kEbP368nJ2dtX79es2fP19Xr16VJJ05c0ZJSUk5WiAAAEBBk6UetDQxMTFq1aqVYmNjdePGDT399NNyd3fXe++9pxs3bujjjz/O6ToBAAAKjGz1oA0dOlQhISG6cuWKzX1ozz77rDZs2JBjxQEAABRE2epB++WXX/Trr7/KycnJZnpgYKBOnz6dI4UBAAAUVNnqQUtNTc1wMNpTp07J3d39gYsCAAAoyLIV0Fq2bKkPPvjA+ttisSgpKUnjx49XmzZtcqo2AACAAilbr3o6deqUQkNDZRiGjh07ppCQEB07dkwlSpTQli1b0r0CCjmLVz0BAJD3ZOXvd7YCmnTnxehff/21IiIilJSUpDp16qh79+42Dw3g4SCgAQCQ9+RKQIP9ENAAAMh7HvrL0hctWqQff/zR+nv06NHy8vJSw4YNFRMTk51VAgAA4P9kK6C9++671kuZ27dv15w5czRt2jSVKFFCw4cPz9ECAQAACppsjYN28uRJBQcHS5JWrlyp5557TgMHDlSjRo3UrFmznKwPAACgwMlWD5qbm5suXbokSfr555/19NNPS5KKFCmiP//8M+eqAwAAKICy1YP29NNPq3///qpdu7aOHj1qHfvs4MGDCgwMzMn6AAAACpxs9aDNnTtXDRo00IULF7R8+XIVL15ckrRnzx517do1RwsEAAAoaBhmIw9imA0AAPKerPz9ztYlzjTJycmKjY3VzZs3babXrFnzQVYLAABQoGUroF24cEG9e/fW2rVrM5yf0YvUAQAAkDnZugdt2LBhSkhI0M6dO+Xi4qK1a9dq0aJFqlixolatWpXTNQIAABQo2epB27hxo77//nuFhISoUKFCCggI0NNPPy0PDw9NmTJFbdu2zek6AQAACoxs9aBdu3ZNJUuWlCQVK1ZMFy5ckCTVqFFDe/fuzbnqAAAACqBsBbTKlSvryJEjkqRatWpp/vz5On36tD7++GP5+fnlaIEAAAAFTbYucQ4dOlRxcXGSpPHjx6tVq1ZasmSJnJyctHDhwpysDwAAoMDJkXHQkpOTdfjwYZUrV04lSpTIibpwD4yDBgBA3pOVv9/ZusQ5adIkJScnW38XLVpUderUkaurqyZNmpSdVQIAAOD/ZKsHzcHBQXFxcdYHBdJcunRJJUuWZBy0h4weNAAA8p6H3oNmGIYsFku66REREfL29s7OKgEAAPB/svSQQLFixWSxWGSxWFSpUiWbkJaSkqKkpCQNGjQox4sEAAAoSLIU0D744AMZhqG+fftq4sSJ8vT0tM5zcnJSYGCgGjRokONFAgAAFCRZCmi9evWSJAUFBalhw4YqXLjwQykKAACgIMvWOGhNmza1fr9+/bpu3rxpM58b1wEAALIvWw8JJCcna8iQISpZsqRcXV1VrFgxmw8AAACyL1sBbdSoUdq4caPmzZsnZ2dnffrpp5o4caL8/f31+eef53SNAAAABUq2LnH+97//1eeff65mzZqpT58+aty4sYKDgxUQEKAlS5aoe/fuOV0nAABAgZGtHrTLly+rfPnyku7cb3b58mVJ0hNPPKEtW7bkXHUAAAAFULYCWvny5XXixAlJUpUqVfTNN99IutOz5uXllWPFAQAAFETZCmh9+vRRRESEJGnMmDGaO3euihQpouHDh2vUqFE5WiAAAEBBk613cf5dTEyM9uzZo+DgYNWsWTMn6sI98C5OAADynqz8/c7yQwKpqalauHChVqxYoejoaFksFgUFBem5555TjRo1sl00AAAA7sjSJU7DMPTMM8+of//+On36tGrUqKFq1aopJiZGvXv31rPPPvuw6gQAACgwstSDtnDhQm3ZskUbNmzQk08+aTNv48aN6tixoz7//HP17NkzR4sEAAAoSLLUg/bll1/qjTfeSBfOJOmpp57SmDFjtGTJkhwrDgAAoCDKUg/a77//rmnTpt11fuvWrTV79uwHLgqZU39pfTm4ONi7DOQxB3odsHcJAID7yFIP2uXLl1WqVKm7zi9VqpSuXLnywEUBAAAUZFkKaCkpKXJ0vHunm4ODg27fvv3ARQEAABRkWbrEaRiGevfuLWdn5wzn37hxI0eKAgAAKMiyFNB69ep13zY8wQkAAPBgshTQFixY8LDqAAAAwP/J1rs4AQAA8PAQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMlk6U0CMJcdMafk4WyxdxmwpwkJ9q4AAPAQ0IMGAABgMgQ0AAAAkyGgAQAAmAwB7T569+6tjh072rsMAABQgBDQAAAATIaAlgVr167VE088IS8vLxUvXlzt2rVTVFSUdX7Dhg31+uuv2yxz4cIFFS5cWFu2bJEkLV68WCEhIXJ3d5evr6+6deum8+fP5+p+AAAAcyOgZcG1a9f02muvaffu3dqwYYMKFSqkZ599VqmpqZKk7t2766uvvpJhGNZlvv76a/n7+6tx48aSpFu3bmny5MmKiIjQypUrFR0drd69e99zuzdu3FBiYqLNBwAA5F8W469pAun07t1b8fHxWrlyZbp5Fy9elI+Pjw4cOKDq1avrwoUL8vf318aNG62BrGHDhmrSpImmTp2a4fp3796txx9/XFevXpWbm1uGbSZMmKCJEyemm54wxp1x0Ao6xkEDgDwjMTFRnp6eSkhIkIeHxz3b0oOWBceOHVPXrl1Vvnx5eXh4KDAwUJIUGxsrSfLx8VHLli21ZMkSSdKJEye0fft2de/e3bqOPXv2qH379ipXrpzc3d3VtGlTm3VkZOzYsUpISLB+Tp48+ZD2EAAAmAEBLQvat2+vy5cv69///rd27typnTt3SpJu3rxpbdO9e3d9++23unXrlpYuXaoaNWqoRo0aku5cIg0NDZWHh4eWLFmi3377Td999126dfyds7OzPDw8bD4AACD/IqBl0qVLl3TkyBG9+eabat68uapWraorV66ka9ehQwddv35da9eu1dKlS216zw4fPqxLly5p6tSpaty4sapUqcIDAgAAIB3exZlJxYoVU/HixfXJJ5/Iz89PsbGxGjNmTLp2rq6u6tixo8aNG6fIyEh17drVOq9cuXJycnLSRx99pEGDBumPP/7Q5MmTc3M3AABAHkAP2n2kpqbK0dFRhQoV0ldffaU9e/aoevXqGj58uKZPn57hMt27d1dERIQaN26scuXKWaf7+Pho4cKFWrZsmR555BFNnTpVM2bMyK1dAQAAeQRPcd5Hq1atFBwcrDlz5ti7FCvrUyA8xQme4gSAPCMrT3FyifMurly5om3btik8PFyDBg2ydzkZqn79PypkFLV3GaYUPbWtvUsAACDbCGh30bdvX/32228aMWKEOnToYO9yAABAAUJAu4u04S8AAAByGw8JAAAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJONq7AGTfHxND5eHhYe8yAABADqMHDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAk3G0dwEAAGRHamqqbt68ae8yAKvChQvLwcEhR9ZFQAMA5Dk3b97UiRMnlJqaau9SABteXl7y9fWVxWJ5oPUQ0AAAeYphGIqLi5ODg4PKli2rQoW4Wwf2ZxiGkpOTdf78eUmSn5/fA62PgAYAyFNu376t5ORk+fv7q2jRovYuB7BycXGRJJ0/f14lS5Z8oMud/LMDAJCnpKSkSJKcnJzsXAmQXto/Gm7duvVA6yGgAQDypAe9xwd4GHLqvOQSZx5Wf2l9ObjkzNMiQEFxoNcBe5cAAPdFDxoAALmgWbNmGjZsmN2237t3b3Xs2NE09eDe6EEDAOQLgWN+zNXtRU9tm6vby2krVqxQ4cKF7V1GnhEYGKhhw4blWqgloAEAUAB5e3vbu4QHZhiGUlJS5OiY/+IMlzgBAMglt2/f1pAhQ+Tp6akSJUpo3LhxMgxDkrR48WKFhITI3d1dvr6+6tatm3VMLUm6cuWKunfvLh8fH7m4uKhixYpasGCBdf7Jkyf1/PPPy8vLS97e3urQoYOio6PvWsvfL3EGBgbq3XffVd++feXu7q5y5crpk08+sVkmq9v4q7RLrBMnTpSPj488PDw0aNAgm7dBpKamasqUKQoKCpKLi4tq1aqlb7/91jo/PDxcFotFa9as0WOPPSZnZ2dt3bpVqampmjZtmoKDg+Xs7Kxy5crpnXfeyXTdabXNmDFDfn5+Kl68uMLCwqxPYjZr1kwxMTEaPny4LBZLrjygQkADACCXLFq0SI6Ojtq1a5c+/PBDvf/++/r0008l3RmWYfLkyYqIiNDKlSsVHR2t3r17W5cdN26cDh06pDVr1igyMlLz5s1TiRIlrMuGhobK3d1dv/zyi7Zt2yY3Nze1atUqS6/DmjlzpkJCQrRv3z4NHjxYL7/8so4cOZJj29iwYYMiIyMVHh6uL7/8UitWrNDEiROt86dMmaLPP/9cH3/8sQ4ePKjhw4frxRdf1ObNm23WM2bMGE2dOlWRkZGqWbOmxo4dq6lTp1qP0dKlS1WqVKks1b1p0yZFRUVp06ZNWrRokRYuXKiFCxdKunM5uEyZMpo0aZLi4uIUFxeX6WOaXfmvTxAAAJMqW7asZs2aJYvFosqVK+vAgQOaNWuWBgwYoL59+1rblS9fXrNnz9bjjz+upKQkubm5KTY2VrVr11ZISIikOz1eab7++mulpqbq008/tfbuLFiwQF5eXgoPD1fLli0zVV+bNm00ePBgSdLrr7+uWbNmadOmTapcuXKObMPJyUmfffaZihYtqmrVqmnSpEkaNWqUJk+erFu3bundd9/V+vXr1aBBA+tx2Lp1q+bPn6+mTZta1zNp0iQ9/fTTkqSrV6/qww8/1Jw5c9SrVy9JUoUKFfTEE09k6dgUK1ZMc+bMkYODg6pUqaK2bdtqw4YNGjBggLy9veXg4GDt3cwNBDQAAHJJ/fr1bS6PNWjQQDNnzlRKSor279+vCRMmKCIiQleuXLG+ZzQ2NlaPPPKIXn75ZXXu3Fl79+5Vy5Yt1bFjRzVs2FCSFBERoePHj8vd3d1me9evX1dUVFSm66tZs6b1u8Vika+vr/Uya05so1atWjZvf2jQoIGSkpJ08uRJJSUlKTk52Rq80ty8eVO1a9e2mZYWUiUpMjJSN27cUPPmzTPcZmbrrlatms3I/35+fjpwwH7D8hDQAACws+vXrys0NFShoaFasmSJfHx8FBsbq9DQUOtluNatWysmJkarV6/WunXr1Lx5c4WFhWnGjBlKSkrSY489piVLlqRbt4+PT6br+PtTnRaLxRoUc2obd5OUlCRJ+vHHH1W6dGmbec7Ozja/XV1drd/TXq90r/Vmpu577bs9ENAAAMglO3futPm9Y8cOVaxYUYcPH9alS5c0depUlS1bVpK0e/fudMv7+PioV69e6tWrlxo3bqxRo0ZpxowZqlOnjr7++muVLFlSHh4eD6X2nNhGRESE/vzzT2uo2rFjh9zc3FS2bFl5e3vL2dlZsbGxNpcz76dixYpycXHRhg0b1L9//4dSt3Tn8mzaa8ZyAw8JAACQS2JjY/Xaa6/pyJEj+vLLL/XRRx9p6NChKleunJycnPTRRx/pf//7n1atWqXJkyfbLPvWW2/p+++/1/Hjx3Xw4EH98MMPqlq1qiSpe/fuKlGihDp06KBffvlFJ06cUHh4uF599VWdOnUqR2rPiW3cvHlT/fr106FDh7R69WqNHz9eQ4YMUaFCheTu7q6RI0dq+PDhWrRokaKiorR371599NFHWrRo0V3XWaRIEb3++usaPXq0Pv/8c0VFRWnHjh36z3/+k6PHJjAwUFu2bNHp06d18eLFTC+XXfSgAQDyhbwwcGzPnj31559/qm7dunJwcNDQoUM1cOBAWSwWLVy4UG+88YZmz56tOnXqaMaMGXrmmWesyzo5OWns2LGKjo6Wi4uLGjdurK+++krSnRd0b9myRa+//ro6deqkq1evqnTp0mrevHmO9ajlxDaaN2+uihUrqkmTJrpx44a6du2qCRMmWOdPnjxZPj4+mjJliv73v//Jy8tLderU0RtvvHHP9Y4bN06Ojo566623dObMGfn5+WnQoEE5Vrd058GEl156SRUqVNCNGzesw6M8LBbjYW8BOS4xMVGenp6qOq8q7+IEsoh3ceZ9169f14kTJxQUFKQiRYrYuxxkUu/evRUfH6+VK1fau5SH6l7nZ9rf74SEhPuGQy5xAgAAmAyXOAEAwANzc3O767w1a9bkYiX5AwEtD9sRc0oezg//dRNAjpmQYO8KADwk+/fvv+u80qVLq3HjxrlXTD5AQAMAAA8sODjY3iXkK9yDBgAAYDIENAAAAJMhoOWQs2fP6pVXXlH58uXl7OyssmXLqn379tqwYUO6tsuWLbO+P+3XX39V+fLlc7tcAABgYtyDlgOio6PVqFEjeXl5afr06apRo4Zu3bqln376SWFhYTp8+LBN++3bt6tRo0aSpF9++cX6HQAAQCKg5YjBgwfLYrFo165dNi9wrVatmvr27Zuu/a+//qoxY8ZIkrZu3aq2bc0/+jUAAMg9XOJ8QJcvX9batWsVFhZmE87SeHl5SZKWLl0qLy8veXl5adeuXerRo4e8vLy0evVqjRw5Ul5eXlq6dGmG27hx44YSExNtPgCAvKVZs2YaNmyYvctAHkEP2gM6fvy4DMNQlSpV7tnumWeeUcOGDbV+/Xp98MEH+uGHH/T7779r0KBB+vXXXyVJJUqUyHDZKVOmaOLEiTleOwDkKxM8c3l79h/XLzw8XLNmzdKuXbuUmJioihUratSoUerevbu1zcKFC9WnTx+b5ZydnXX9+vXcLjfXRUdHKygoSPv27dOjjz5q73KyhB60B5TZV5m6ubkpMDBQe/fuVYcOHRQYGKgDBw6oTZs2CgwMVGBg4F1HYR47dqwSEhKsn5MnT+bkLgAA8qhff/1VNWvW1PLly/X777+rT58+6tmzp3744Qebdh4eHoqLi7N+YmJi7FTxHTdv3rTr9vMCAtoDqlixoiwWS7oHAf4qNjZWbm5ucnNz0yeffKKZM2fKzc1NEyZM0OLFi+Xm5qZBgwbddXlnZ2d5eHjYfAAAec/t27c1ZMgQeXp6qkSJEho3bpz1H/qBgYF6++231bNnT7m5uSkgIECrVq3ShQsX1KFDB7m5ualmzZravXu3dX1vvPGGJk+erIYNG6pChQoaOnSoWrVqpRUrVths12KxyNfX1/opVapUpmsODAzU5MmT1bVrV7m6uqp06dKaO3euTZv4+Hj1799fPj4+8vDw0FNPPaWIiAjr/AkTJujRRx/Vp59+avMS8fj4eL300ksqVaqUihQpourVq9uEy61bt6px48ZycXFR2bJl9eqrr+ratWs2tb377rvq27ev3N3dVa5cOX3yySfW+UFBQZKk2rVry2KxqFmzZpneb3sjoD0gb29vhYaGau7cuTYnTZr4+Hj5+/tr//79Wrt2rRwdHbV//37t3LlT0p2nOPfv369JkybldukAgFy2aNEiOTo6ateuXfrwww/1/vvv69NPP7XOnzVrlho1aqR9+/apbdu26tGjh3r27KkXX3xRe/fuVYUKFdSzZ897Xr1JSEiQt7e3zbSkpCQFBASobNmy6tChgw4ePJiluqdPn65atWpp3759GjNmjIYOHap169ZZ5//jH//Q+fPntWbNGu3Zs0d16tRR8+bNdfnyZWub48ePa/ny5VqxYoX279+v1NRUtW7dWtu2bdMXX3yhQ4cOaerUqXJwcJAkRUVFqVWrVurcubN+//13ff3119q6dauGDBliU9vMmTMVEhKiffv2afDgwXr55Zd15MgRSdKuXbskSevXr1dcXFy64GpmFiOz1+hwV//73//UqFEjeXt7a9KkSapZs6Zu376tdevWad68eYqMjJQkffXVV5o3b542b96sLVu2aMCAAdaTKCsSExPl6emphDHuvIsTeYsJ7tlB3nf9+nWdOHHCpidGkunvQWvWrJnOnz+vgwcPymK58/+7x4wZo1WrVunQoUMKDAxU48aNtXjxYkl3xtf08/PTuHHjrP+I37Fjhxo0aKC4uDj5+vqm28Y333yjHj16aO/evapWrZqkO0M7HTt2TDVr1lRCQoJmzJihLVu26ODBgypTpsx96w4MDFTVqlVtXnjepUsXJSYmavXq1dbRCM6fPy9nZ2drm+DgYI0ePVoDBw7UhAkT9O677+r06dPy8fGRJP38889q3bq1IiMjValSpXTb7d+/vxwcHDR//nzrtK1bt6pp06a6du2aihQpku6YGYYhX19fTZw4UYMGDbLLPWh3PT/1l7/fCQn3vRpGD1oOKF++vPbu3asnn3xSI0aMUPXq1fX0009rw4YNmjdvnrVdeHi4mjRpIknavHmz9TsAoGCoX7++NZxJUoMGDXTs2DGlpKRIkmrWrGmdl3YZskaNGummnT9/Pt26N23apD59+ujf//63NZylbaNnz5569NFH1bRpU61YsUI+Pj42wed+GjRokO53WudDRESEkpKSVLx4cevtPG5ubjpx4oSioqKsywQEBFjDmXTn5eplypTJMJylrXfhwoU26wwNDVVqaqpOnDhhbffXY5Z2KTej45PX8BRnDvHz89OcOXM0Z86cu7b5+OOPrd/HjRuXG2UBAPKQwoULW7+nBbmMpqWmptost3nzZrVv316zZs1Sz54977uN2rVr6/jx4zlSc1JSkvz8/BQeHp5uXtpQU5LSDUXl4uJy3/W+9NJLevXVV9PNK1eunPX7X4+PdOcY/f345EUENAAAckna/cdpduzYoYoVK1rvu8qO8PBwtWvXTu+9954GDhx43/YpKSnWUQQya8eOHel+V61aVZJUp04dnT17Vo6OjgoMDMz0OmvWrKlTp07p6NGjGfai1alTR4cOHVJwcHCm1/l3Tk5OkmTtocxLCGh5WPXr/1Eho6i9y8j3oqfypgcAOSM2NlavvfaaXnrpJe3du1cfffSRZs6cme31bdq0Se3atdPQoUPVuXNnnT17VtKdYJL2oMCkSZNUv359BQcHKz4+XtOnT1dMTIz69++f6e1s27ZN06ZNU8eOHbVu3TotW7ZMP/74oySpRYsWatCggTp27Khp06apUqVKOnPmjH788Uc9++yzCgkJyXCdTZs2VZMmTdS5c2e9//77Cg4O1uHDh2WxWNSqVSu9/vrrql+/voYMGaL+/fvL1dVVhw4d0rp16+55teqvSpYsKRcXF61du1ZlypRRkSJF5OmZy/cqZhP3oAEAkEt69uypP//8U3Xr1lVYWJiGDh2aqV6vu1m0aJGSk5M1ZcoU+fn5WT+dOnWytrly5YoGDBigqlWrqk2bNkpMTNSvv/6qRx55JNPbGTFihHbv3q3atWvr7bff1vvvv6/Q0FBJdy4prl69Wk2aNFGfPn1UqVIldenSRTExMfcdzmP58uV6/PHH1bVrVz3yyCMaPXq0zf14mzdv1tGjR9W4cWPVrl1bb731lvz9/TNdt6Ojo2bPnq358+fL399fHTp0yPSy9sZTnHlQ2lMgZYd9o0LO9KA9bPSgAeZyr6fkkPMCAwM1bNgwXlOVSTzFCQAAkE8R0AAAKKB++eUXm2Es/v6B/fCQAAAABVRISIj2799/zzbR0dG5UgtsEdAAACigXFxcHmgYCzw8XOIEAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAkI+Fh4fLYrEoPj7e3qUgCxhmAwCQL9RYVCNXt3eg14Fc3R4eXHR0tIKCgrRv3z49+uij9i7nnuhBAwDAhAzD0O3bt+1dRq64efOmvUswHXrQ8rA/Jobe92WrAADzuHHjhkaNGqWvvvpKiYmJCgkJ0axZs/T4448rPDxcTz75pFavXq0333xTBw4c0M8//6yyZcvqtdde044dO3Tt2jVVrVpVU6ZMUYsWLWzW+9Zbb2np0qU6f/68ypYtq7Fjx6pfv34Z1rF161aNHTtWu3fvVokSJfTss89qypQpcnV1ve8+BAYGql+/fjp06JBWrVolLy8vvfHGGwoLC7O2iY+P18iRI/X999/rxo0b1v2sVauWJGnChAlauXKlhgwZonfeeUcxMTFKTU1VfHy8Xn/9da1cuVIJCQkKDg7W1KlT1a5du0zVHRgYqIEDB+r48eNatmyZihUrpjfffFMDBw6UJAUFBUmSateuLUlq2rSpwsPDs/hfMXfQgwYAQC4ZPXq0li9frkWLFmnv3r0KDg5WaGioLl++bG0zZswYTZ06VZGRkapZs6aSkpLUpk0bbdiwQfv27VOrVq3Uvn17xcbGWpfp2bOnvvzyS82ePVuRkZGaP3/+Xd+lGRUVpVatWqlz5876/fff9fXXX2vr1q0aMmRIpvdj+vTpqlWrlvbt26cxY8Zo6NChWrdunXX+P/7xD50/f15r1qzRnj17VKdOHTVv3txmP48fP67ly5drxYoV2r9/v1JTU9W6dWtt27ZNX3zxhQ4dOqSpU6fKwcEhS3XPnDlTISEh2rdvnwYPHqyXX35ZR44ckSTt2rVLkrR+/XrFxcVpxYoVmd7n3GYxDMOwdxHImsTERHl6eiohIYEeNAAFzvXr13XixAkFBQWpSJEi1ulmvwft2rVrKlasmBYuXKhu3bpJkm7duqXAwEANGzZMjz/+uJ588kmtXLlSHTp0uOe6qlevrkGDBmnIkCE6evSoKleurHXr1tn0qqVJ65m7cuWKvLy81L9/fzk4OGj+/PnWNlu3blXTpk117do1m2OakcDAQFWtWlVr1qyxTuvSpYsSExO1evVqbd26VW3bttX58+fl7OxsbRMcHKzRo0dr4MCBmjBhgt59912dPn1aPj4+kqSff/5ZrVu3VmRkpCpVqpRuu5mpOzAwUI0bN9bixYsl3blM7Ovrq4kTJ2rQoEG5cg/a3c5PKWt/v+lBAwAgF0RFRenWrVtq1KiRdVrhwoVVt25dRUZGWqeFhITYLJeUlKSRI0eqatWq8vLykpubmyIjI609aPv375eDg4OaNm2aqToiIiK0cOFCubm5WT+hoaFKTU3ViRMnMrWOBg0apPudtg8RERFKSkpS8eLFbbZx4sQJRUVFWZcJCAiwhrO0/ShTpkyG4SwrddesWdP63WKxyNfXV+fPn8/UfpkJ96ABAGAif78PbOTIkVq3bp1mzJih4OBgubi46LnnnrPeWO/i4pKl9SclJemll17Sq6++mm5euXLlsl/4X9bv5+eX4b1dXl5e1u9/38/77Udm6y5cuLDNPIvFotTU1ExUbi4ENAAAckGFChXk5OSkbdu2KSAgQNKdS5y//fabhg0bdtfltm3bpt69e+vZZ5+VdCeoREdHW+fXqFFDqamp2rx5c4aXOP+uTp06OnTokIKDg7O9Lzt27Ej3u2rVqtb1nz17Vo6OjgoMDMz0OmvWrKlTp07p6NGjGfai5UTdTk5OkqSUlJRsryO3cIkTAIBc4OrqqpdfflmjRo3S2rVrdejQIQ0YMEDJycl3fdpSkipWrGi9kT4iIkLdunWz6REKDAxUr1691LdvX61cuVInTpxQeHi4vvnmmwzX9/rrr+vXX3/VkCFDtH//fh07dkzff/99lh4S2LZtm6ZNm6ajR49q7ty5WrZsmYYOHSpJatGihRo0aKCOHTvq559/VnR0tH799Vf985//1O7du++6zqZNm6pJkybq3Lmz1q1bpxMnTmjNmjVau3ZtjtVdsmRJubi4aO3atTp37pwSEhIyvWxuI6ABAJBLpk6dqs6dO6tHjx6qU6eOjh8/rp9++knFihW76zLvv/++ihUrpoYNG6p9+/YKDQ1VnTp1bNrMmzdPzz33nAYPHqwqVapowIABunbtWobrq1mzpjZv3qyjR4+qcePGql27tt566y35+/tnej9GjBih3bt3q3bt2nr77bf1/vvvKzQ0VNKdS4qrV69WkyZN1KdPH1WqVEldunRRTEyMSpUqdc/1Ll++XI8//ri6du2qRx55RKNHj7b2duVE3Y6Ojpo9e7bmz58vf3//+z6MYU88xZkH8RQngILsXk/J4eFLe+r0XpdlCzKe4gQAAMinCGgAAECS9Msvv9gMY/H3D3IPT3ECAABJd8Zg279//z3b/PUJUjw8BDQAACDpzlhkDzKMBXIOlzgBAABMhoAGAMiTGIQAZpRTby3gEicAIE8pXLiwLBaLLly4IB8fH1ksFnuXBMgwDN28eVMXLlxQoUKFrG8tyC4CGgAgT3FwcFCZMmV06tQpbliH6RQtWlTlypVToUIPdpGSgAYAyHPc3NxUsWJF3bp1y96lAFYODg5ydHTMkV5dAhoAIE9ycHCQg4ODvcsAHgoeEgAAADAZAhoAAIDJENAAAABMhnvQ8qC0sX8SExPtXAkAAMistL/bmRnDj4CWB126dEmSVLZsWTtXAgAAsurq1avy9PS8ZxsCWh7k7e0tSYqNjb3vf2DkjMTERJUtW1YnT56Uh4eHvcvJ9zjeuYvjnfs45rnLLMfbMAxdvXpV/v7+921LQMuD0ga/8/T05P+wc5mHhwfHPBdxvHMXxzv3ccxzlxmOd2Y7VnhIAAAAwGQIaAAAACZDQMuDnJ2dNX78eDk7O9u7lAKDY567ON65i+Od+zjmuSsvHm+LkZlnPQEAAJBr6EEDAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoOVBc+fOVWBgoIoUKaJ69epp165d9i4pX5owYYIsFovNp0qVKvYuK1/ZsmWL2rdvL39/f1ksFq1cudJmvmEYeuutt+Tn5ycXFxe1aNFCx44ds0+x+cD9jnfv3r3TnfOtWrWyT7H5wJQpU/T444/L3d1dJUuWVMeOHXXkyBGbNtevX1dYWJiKFy8uNzc3de7cWefOnbNTxXlfZo55s2bN0p3ngwYNslPFd0dAy2O+/vprvfbaaxo/frz27t2rWrVqKTQ0VOfPn7d3aflStWrVFBcXZ/1s3brV3iXlK9euXVOtWrU0d+7cDOdPmzZNs2fP1scff6ydO3fK1dVVoaGhun79ei5Xmj/c73hLUqtWrWzO+S+//DIXK8xfNm/erLCwMO3YsUPr1q3TrVu31LJlS127ds3aZvjw4frvf/+rZcuWafPmzTpz5ow6depkx6rztswcc0kaMGCAzXk+bdo0O1V8DwbylLp16xphYWHW3ykpKYa/v78xZcoUO1aVP40fP96oVauWvcsoMCQZ3333nfV3amqq4evra0yfPt06LT4+3nB2dja+/PJLO1SYv/z9eBuGYfTq1cvo0KGDXeopCM6fP29IMjZv3mwYxp3zuXDhwsayZcusbSIjIw1Jxvbt2+1VZr7y92NuGIbRtGlTY+jQofYrKpPoQctDbt68qT179qhFixbWaYUKFVKLFi20fft2O1aWfx07dkz+/v4qX768unfvrtjYWHuXVGCcOHFCZ8+etTnfPT09Va9ePc73hyg8PFwlS5ZU5cqV9fLLL+vSpUv2LinfSEhIkCR5e3tLkvbs2aNbt27ZnONVqlRRuXLlOMdzyN+PeZolS5aoRIkSql69usaOHavk5GR7lHdPjvYuAJl38eJFpaSkqFSpUjbTS5UqpcOHD9upqvyrXr16WrhwoSpXrqy4uDhNnDhRjRs31h9//CF3d3d7l5fvnT17VpIyPN/T5iFntWrVSp06dVJQUJCioqL0xhtvqHXr1tq+fbscHBzsXV6elpqaqmHDhqlRo0aqXr26pDvnuJOTk7y8vGzaco7njIyOuSR169ZNAQEB8vf31++//67XX39dR44c0YoVK+xYbXoENOAuWrdubf1es2ZN1atXTwEBAfrmm2/Ur18/O1YGPBxdunSxfq9Ro4Zq1qypChUqKDw8XM2bN7djZXlfWFiY/vjjD+5jzUV3O+YDBw60fq9Ro4b8/PzUvHlzRUVFqUKFCrld5l1xiTMPKVGihBwcHNI94XPu3Dn5+vraqaqCw8vLS5UqVdLx48ftXUqBkHZOc77bT/ny5VWiRAnO+Qc0ZMgQ/fDDD9q0aZPKlCljne7r66ubN28qPj7epj3n+IO72zHPSL169STJdOc5AS0PcXJy0mOPPaYNGzZYp6WmpmrDhg1q0KCBHSsrGJKSkhQVFSU/Pz97l1IgBAUFydfX1+Z8T0xM1M6dOznfc8mpU6d06dIlzvlsMgxDQ4YM0XfffaeNGzcqKCjIZv5jjz2mwoUL25zjR44cUWxsLOd4Nt3vmGdk//79kmS685xLnHnMa6+9pl69eikkJER169bVBx98oGvXrqlPnz72Li3fGTlypNq3b6+AgACdOXNG48ePl4ODg7p27Wrv0vKNpKQkm3+1njhxQvv375e3t7fKlSunYcOG6e2331bFihUVFBSkcePGyd/fXx07drRf0XnYvY63t7e3Jk6cqM6dO8vX11dRUVEaPXq0goODFRoaaseq866wsDAtXbpU33//vdzd3a33lXl6esrFxUWenp7q16+fXnvtNXl7e8vDw0OvvPKKGjRooPr169u5+rzpfsc8KipKS5cuVZs2bVS8eHH9/vvvGj58uJo0aaKaNWvaufq/sfdjpMi6jz76yChXrpzh5ORk1K1b19ixY4e9S8qXXnjhBcPPz89wcnIySpcubbzwwgvG8ePH7V1WvrJp0yZDUrpPr169DMO4M9TGuHHjjFKlShnOzs5G8+bNjSNHjti36DzsXsc7OTnZaNmypeHj42MULlzYCAgIMAYMGGCcPXvW3mXnWRkda0nGggULrG3+/PNPY/DgwUaxYsWMokWLGs8++6wRFxdnv6LzuPsd89jYWKNJkyaGt7e34ezsbAQHBxujRo0yEhIS7Ft4BiyGYRi5GQgBAABwb9yDBgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJjM/wMiDiIxUizs1wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAGzCAYAAACb/us4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABG7klEQVR4nO3deVwW9f7//+clCCKrCwokAor7lobmkttxwTUtraNZiuaWWmrunSyXXDK1Uvu6nDpgpmWLmadcUnPJfYVMcQ3QlMJMQCRFYH5/+PH6nStcAJFrkMf9dpvb7bpm3jPzmong6fs9i8UwDEMAAAAwjSL2LgAAAAC2CGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAUIAEBgYqLCzM3mUAeMAIaAAKtCNHjqh79+4KCAhQsWLF9Mgjj6hNmzaaP3++tc306dO1evXqB1rHmTNnNGjQIFWoUEHFihWTh4eHmjRpovfff19//fXXA933gzJt2jQ9+eSTKlu2rCwWiyZNmnTbdmFhYbJYLNbJ0dFR/v7+6tGjh44dO5a/RQMPCUd7FwAAubVr1y61bNlS5cuX14ABA+Tj46Nz585pz549ev/99/Xyyy9LuhnQunfvrq5duz6QOr777js988wzcnZ2Vu/evVWzZk2lpaVpx44dGjNmjI4ePaolS5Y8kH0/SK+//rp8fHxUt25dbdiw4a5tnZ2d9eGHH0qS0tPTdebMGS1atEjr16/XsWPH5Ofnlx8lAw8NAhqAAmvatGny9PTU/v375eXlZbMsISHhge776tWrcnV1VUxMjHr06KGAgAD98MMP8vX1tbYZOnSoTp8+re++++6B1pJb6enpyszMlJOT022Xx8TEKDAwUH/88Ye8vb3vui1HR0c9//zzNvMaNmyoTp066bvvvtOAAQPyrG6gMGCIE0CBdebMGdWoUSNLOJOkMmXKSJIsFouuXr2qpUuXWofgbl3DFRcXpyFDhqhKlSpycXFRqVKl9Mwzzyg2NtZmWxEREbJYLNq2bZuGDBmiMmXKqFy5cpKkWbNmKSUlRR999JFNOLslODhYw4cPt35PT0/X1KlTVbFiRTk7OyswMFCvvfaarl+/brOeYRh66623VK5cORUvXlwtW7bU0aNHb3seEhMTNWLECPn7+8vZ2VnBwcF6++23lZmZaW0TGxsri8Wi2bNn67333rPu/25DkIGBgXdclh0+Pj6SboY3ADnD/zUACqyAgADt3r1bP//8s2rWrHnbNsuWLVP//v3VoEEDDRw4UJJUsWJFSdL+/fu1a9cu9ejRQ+XKlVNsbKwWLlyoFi1a6NixYypevLjNtoYMGSJvb2+98cYbunr1qiTpv//9rypUqKDGjRtnq+b+/ftr6dKl6t69u0aNGqW9e/dqxowZio6O1tdff21t98Ybb+itt95Shw4d1KFDBx06dEht27ZVWlqazfZSU1PVvHlznT9/XoMGDVL58uW1a9cuTZgwQfHx8Xrvvfds2oeHh+vatWsaOHCgnJ2dVbJkyWzVnR1//PGHJCkjI0O//PKLxo0bp1KlSqlTp055tg+g0DAAoID6/vvvDQcHB8PBwcFo1KiRMXbsWGPDhg1GWlqaTTtXV1ejT58+WdZPTU3NMm/37t2GJOPjjz+2zgsPDzckGU888YSRnp5unZ+UlGRIMrp06ZKteiMjIw1JRv/+/W3mjx492pBk/PDDD4ZhGEZCQoLh5ORkdOzY0cjMzLS2e+211wxJNscydepUw9XV1Th58qTNNsePH284ODgYZ8+eNQzDMGJiYgxJhoeHh5GQkJCtem+5ePGiIcl48803b7u8T58+hqQs0yOPPGIcPHgwR/sCcBNDnAAKrDZt2mj37t168sknFRUVpVmzZik0NFSPPPKI1qxZc8/1XVxcrJ9v3LihS5cuKTg4WF5eXjp06FCW9gMGDJCDg4P1e3JysiTJ3d09W/WuXbtWkvTqq6/azB81apQkWa9V27Rpk9LS0vTyyy/LYrFY240YMSLLNr/44gs1bdpUJUqU0B9//GGdWrdurYyMDG3fvt2mfbdu3e55PVluFCtWTBs3btTGjRu1YcMGLV68WG5uburQoYNOnjyZ5/sDHnYMcQIo0OrXr69Vq1YpLS1NUVFR+vrrr/Xuu++qe/fuioyMVPXq1e+47l9//aUZM2YoPDxc58+fl2EY1mVJSUlZ2gcFBdl89/DwkCRduXIlW7XGxcWpSJEiCg4Otpnv4+MjLy8vxcXFWdtJUqVKlWzaeXt7q0SJEjbzTp06pZ9++umOoevvN0v8/Rh+++03m++enp42wTW7HBwc1Lp1a5t5HTp0UKVKlTRhwgR99dVXOd4mUJgR0AA8FJycnFS/fn3Vr19flStXVt++ffXFF1/ozTffvOM6L7/8ssLDwzVixAg1atRInp6eslgs6tGjh80F9rf8Pbh4eHjIz89PP//8c45q/d9esfuVmZmpNm3aaOzYsbddXrlyZZvvfz+Gv9/YEB4enmcPwi1XrpyqVKmSpRcPwL0R0AA8dEJCQiRJ8fHxku4ciL788kv16dNHc+bMsc67du2aEhMTs72vTp06acmSJdq9e7caNWp017YBAQHKzMzUqVOnVK1aNev833//XYmJiQoICLC2k272jlWoUMHa7uLFi7p8+bLNNitWrKiUlJQsvVfZtXHjRpvvNWrUyNV27iQ9PV0pKSl5uk2gMOAaNAAF1pYtW2yGJW+5da1XlSpVJEmurq63DV0ODg5Z1p8/f74yMjKyXcPYsWPl6uqq/v376/fff8+y/MyZM3r//fcl3Rzyk5Tlzsq5c+dKkjp27ChJat26tYoWLar58+fb1Pf39STp2Wef1e7du2/7INnExESlp6fftf7WrVvbTLd7VEhunTx5UidOnFCdOnXybJtAYUEPGoAC6+WXX1ZqaqqeeuopVa1aVWlpadq1a5dWrlypwMBA9e3bV5L02GOPadOmTZo7d678/PwUFBSkxx9/XJ06ddKyZcvk6emp6tWra/fu3dq0aZNKlSqV7RoqVqyoFStW6J///KeqVatm8yaBXbt26YsvvrAOGdapU0d9+vTRkiVLlJiYqObNm2vfvn1aunSpunbtqpYtW0q6ea3Z6NGjNWPGDHXq1EkdOnTQ4cOHtW7dOpUuXdpm/2PGjNGaNWvUqVMnhYWF6bHHHtPVq1d15MgRffnll4qNjc2yTnYtW7ZMcXFxSk1NlSRt375db731liTphRdesPb0STd7yj755BNJN4ddY2NjtWjRImVmZt51mBnAHdj3JlIAyL1169YZ/fr1M6pWrWq4ubkZTk5ORnBwsPHyyy8bv//+u7Xd8ePHjWbNmhkuLi42j6m4fPmy0bdvX6N06dKGm5ubERoaahw/ftwICAiweZTFrcds7N+//461nDx50hgwYIARGBhoODk5Ge7u7kaTJk2M+fPnG9euXbO2u3HjhjF58mQjKCjIKFq0qOHv729MmDDBpo1hGEZGRoYxefJkw9fX13BxcTFatGhh/Pzzz1lqMwzDuHLlijFhwgQjODjYcHJyMkqXLm00btzYmD17tvWRI7ces/HOO+9k+/w2b978to/PkGRs2bLF2u52j9nw8PAwWrVqZWzatCnb+wPw/7MYxm3GBwAAAGA3XIMGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZHlRbAGVmZurChQtyd3fP03f6AQCAB8cwDF25ckV+fn4qUuTufWQEtALowoUL8vf3t3cZAAAgF86dO6dy5crdtQ0BrQByd3eXdPM/sIeHh52rAQAA2ZGcnCx/f3/r3/G7IaAVQLeGNT08PAhoAAAUMNm5PImbBAAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYjKO9C0DuNVzRUA4uDvYuAwDwAB3pc8TeJcAO6EEDAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJiMo70LQO7tiftVHs4We5cBAHc3KcneFQAFDj1oAAAAJkNAAwAAMBkCWh7aunWrLBaLEhMT7V0KAAAowOwW0CwWy12nSZMm2au0XGvcuLHi4+Pl6emZ7XUmTZqkRx999MEVBQAAChy73SQQHx9v/bxy5Uq98cYbOnHihHWem5ubPcrKtRs3bsjJyUk+Pj72LgUAABRwdutB8/HxsU6enp6yWCzy8fGRu7u7KleurPXr19u0X716tVxdXXXlyhXFxsbKYrHos88+U+PGjVWsWDHVrFlT27Zts1nn559/Vvv27eXm5qayZcvqhRde0B9//GFd/uWXX6pWrVpycXFRqVKl1Lp1a129etW6/D//+Y9q1KghZ2dn+fr6atiwYdZlFotFCxcu1JNPPilXV1dNmzYtyxBnRESEvLy8tHr1alWqVEnFihVTaGiozp07Z10+efJkRUVFWXsOIyIi8vhMAwCAgsZ016C5urqqR48eCg8Pt5kfHh6u7t27y93d3TpvzJgxGjVqlA4fPqxGjRqpc+fOunTpkiQpMTFR//jHP1S3bl0dOHBA69ev1++//65nn31W0s0evJ49e6pfv36Kjo7W1q1b9fTTT8swDEnSwoULNXToUA0cOFBHjhzRmjVrFBwcbFPTpEmT9NRTT+nIkSPq16/fbY8nNTVV06ZN08cff6ydO3cqMTFRPXr0kCT985//1KhRo1SjRg3Fx8crPj5e//znP7Ns4/r160pOTraZAADAw8uUz0Hr37+/9XouX19fJSQkaO3atdq0aZNNu2HDhqlbt26Sbgaq9evX66OPPtLYsWO1YMEC1a1bV9OnT7e2/89//iN/f3+dPHlSKSkpSk9P19NPP62AgABJUq1ataxt33rrLY0aNUrDhw+3zqtfv77N/p977jn17dvX+v2XX37Jciw3btzQggUL9Pjjj0uSli5dqmrVqmnfvn1q0KCB3Nzc5OjoeNeh0RkzZmjy5Mn3PG8AAODhYLoeNElq0KCBatSooaVLl0qSPvnkEwUEBKhZs2Y27Ro1amT97OjoqJCQEEVHR0uSoqKitGXLFrm5uVmnqlWrSpLOnDmjOnXqqFWrVqpVq5aeeeYZ/fvf/9bly5clSQkJCbpw4YJatWp11zpDQkLueSyOjo42wa5q1ary8vKy1pkdEyZMUFJSknW6NUQKAAAeTqYMaNLNXrRb12OFh4erb9++sliy/9T8lJQUde7cWZGRkTbTqVOn1KxZMzk4OGjjxo1at26dqlevrvnz56tKlSqKiYmRi4tLtvbh6uqam0PLMWdnZ3l4eNhMAADg4WXagPb8888rLi5O8+bN07Fjx9SnT58sbfbs2WP9nJ6eroMHD6patWqSpHr16uno0aMKDAxUcHCwzXQrWFksFjVp0kSTJ0/W4cOH5eTkpK+//lru7u4KDAzU5s2b7/s40tPTdeDAAev3EydOKDEx0Vqnk5OTMjIy7ns/AADg4WHagFaiRAk9/fTTGjNmjNq2baty5cplafPBBx/o66+/1vHjxzV06FBdvnzZerH+0KFD9eeff6pnz57av3+/zpw5ow0bNqhv377KyMjQ3r17NX36dB04cEBnz57VqlWrdPHiRWtwmjRpkubMmaN58+bp1KlTOnTokObPn5/j4yhatKhefvll7d27VwcPHlRYWJgaNmyoBg0aSJICAwMVExOjyMhI/fHHH7p+/fp9nDUAAPAwMG1Ak6QXX3xRaWlpd7xDcubMmZo5c6bq1KmjHTt2aM2aNSpdurQkyc/PTzt37lRGRobatm2rWrVqacSIEfLy8lKRIkXk4eGh7du3q0OHDqpcubJef/11zZkzR+3bt5ck9enTR++9957+3//7f6pRo4Y6deqkU6dO5fgYihcvrnHjxum5555TkyZN5ObmppUrV1qXd+vWTe3atVPLli3l7e2tTz/9NBdnCgAAPEwsxq3nSpjQsmXLNHLkSF24cEFOTk7W+bGxsQoKCtLhw4dN/RT+iIgIjRgxIs9f/ZScnCxPT08ljXeXh3P2r8sDALuYlGTvCgBTsP79Tkq65/XkpnzMRmpqquLj4zVz5kwNGjTIJpwBAAA87EwZ0GbNmqVp06apWbNmmjBhgr3LMa2a1z5SEaO4vctAIRQ7s6O9SwCAh5qphzhxe7e6SP1HfK4izgQ05D8CGgDkXE6GOE19kwAAAEBhREADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDKO9i4Auffz5FB5eHjYuwwAAJDH6EEDAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJNxtHcByL2GKxrKwcXB3mUAAPDQONLniL1LkEQPGgAAgOkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJuNo7wKQe3vifpWHs8XeZQCAeU1KsncFQK7QgwYAAGAyBLQcCAsLU9euXe1dBgAAeMg9tAEtLCxMFotFFotFTk5OCg4O1pQpU5Senn7PdWNjY2WxWBQZGfngCwUAAPibh/oatHbt2ik8PFzXr1/X2rVrNXToUBUtWlQTJkywd2kAAAB39ND2oEmSs7OzfHx8FBAQoJdeekmtW7fW559/Lg8PD3355Zc2bVevXi1XV1dduXJFQUFBkqS6devKYrGoRYsWNm1nz54tX19flSpVSkOHDtWNGzesyy5fvqzevXurRIkSKl68uNq3b69Tp05Zl0dERMjLy0sbNmxQtWrV5Obmpnbt2ik+Pv7BnQgAAFCgPNQB7e9cXFxUpEgR9ejRQ+Hh4TbLwsPD1b17d7m7u2vfvn2SpE2bNik+Pl6rVq2yttuyZYvOnDmjLVu2aOnSpYqIiFBERIR1eVhYmA4cOKA1a9Zo9+7dMgxDHTp0sAlxqampmj17tpYtW6bt27fr7NmzGj169B3rvn79upKTk20mAADw8CoUAc0wDG3atEkbNmzQP/7xD/Xv318bNmyw9lolJCRo7dq16tevnyTJ29tbklSqVCn5+PioZMmS1m2VKFFCCxYsUNWqVdWpUyd17NhRmzdvliSdOnVKa9as0YcffqimTZuqTp06Wr58uc6fP6/Vq1dbt3Hjxg0tWrRIISEhqlevnoYNG2bdxu3MmDFDnp6e1snf3z+vTxEAADCRhzqgffvtt3Jzc1OxYsXUvn17/fOf/9SkSZPUoEED1ahRQ0uXLpUkffLJJwoICFCzZs3uuc0aNWrIwcHB+t3X11cJCQmSpOjoaDk6Ourxxx+3Li9VqpSqVKmi6Oho67zixYurYsWKt93G7UyYMEFJSUnW6dy5c9k/CQAAoMB5qANay5YtFRkZqVOnTumvv/7S0qVL5erqKknq37+/dWgyPDxcffv2lcVy74e+Fi1a1Oa7xWJRZmZmjuq63TYMw7hje2dnZ3l4eNhMAADg4fVQBzRXV1cFBwerfPnycnS0vWH1+eefV1xcnObNm6djx46pT58+1mVOTk6SpIyMjBztr1q1akpPT9fevXut8y5duqQTJ06oevXq93EkAACgMHmoA9rdlChRQk8//bTGjBmjtm3bqly5ctZlZcqUkYuLi9avX6/ff/9dSUnZe1VIpUqV1KVLFw0YMEA7duxQVFSUnn/+eT3yyCPq0qXLgzoUAADwkCm0AU2SXnzxRaWlpVlvDrjF0dFR8+bN0+LFi+Xn55ejcBUeHq7HHntMnTp1UqNGjWQYhtauXZtlWBMAAOBOLMbdLn56yC1btkwjR47UhQsXrMOaBUFycrI8PT2VNN6dl6UDwN3wsnSYiPXvd1LSPa8nf6jfJHAnqampio+P18yZMzVo0KACFc4AAMDDr1AGtFmzZmnatGlq1qxZgX7tU81rH6mIUdzeZdxV7MyO9i4BAIACp1BegzZp0iTduHFDmzdvlpubm73LAQAAsFEoAxoAAICZEdAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAk8lVQNu+fbvS09OzzE9PT9f27dvvuygAAIDCzGIYhpHTlRwcHBQfH68yZcrYzL906ZLKlCmjjIyMPCsQWSUnJ8vT01NJSUny8PCwdzkAACAbcvL3O1c9aIZhyGKxZJl/6dIlubq65maTAAAA+D+OOWn89NNPS5IsFovCwsLk7OxsXZaRkaGffvpJjRs3ztsKAQAACpkcBTRPT09JN3vQ3N3d5eLiYl3m5OSkhg0basCAAXlbIQAAQCGTo4AWHh4uSQoMDNTo0aMZzgQAAHgAcnUN2ptvvilnZ2dt2rRJixcv1pUrVyRJFy5cUEpKSp4WCAAAUNjkqAftlri4OLVr105nz57V9evX1aZNG7m7u+vtt9/W9evXtWjRoryuEwAAoNDIVQ/a8OHDFRISosuXL9tch/bUU09p8+bNeVYcAABAYZSrHrQff/xRu3btkpOTk838wMBAnT9/Pk8KAwAAKKxy1YOWmZl524fR/vrrr3J3d7/vogAAAAqzXAW0tm3b6r333rN+t1gsSklJ0ZtvvqkOHTrkVW0AAACFUq5e9fTrr78qNDRUhmHo1KlTCgkJ0alTp1S6dGlt3749yyugkLd41RMAAAVPTv5+5yqgSTdfjL5y5UpFRUUpJSVF9erVU69evWxuGsCDQUADAKDgyZeABvshoAEAUPA88JelL126VN999531+9ixY+Xl5aXGjRsrLi4uN5sEAADA/8lVQJs+fbp1KHP37t1asGCBZs2apdKlS2vkyJF5WiAAAEBhk6vnoJ07d07BwcGSpNWrV6t79+4aOHCgmjRpohYtWuRlfQAAAIVOrnrQ3NzcdOnSJUnS999/rzZt2kiSihUrpr/++ivvqgMAACiEctWD1qZNG/Xv319169bVyZMnrc8+O3r0qAIDA/OyPgAAgEInVz1oH3zwgRo1aqSLFy/qq6++UqlSpSRJBw8eVM+ePfO0QAAAgMKGx2wUQDxmAwCAgicnf79zNcR5S2pqqs6ePau0tDSb+bVr176fzQIAABRquQpoFy9eVFhYmNavX3/b5bd7kToAAACyJ1fXoI0YMUJJSUnau3evXFxctH79ei1dulSVKlXSmjVr8rpGAACAQiVXPWg//PCDvvnmG4WEhKhIkSIKCAhQmzZt5OHhoRkzZqhjx455XScAAEChkasetKtXr6pMmTKSpBIlSujixYuSpFq1aunQoUN5Vx0AAEAhlKuAVqVKFZ04cUKSVKdOHS1evFjnz5/XokWL5Ovrm6cFAgAAFDa5GuIcPny44uPjJUlvvvmm2rVrp+XLl8vJyUkRERF5WR8AAEChkyfPQUtNTdXx48dVvnx5lS5dOi/qwl3wHDQAAAqenPz9ztUQ55QpU5Sammr9Xrx4cdWrV0+urq6aMmVKbjYJAACA/5OrHjQHBwfFx8dbbxS45dKlSypTpgzPQXvA6EEDAKDgeeA9aIZhyGKxZJkfFRWlkiVL5maTAAAA+D85ukmgRIkSslgsslgsqly5sk1Iy8jIUEpKigYPHpznRQIAABQmOQpo7733ngzDUL9+/TR58mR5enpalzk5OSkwMFCNGjXK8yIBAAAKkxwFtD59+kiSgoKC1LhxYxUtWvSBFAUAAFCY5eo5aM2bN7d+vnbtmtLS0myWc+E6AABA7uXqJoHU1FQNGzZMZcqUkaurq0qUKGEzAQAAIPdyFdDGjBmjH374QQsXLpSzs7M+/PBDTZ48WX5+fvr444/zukYAAIBCJVdDnP/973/18ccfq0WLFurbt6+aNm2q4OBgBQQEaPny5erVq1de1wkAAFBo5KoH7c8//1SFChUk3bze7M8//5QkPfHEE9q+fXveVQcAAFAI5SqgVahQQTExMZKkqlWr6vPPP5d0s2fNy8srz4oDAAAojHIV0Pr27auoqChJ0vjx4/XBBx+oWLFiGjlypMaMGZOnBQIAABQ2uXoX59/FxcXp4MGDCg4OVu3atfOiLtwF7+IEAKDgycnf7xzfJJCZmamIiAitWrVKsbGxslgsCgoKUvfu3VWrVq1cFw0AAICbcjTEaRiGnnzySfXv31/nz59XrVq1VKNGDcXFxSksLExPPfXUg6oTAACg0MhRD1pERIS2b9+uzZs3q2XLljbLfvjhB3Xt2lUff/yxevfunadFAgAAFCY56kH79NNP9dprr2UJZ5L0j3/8Q+PHj9fy5cvzrDgAAIDCKEc9aD/99JNmzZp1x+Xt27fXvHnz7rsoZE/DFQ3l4OJg7zKAuzrS54i9SwCAAidHPWh//vmnypYte8flZcuW1eXLl++7KAAAgMIsRwEtIyNDjo537nRzcHBQenr6fRcFAABQmOVoiNMwDIWFhcnZ2fm2y69fv54nRQEAABRmOQpoffr0uWcb7uAEAAC4PzkKaOHh4Q+qDgAAAPyfXL2LEwAAAA8OAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJhMjt4kAHPZE/erPJwt9i4DBcWkJHtXAADIJnrQAAAATIaABgAAYDIENAAAAJMhoN1DWFiYunbtau8yAABAIUJAAwAAMBkCWg6sX79eTzzxhLy8vFSqVCl16tRJZ86csS5v3Lixxo0bZ7POxYsXVbRoUW3fvl2StGzZMoWEhMjd3V0+Pj567rnnlJCQkK/HAQAAzI2AlgNXr17Vq6++qgMHDmjz5s0qUqSInnrqKWVmZkqSevXqpc8++0yGYVjXWblypfz8/NS0aVNJ0o0bNzR16lRFRUVp9erVio2NVVhY2F33e/36dSUnJ9tMAADg4WUx/jdNIIuwsDAlJiZq9erVWZb98ccf8vb21pEjR1SzZk1dvHhRfn5++uGHH6yBrHHjxmrWrJlmzpx52+0fOHBA9evX15UrV+Tm5nbbNpMmTdLkyZOzzE8a785z0JB9PAcNAOwqOTlZnp6eSkpKkoeHx13b0oOWA6dOnVLPnj1VoUIFeXh4KDAwUJJ09uxZSZK3t7fatm2r5cuXS5JiYmK0e/du9erVy7qNgwcPqnPnzipfvrzc3d3VvHlzm23czoQJE5SUlGSdzp0794COEAAAmAEBLQc6d+6sP//8U//+97+1d+9e7d27V5KUlpZmbdOrVy99+eWXunHjhlasWKFatWqpVq1akm4OkYaGhsrDw0PLly/X/v379fXXX2fZxt85OzvLw8PDZgIAAA8vAlo2Xbp0SSdOnNDrr7+uVq1aqVq1arp8+XKWdl26dNG1a9e0fv16rVixwqb37Pjx47p06ZJmzpyppk2bqmrVqtwgAAAAsuBdnNlUokQJlSpVSkuWLJGvr6/Onj2r8ePHZ2nn6uqqrl27auLEiYqOjlbPnj2ty8qXLy8nJyfNnz9fgwcP1s8//6ypU6fm52EAAIACgB60e8jMzJSjo6OKFCmizz77TAcPHlTNmjU1cuRIvfPOO7ddp1evXoqKilLTpk1Vvnx563xvb29FREToiy++UPXq1TVz5kzNnj07vw4FAAAUENzFeQ/t2rVTcHCwFixYYO9SrKx3gXAXJ3KCuzgBwK5ychcnQ5x3cPnyZe3cuVNbt27V4MGD7V3ObdW89pGKGMXzbX+xMzvm274AACjMCGh30K9fP+3fv1+jRo1Sly5d7F0OAAAoRAhod3Dr8RcAAAD5jZsEAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkHO1dAHLv58mh8vDwsHcZAAAgj9GDBgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyTjauwAAAHIjMzNTaWlp9i4DsCpatKgcHBzyZFsENABAgZOWlqaYmBhlZmbauxTAhpeXl3x8fGSxWO5rOwQ0AECBYhiG4uPj5eDgIH9/fxUpwtU6sD/DMJSamqqEhARJkq+v731tj4AGAChQ0tPTlZqaKj8/PxUvXtze5QBWLi4ukqSEhASVKVPmvoY7+WcHAKBAycjIkCQ5OTnZuRIgq1v/aLhx48Z9bYeABgAokO73Gh/gQcirn0uGOAuwhisaysElb+4WAYDcONLniL1LAB5K9KABAJAPWrRooREjRtht/2FhYeratatp6sHd0YMGAHgoBI7/Ll/3FzuzY77uL6+tWrVKRYsWtXcZBUZgYKBGjBiRb6GWgAYAQCFUsmRJe5dw3wzDUEZGhhwdH744wxAnAAD5JD09XcOGDZOnp6dKly6tiRMnyjAMSdKyZcsUEhIid3d3+fj46LnnnrM+U0uSLl++rF69esnb21suLi6qVKmSwsPDrcvPnTunZ599Vl5eXipZsqS6dOmi2NjYO9by9yHOwMBATZ8+Xf369ZO7u7vKly+vJUuW2KyT0338r1tDrJMnT5a3t7c8PDw0ePBgm7dBZGZmasaMGQoKCpKLi4vq1KmjL7/80rp869atslgsWrdunR577DE5Oztrx44dyszM1KxZsxQcHCxnZ2eVL19e06ZNy3bdt2qbPXu2fH19VapUKQ0dOtR6J2aLFi0UFxenkSNHymKx5MsNKgQ0AADyydKlS+Xo6Kh9+/bp/fff19y5c/Xhhx9KuvlYhqlTpyoqKkqrV69WbGyswsLCrOtOnDhRx44d07p16xQdHa2FCxeqdOnS1nVDQ0Pl7u6uH3/8UTt37pSbm5vatWuXo9dhzZkzRyEhITp8+LCGDBmil156SSdOnMizfWzevFnR0dHaunWrPv30U61atUqTJ0+2Lp8xY4Y+/vhjLVq0SEePHtXIkSP1/PPPa9u2bTbbGT9+vGbOnKno6GjVrl1bEyZM0MyZM63naMWKFSpbtmyO6t6yZYvOnDmjLVu2aOnSpYqIiFBERISkm8PB5cqV05QpUxQfH6/4+Phsn9Pcevj6BAEAMCl/f3+9++67slgsqlKlio4cOaJ3331XAwYMUL9+/aztKlSooHnz5ql+/fpKSUmRm5ubzp49q7p16yokJETSzR6vW1auXKnMzEx9+OGH1t6d8PBweXl5aevWrWrbtm226uvQoYOGDBkiSRo3bpzeffddbdmyRVWqVMmTfTg5Oek///mPihcvrho1amjKlCkaM2aMpk6dqhs3bmj69OnatGmTGjVqZD0PO3bs0OLFi9W8eXPrdqZMmaI2bdpIkq5cuaL3339fCxYsUJ8+fSRJFStW1BNPPJGjc1OiRAktWLBADg4Oqlq1qjp27KjNmzdrwIABKlmypBwcHKy9m/mBgAYAQD5p2LChzfBYo0aNNGfOHGVkZCgyMlKTJk1SVFSULl++bH3P6NmzZ1W9enW99NJL6tatmw4dOqS2bduqa9euaty4sSQpKipKp0+flru7u83+rl27pjNnzmS7vtq1a1s/WywW+fj4WIdZ82IfderUsXn7Q6NGjZSSkqJz584pJSVFqamp1uB1S1pamurWrWsz71ZIlaTo6Ghdv35drVq1uu0+s1t3jRo1bJ787+vrqyNH7PcYGQIaAAB2du3aNYWGhio0NFTLly+Xt7e3zp49q9DQUOswXPv27RUXF6e1a9dq48aNatWqlYYOHarZs2crJSVFjz32mJYvX55l297e3tmu4+93dVosFmtQzKt93ElKSook6bvvvtMjjzxis8zZ2dnmu6urq/Xzrdcr3W272an7bsduDwQ0AADyyd69e22+79mzR5UqVdLx48d16dIlzZw5U/7+/pKkAwcOZFnf29tbffr0UZ8+fdS0aVONGTNGs2fPVr169bRy5UqVKVNGHh4eD6T2vNhHVFSU/vrrL2uo2rNnj9zc3OTv76+SJUvK2dlZZ8+etRnOvJdKlSrJxcVFmzdvVv/+/R9I3dLN4dlbrxnLD9wkAABAPjl79qxeffVVnThxQp9++qnmz5+v4cOHq3z58nJyctL8+fP1yy+/aM2aNZo6darNum+88Ya++eYbnT59WkePHtW3336ratWqSZJ69eql0qVLq0uXLvrxxx8VExOjrVu36pVXXtGvv/6aJ7XnxT7S0tL04osv6tixY1q7dq3efPNNDRs2TEWKFJG7u7tGjx6tkSNHaunSpTpz5owOHTqk+fPna+nSpXfcZrFixTRu3DiNHTtWH3/8sc6cOaM9e/boo48+ytNzExgYqO3bt+v8+fP6448/sr1ebtGDBgB4KBSEB8f27t1bf/31lxo0aCAHBwcNHz5cAwcOlMViUUREhF577TXNmzdP9erV0+zZs/Xkk09a13VyctKECRMUGxsrFxcXNW3aVJ999pmkmy/o3r59u8aNG6enn35aV65c0SOPPKJWrVrlWY9aXuyjVatWqlSpkpo1a6br16+rZ8+emjRpknX51KlT5e3trRkzZuiXX36Rl5eX6tWrp9dee+2u2504caIcHR31xhtv6MKFC/L19dXgwYPzrG7p5o0JgwYNUsWKFXX9+nXr41EeFIvxoPeAPJecnCxPT09VW1iNd3ECsCt7vIvz2rVriomJUVBQkIoVK5bv+0fuhIWFKTExUatXr7Z3KQ/U3X4+b/39TkpKumc4ZIgTAADAZBjiBAAA983Nze2Oy9atW5ePlTwcCGgF2J64X+Xh/OBfNwE81CYl2bsC4KEQGRl5x2WPPPKImjZtmn/FPAQIaAAA4L4FBwfbu4SHCtegAQAAmAwBDQAAwGQIaHnkt99+08svv6wKFSrI2dlZ/v7+6ty5szZv3pyl7RdffGF9f9quXbtUoUKF/C4XAACYGNeg5YHY2Fg1adJEXl5eeuedd1SrVi3duHFDGzZs0NChQ3X8+HGb9rt371aTJk0kST/++KP1MwAAgERAyxNDhgyRxWLRvn37bF7gWqNGDfXr1y9L+127dmn8+PGSpB07dqhjR/M//RoAAOQfhjjv059//qn169dr6NChNuHsFi8vL0nSihUr5OXlJS8vL+3bt08vvPCCvLy8tHbtWo0ePVpeXl5asWLFbfdx/fp1JScn20wAgIKlRYsWGjFihL3LQAFBD9p9On36tAzDUNWqVe/a7sknn1Tjxo21adMmvffee/r222/1008/afDgwdq1a5ckqXTp0rddd8aMGZo8eXKe1w4AD5VJnvm8P/s/Q2/r1q169913tW/fPiUnJ6tSpUoaM2aMevXqZW0TERGhvn372qzn7Oysa9eu5Xe5+S42NlZBQUE6fPiwHn30UXuXkyP0oN2n7L7K1M3NTYGBgTp06JC6dOmiwMBAHTlyRB06dFBgYKACAwPv+BTmCRMmKCkpyTqdO3cuLw8BAFBA7dq1S7Vr19ZXX32ln376SX379lXv3r317bff2rTz8PBQfHy8dYqLi7NTxTelpaXZdf8FAQHtPlWqVEkWiyXLjQD/6+zZs3Jzc5Obm5uWLFmiOXPmyM3NTZMmTdKyZcvk5uamwYMH33F9Z2dneXh42EwAgIInPT1dw4YNk6enp0qXLq2JEyda/6EfGBiot956S71795abm5sCAgK0Zs0aXbx4UV26dJGbm5tq166tAwcOWLf32muvaerUqWrcuLEqVqyo4cOHq127dlq1apXNfi0Wi3x8fKxT2bJls11zYGCgpk6dqp49e8rV1VWPPPKIPvjgA5s2iYmJ6t+/v7y9veXh4aF//OMfioqKsi6fNGmSHn30UX344Yc2LxFPTEzUoEGDVLZsWRUrVkw1a9a0CZc7duxQ06ZN5eLiIn9/f73yyiu6evWqTW3Tp09Xv3795O7urvLly2vJkiXW5UFBQZKkunXrymKxqEWLFtk+bnsjoN2nkiVLKjQ0VB988IHND80tiYmJ8vPzU2RkpNavXy9HR0dFRkZq7969km7exRkZGakpU6bkd+kAgHy2dOlSOTo6at++fXr//fc1d+5cffjhh9bl7777rpo0aaLDhw+rY8eOeuGFF9S7d289//zzOnTokCpWrKjevXvfdfQmKSlJJUuWtJmXkpKigIAA+fv7q0uXLjp69GiO6n7nnXdUp04dHT58WOPHj9fw4cO1ceNG6/JnnnlGCQkJWrdunQ4ePKh69eqpVatW+vPPP61tTp8+ra+++kqrVq1SZGSkMjMz1b59e+3cuVOffPKJjh07ppkzZ8rBwUGSdObMGbVr107dunXTTz/9pJUrV2rHjh0aNmyYTW1z5sxRSEiIDh8+rCFDhuill17SiRMnJEn79u2TJG3atEnx8fFZgquZWYzsjtHhjn755Rc1adJEJUuW1JQpU1S7dm2lp6dr48aNWrhwoaKjoyVJn332mRYuXKht27Zp+/btGjBggPWHKCeSk5Pl6emppPHuvIsTuF8muI4IOXPt2jXFxMTY9MRIMv01aC1atFBCQoKOHj0qi+Xm7+7x48drzZo1OnbsmAIDA9W0aVMtW7ZM0s3na/r6+mrixInWf8Tv2bNHjRo1Unx8vHx8fLLs4/PPP9cLL7ygQ4cOqUaNGpJuPtrp1KlTql27tpKSkjR79mxt375dR48eVbly5e5Zd2BgoKpVq2bzwvMePXooOTlZa9eutT6NICEhQc7OztY2wcHBGjt2rAYOHKhJkyZp+vTpOn/+vLy9vSVJ33//vdq3b6/o6GhVrlw5y3779+8vBwcHLV682Dpvx44dat68ua5evapixYplOWeGYcjHx0eTJ0/W4MGD7XIN2h1/PvU/f7+Tku45GkYPWh6oUKGCDh06pJYtW2rUqFGqWbOm2rRpo82bN2vhwoXWdlu3blWzZs0kSdu2bbN+BgAUDg0bNrSGM0lq1KiRTp06pYyMDElS7dq1rctuDUPWqlUry7yEhIQs296yZYv69u2rf//739ZwdmsfvXv31qOPPqrmzZtr1apV8vb2tgk+99KoUaMs3291PkRFRSklJUWlSpWyXs7j5uammJgYnTlzxrpOQECANZxJN1+uXq5cuduGs1vbjYiIsNlmaGioMjMzFRMTY233v+fs1lDu7c5PQcNdnHnE19dXCxYs0IIFC+7YZtGiRdbPEydOzI+yAAAFSNGiRa2fbwW5283LzMy0WW/btm3q3Lmz3n33XfXu3fue+6hbt65Onz6dJzWnpKTI19dXW7duzbLs1qOmJGV5FJWLi8s9tzto0CC98sorWZaVL1/e+vl/z4908xz9/fwURAQ0AADyya3rj2/Zs2ePKlWqZL3uKje2bt2qTp066e2339bAgQPv2T4jI8P6FIHs2rNnT5bv1apVkyTVq1dPv/32mxwdHRUYGJjtbdauXVu//vqrTp48edtetHr16unYsWMKDg7O9jb/zsnJSZKsPZQFCQGtAKt57SMVMYrbuwy7iZ3JGxgAFCxnz57Vq6++qkGDBunQoUOaP3++5syZk+vtbdmyRZ06ddLw4cPVrVs3/fbbb5JuBpNbNwpMmTJFDRs2VHBwsBITE/XOO+8oLi5O/fv3z/Z+du7cqVmzZqlr167auHGjvvjiC3333XeSpNatW6tRo0bq2rWrZs2apcqVK+vChQv67rvv9NRTTykkJOS222zevLmaNWumbt26ae7cuQoODtbx48dlsVjUrl07jRs3Tg0bNtSwYcPUv39/ubq66tixY9q4ceNdR6v+V5kyZeTi4qL169erXLlyKlasmDw98/laxVziGjQAAPJJ79699ddff6lBgwYaOnSohg8fnq1erztZunSpUlNTNWPGDPn6+lqnp59+2trm8uXLGjBggKpVq6YOHTooOTlZu3btUvXq1bO9n1GjRunAgQOqW7eu3nrrLc2dO1ehoaGSbg4prl27Vs2aNVPfvn1VuXJl9ejRQ3Fxcfd8nMdXX32l+vXrq2fPnqpevbrGjh1rcz3etm3bdPLkSTVt2lR169bVG2+8IT8/v2zX7ejoqHnz5mnx4sXy8/NTly5dsr2uvXEXZwF06y4Q/xGfq4gzPWgACpe73SWHvBcYGKgRI0bwmqps4i5OAACAhxQBDQCAQurHH3+0eYzF3yfYDzcJAABQSIWEhCgyMvKubWJjY/OlFtgioAEAUEi5uLjc12Ms8OAwxAkAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwDgIbZ161ZZLBYlJibauxTkAI/ZAAA8FGotrZWv+zvS50i+7g/3LzY2VkFBQTp8+LAeffRRe5dzV/SgAQBgQoZhKD093d5l5Iu0tDR7l2A69KAVYD9PDr3ny1YBAOZx/fp1jRkzRp999pmSk5MVEhKid999V/Xr19fWrVvVsmVLrV27Vq+//rqOHDmi77//Xv7+/nr11Ve1Z88eXb16VdWqVdOMGTPUunVrm+2+8cYbWrFihRISEuTv768JEyboxRdfvG0dO3bs0IQJE3TgwAGVLl1aTz31lGbMmCFXV9d7HkNgYKBefPFFHTt2TGvWrJGXl5dee+01DR061NomMTFRo0eP1jfffKPr169bj7NOnTqSpEmTJmn16tUaNmyYpk2bpri4OGVmZioxMVHjxo3T6tWrlZSUpODgYM2cOVOdOnXKVt2BgYEaOHCgTp8+rS+++EIlSpTQ66+/roEDB0qSgoKCJEl169aVJDVv3lxbt27N4X/F/EEPGgAA+WTs2LH66quvtHTpUh06dEjBwcEKDQ3Vn3/+aW0zfvx4zZw5U9HR0apdu7ZSUlLUoUMHbd68WYcPH1a7du3UuXNnnT171rpO79699emnn2revHmKjo7W4sWL7/guzTNnzqhdu3bq1q2bfvrpJ61cuVI7duzQsGHDsn0c77zzjurUqaPDhw9r/PjxGj58uDZu3Ghd/swzzyghIUHr1q3TwYMHVa9ePbVq1crmOE+fPq2vvvpKq1atUmRkpDIzM9W+fXvt3LlTn3zyiY4dO6aZM2fKwcEhR3XPmTNHISEhOnz4sIYMGaKXXnpJJ06ckCTt27dPkrRp0ybFx8dr1apV2T7m/GYxDMOwdxHImeTkZHl6eiopKYkeNACFzrVr1xQTE6OgoCAVK1bMOt/s16BdvXpVJUqUUEREhJ577jlJ0o0bNxQYGKgRI0aofv36atmypVavXq0uXbrcdVs1a9bU4MGDNWzYMJ08eVJVqlTRxo0bbXrVbrnVM3f58mV5eXmpf//+cnBw0OLFi61tduzYoebNm+vq1as25/R2AgMDVa1aNa1bt846r0ePHkpOTtbatWu1Y8cOdezYUQkJCXJ2dra2CQ4O1tixYzVw4EBNmjRJ06dP1/nz5+Xt7S1J+v7779W+fXtFR0ercuXKWfabnboDAwPVtGlTLVu2TNLNYWIfHx9NnjxZgwcPzpdr0O708ynl7O83PWgAAOSDM2fO6MaNG2rSpIl1XtGiRdWgQQNFR0db54WEhNisl5KSotGjR6tatWry8vKSm5uboqOjrT1okZGRcnBwUPPmzbNVR1RUlCIiIuTm5madQkNDlZmZqZiYmGxto1GjRlm+3zqGqKgopaSkqFSpUjb7iImJ0ZkzZ6zrBAQEWMPZreMoV67cbcNZTuquXbu29bPFYpGPj48SEhKydVxmwjVoAACYyN+vAxs9erQ2btyo2bNnKzg4WC4uLurevbv1wnoXF5ccbT8lJUWDBg3SK6+8kmVZ+fLlc1/4/2zf19f3ttd2eXl5WT///TjvdRzZrbto0aI2yywWizIzM7NRubkQ0AAAyAcVK1aUk5OTdu7cqYCAAEk3hzj379+vESNG3HG9nTt3KiwsTE899ZSkm0ElNjbWurxWrVrKzMzUtm3bbjvE+Xf16tXTsWPHFBwcnOtj2bNnT5bv1apVs27/t99+k6OjowIDA7O9zdq1a+vXX3/VyZMnb9uLlhd1Ozk5SZIyMjJyvY38whAnAAD5wNXVVS+99JLGjBmj9evX69ixYxowYIBSU1PveLelJFWqVMl6IX1UVJSee+45mx6hwMBA9enTR/369dPq1asVExOjrVu36vPPP7/t9saNG6ddu3Zp2LBhioyM1KlTp/TNN9/k6CaBnTt3atasWTp58qQ++OADffHFFxo+fLgkqXXr1mrUqJG6du2q77//XrGxsdq1a5f+9a9/6cCBA3fcZvPmzdWsWTN169ZNGzduVExMjNatW6f169fnWd1lypSRi4uL1q9fr99//11JSUnZXje/EdAAAMgnM2fOVLdu3fTCCy+oXr16On36tDZs2KASJUrccZ25c+eqRIkSaty4sTp37qzQ0FDVq1fPps3ChQvVvXt3DRkyRFWrVtWAAQN09erV226vdu3a2rZtm06ePKmmTZuqbt26euONN+Tn55ft4xg1apQOHDigunXr6q233tLcuXMVGhoq6eaQ4tq1a9WsWTP17dtXlStXVo8ePRQXF6eyZcvedbtfffWV6tevr549e6p69eoaO3astbcrL+p2dHTUvHnztHjxYvn5+d3zZgx74i7OAoi7OAEUZne7Sw4P3q27Tu82LFuYcRcnAADAQ4qABgAAJEk//vijzWMs/j4h/3AXJwAAkHTzGWyRkZF3bfO/d5DiwSGgAQAASTefRXY/j7FA3mGIEwAAwGQIaACAAomHEMCM8uqtBQxxAgAKlKJFi8pisejixYvy9vaWxWKxd0mADMNQWlqaLl68qCJFiljfWpBbBDQAQIHi4OCgcuXK6ddff+WCdZhO8eLFVb58eRUpcn+DlAQ0AECB4+bmpkqVKunGjRv2LgWwcnBwkKOjY5706hLQAAAFkoODgxwcHOxdBvBAcJMAAACAyRDQAAAATIaABgAAYDJcg1YA3Xr2T3Jysp0rAQAA2XXr73Z2nuFHQCuALl26JEny9/e3cyUAACCnrly5Ik9Pz7u2IaAVQCVLlpQknT179p7/gQu75ORk+fv769y5c/Lw8LB3OabFeco+zlX2cJ6yj3OVPQ/DeTIMQ1euXJGfn9892xLQCqBbD7/z9PQssD+k+c3Dw4NzlQ2cp+zjXGUP5yn7OFfZU9DPU3Y7VrhJAAAAwGQIaAAAACZDQCuAnJ2d9eabb8rZ2dnepZge5yp7OE/Zx7nKHs5T9nGusqewnSeLkZ17PQEAAJBv6EEDAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoBVAH3zwgQIDA1WsWDE9/vjj2rdvn71LMpUZM2aofv36cnd3V5kyZdS1a1edOHHC3mWZ3syZM2WxWDRixAh7l2JK58+f1/PPP69SpUrJxcVFtWrV0oEDB+xdlulkZGRo4sSJCgoKkouLiypWrKipU6dm6+XQD7Pt27erc+fO8vPzk8Vi0erVq22WG4ahN954Q76+vnJxcVHr1q116tQp+xRrZ3c7Vzdu3NC4ceNUq1Ytubq6ys/PT71799aFCxfsV/ADQkArYFauXKlXX31Vb775pg4dOqQ6deooNDRUCQkJ9i7NNLZt26ahQ4dqz5492rhxo27cuKG2bdvq6tWr9i7NtPbv36/Fixerdu3a9i7FlC5fvqwmTZqoaNGiWrdunY4dO6Y5c+aoRIkS9i7NdN5++20tXLhQCxYsUHR0tN5++23NmjVL8+fPt3dpdnX16lXVqVNHH3zwwW2Xz5o1S/PmzdOiRYu0d+9eubq6KjQ0VNeuXcvnSu3vbucqNTVVhw4d0sSJE3Xo0CGtWrVKJ06c0JNPPmmHSh8wAwVKgwYNjKFDh1q/Z2RkGH5+fsaMGTPsWJW5JSQkGJKMbdu22bsUU7py5YpRqVIlY+PGjUbz5s2N4cOH27sk0xk3bpzxxBNP2LuMAqFjx45Gv379bOY9/fTTRq9evexUkflIMr7++mvr98zMTMPHx8d45513rPMSExMNZ2dn49NPP7VDhebx93N1O/v27TMkGXFxcflTVD6hB60ASUtL08GDB9W6dWvrvCJFiqh169bavXu3HSszt6SkJElSyZIl7VyJOQ0dOlQdO3a0+bmCrTVr1igkJETPPPOMypQpo7p16+rf//63vcsypcaNG2vz5s06efKkJCkqKko7duxQ+/bt7VyZecXExOi3336z+X/Q09NTjz/+OL/bsyEpKUkWi0VeXl72LiVPOdq7AGTfH3/8oYyMDJUtW9ZmftmyZXX8+HE7VWVumZmZGjFihJo0aaKaNWvauxzT+eyzz3To0CHt37/f3qWY2i+//KKFCxfq1Vdf1Wuvvab9+/frlVdekZOTk/r06WPv8kxl/PjxSk5OVtWqVeXg4KCMjAxNmzZNvXr1sndppvXbb79J0m1/t99ahtu7du2axo0bp549e8rDw8Pe5eQpAhoeakOHDtXPP/+sHTt22LsU0zl37pyGDx+ujRs3qlixYvYux9QyMzMVEhKi6dOnS5Lq1q2rn3/+WYsWLSKg/c3nn3+u5cuXa8WKFapRo4YiIyM1YsQI+fn5ca6Qp27cuKFnn31WhmFo4cKF9i4nzzHEWYCULl1aDg4O+v33323m//777/Lx8bFTVeY1bNgwffvtt9qyZYvKlStn73JM5+DBg0pISFC9evXk6OgoR0dHbdu2TfPmzZOjo6MyMjLsXaJp+Pr6qnr16jbzqlWrprNnz9qpIvMaM2aMxo8frx49eqhWrVp64YUXNHLkSM2YMcPepZnWrd/f/G7PvlvhLC4uThs3bnzoes8kAlqB4uTkpMcee0ybN2+2zsvMzNTmzZvVqFEjO1ZmLoZhaNiwYfr666/1ww8/KCgoyN4lmVKrVq105MgRRUZGWqeQkBD16tVLkZGRcnBwsHeJptGkSZMsj2o5efKkAgIC7FSReaWmpqpIEds/LQ4ODsrMzLRTReYXFBQkHx8fm9/tycnJ2rt3L7/bb+NWODt16pQ2bdqkUqVK2bukB4IhzgLm1VdfVZ8+fRQSEqIGDRrovffe09WrV9W3b197l2YaQ4cO1YoVK/TNN9/I3d3deg2Hp6enXFxc7Fydebi7u2e5Ls/V1VWlSpXier2/GTlypBo3bqzp06fr2Wef1b59+7RkyRItWbLE3qWZTufOnTVt2jSVL19eNWrU0OHDhzV37lz169fP3qXZVUpKik6fPm39HhMTo8jISJUsWVLly5fXiBEj9NZbb6lSpUoKCgrSxIkT5efnp65du9qvaDu527ny9fVV9+7ddejQIX377bfKyMiw/o4vWbKknJyc7FV23rP3baTIufnz5xvly5c3nJycjAYNGhh79uyxd0mmIum2U3h4uL1LMz0es3Fn//3vf42aNWsazs7ORtWqVY0lS5bYuyRTSk5ONoYPH26UL1/eKFasmFGhQgXjX//6l3H9+nV7l2ZXW7Zsue3vpT59+hiGcfNRGxMnTjTKli1rODs7G61atTJOnDhh36Lt5G7nKiYm5o6/47ds2WLv0vOUxTAK+eOdAQAATIZr0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACT+f8AN9yylxPAu5cAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAGzCAYAAACb/us4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJZklEQVR4nO3deVhVZd/28XMLgsjogALJoOI8paGJ5nRr4ZiWVpqlaGqWlpo59dyWZimZNqi9DtWNZFk2mHmXQ2gOOecAWZJTgBOFmYBIyrTeP3zcTzscAJG9gO/nOPYRe61rrfW7NgSn17UGi2EYhgAAAGAa5exdAAAAAGwR0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0ACgBAkKClJ4eLi9ywBwmxHQAJRoBw8eVL9+/RQYGKgKFSrojjvu0L333qv58+db28ycOVOrVq26rXUcP35cTz75pGrVqqUKFSrIw8NDbdu21dtvv62//vrrth77djhz5owee+wx1atXT+7u7vLy8lKrVq0UFRWlfz4hMDw8XBaLxfpydHSUv7+/+vfvr0OHDtmpB0DJ5mjvAgCgsHbs2KFOnTopICBAw4cPl4+Pj06ePKldu3bp7bff1jPPPCPpSkDr16+f+vTpc1vq+Oabb/TQQw/J2dlZgwYNUuPGjZWZmalt27ZpwoQJ+vnnn7VkyZLbcuzb5Y8//tCpU6fUr18/BQQEKCsrS9HR0QoPD9fhw4c1c+ZMm/bOzs567733JEnZ2dk6fvy4Fi1apHXr1unQoUPy8/OzRzeAEouABqDEevXVV+Xp6akffvhBXl5eNuuSk5Nv67EvXrwoV1dXxcfHq3///goMDNR3330nX19fa5tRo0bp2LFj+uabb25rLYWVnZ2t3NxcOTk55VnXtGlTbd682WbZ6NGj1atXL82bN08zZsyQg4ODdZ2jo6Mee+wxm/atW7dWz5499c0332j48OG3pQ9AacUUJ4AS6/jx42rUqFGecCZJ1apVkyRZLBZdvHhRUVFR1im4q+dwJSYm6umnn1a9evXk4uKiKlWq6KGHHlJCQoLNvpYuXSqLxaItW7bo6aefVrVq1VSjRg1J0uzZs5Wenq7333/fJpxdFRwcrDFjxljfZ2dna8aMGapdu7acnZ0VFBSkF154QZcvX7bZzjAMvfLKK6pRo4YqVqyoTp066eeff77m55CSkqKxY8fK399fzs7OCg4O1muvvabc3Fxrm4SEBFksFs2ZM0dvvfWW9fgFnYIMCgpSRkaGMjMzb9rWx8dH0pXwBqBg+L8GQIkVGBionTt36qefflLjxo2v2WbZsmUaNmyYWrVqpREjRkiSateuLUn64YcftGPHDvXv3181atRQQkKCFi5cqI4dO+rQoUOqWLGizb6efvppeXt768UXX9TFixclSf/9739Vq1YttWnTJl81Dxs2TFFRUerXr5/Gjx+v3bt3a9asWYqLi9OXX35pbffiiy/qlVdeUffu3dW9e3ft379f9913X55glJGRoQ4dOuj06dN68sknFRAQoB07dmjKlClKSkrSW2+9ZdM+MjJSly5d0ogRI+Ts7KzKlSvfsN6//vpLFy9eVHp6urZs2aLIyEiFhobKxcUlT9s//vhDkpSTk6Nff/1VkyZNUpUqVdSzZ898fTYA/sYAgBLq22+/NRwcHAwHBwcjNDTUmDhxorF+/XojMzPTpp2rq6sxePDgPNtnZGTkWbZz505DkvHBBx9Yl0VGRhqSjHvuucfIzs62Lk9NTTUkGb17985XvTExMYYkY9iwYTbLn3/+eUOS8d133xmGYRjJycmGk5OT0aNHDyM3N9fa7oUXXjAk2fRlxowZhqurq3HkyBGbfU6ePNlwcHAwTpw4YRiGYcTHxxuSDA8PDyM5OTlf9RqGYcyaNcuQZH117tzZus+rBg8ebNPm6uuOO+4w9u3bl+9jAfg/THECKLHuvfde7dy5U/fff79iY2M1e/ZshYWF6Y477tDq1atvuv3fR4GysrJ07tw5BQcHy8vLS/v378/Tfvjw4TbnXaWlpUmS3N3d81XvmjVrJEnPPfeczfLx48dLkvVctQ0bNigzM1PPPPOMLBaLtd3YsWPz7POzzz5Tu3btVKlSJf3xxx/WV5cuXZSTk6OtW7fatO/bt6+8vb3zVa8kDRgwQNHR0Vq+fLkeffRRSbrmVakVKlRQdHS0oqOjtX79ei1evFhubm7q3r27jhw5ku/jAbiCKU4AJVrLli21cuVKZWZmKjY2Vl9++aXefPNN9evXTzExMWrYsOF1t/3rr780a9YsRUZG6vTp0za3j0hNTc3TvmbNmjbvPTw8JEkXLlzIV62JiYkqV66cgoODbZb7+PjIy8tLiYmJ1naSVKdOHZt23t7eqlSpks2yo0eP6scff7xu6PrnxRL/7MNvv/1m897T09MmuAYGBiowMFDSlbA2YsQIdenSRYcPH7Zp5+DgoC5dutjsq3v37qpTp46mTJmiL7744pr1Abg2AhqAUsHJyUktW7ZUy5YtVbduXQ0ZMkSfffaZXnrppetu88wzzygyMlJjx45VaGioPD09ZbFY1L9/f5sT7K/653lXHh4e8vPz008//VSgWv8+KnarcnNzde+992rixInXXF+3bl2b9//swz8vbIiMjLzhjXD79eund999V1u3blVYWNgNa6tRo4bq1auXZxQPwM0R0ACUOiEhIZKkpKQkSdcPRJ9//rkGDx6suXPnWpddunRJKSkp+T5Wz549tWTJEu3cuVOhoaE3bBsYGKjc3FwdPXpUDRo0sC7//ffflZKSYh2puvrfo0ePqlatWtZ2Z8+e1fnz5232Wbt2baWnp+cZvcqv6Ohom/eNGjW6Yfur05vXGmG8luzsbKWnpxeqNqAs4xw0ACXWpk2b8tzVXvq/c73q1asnSXJ1db1m6HJwcMiz/fz585WTk5PvGiZOnChXV1cNGzZMv//+e571x48f19tvvy3pypSfpDxXVr7xxhuSpB49ekiSunTpovLly2v+/Pk29f1zO0l6+OGHtXPnTq1fvz7PupSUFGVnZ9+w/i5duti8ro6onT179prt33//fVksFrVo0eKG+5WkI0eO6PDhw2rWrNlN2wKwxQgagBLrmWeeUUZGhh544AHVr19fmZmZ2rFjh1asWKGgoCANGTJEknTXXXdpw4YNeuONN+Tn56eaNWvq7rvvVs+ePbVs2TJ5enqqYcOG2rlzpzZs2KAqVarku4batWtr+fLleuSRR9SgQQObJwns2LFDn332mXXKsFmzZho8eLCWLFmilJQUdejQQXv27FFUVJT69OmjTp06Sbpyrtnzzz+vWbNmqWfPnurevbsOHDigtWvXqmrVqjbHnzBhglavXq2ePXsqPDxcd911ly5evKiDBw/q888/V0JCQp5t8uPVV1/V9u3b1bVrVwUEBOjPP//UF198oR9++EHPPPNMnvPosrOz9eGHH0q6Mu2akJCgRYsWKTc394bTzACuw74XkQJA4a1du9YYOnSoUb9+fcPNzc1wcnIygoODjWeeecb4/fffre1++eUXo3379oaLi4vNbSrOnz9vDBkyxKhatarh5uZmhIWFGb/88osRGBhocyuLq7fZ+OGHH65by5EjR4zhw4cbQUFBhpOTk+Hu7m60bdvWmD9/vnHp0iVru6ysLGP69OlGzZo1jfLlyxv+/v7GlClTbNoYhmHk5OQY06dPN3x9fQ0XFxejY8eOxk8//ZSnNsMwjAsXLhhTpkwxgoODDScnJ6Nq1apGmzZtjDlz5lhvOXL1Nhuvv/56vj7bb7/91ujZs6fh5+dnlC9f3tqfyMhIm1t/GMa1b7Ph4eFhdO7c2diwYUO+jgfAlsUwrjE/AAAAALvhHDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMlwo9oSKDc3V2fOnJG7u3uRPtMPAADcPoZh6MKFC/Lz81O5cjceIyOglUBnzpyRv7+/vcsAAACFcPLkSdWoUeOGbQhoJZC7u7ukK99gDw8PO1cDAADyIy0tTf7+/ta/4zdCQCuBrk5renh4ENAAAChh8nN6EhcJAAAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZR3sXgMJrvby1HFwc7F0GAJRpBwcftHcJKIUYQQMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmIyjvQtA4e1KPCUPZ4u9ywAAW9NS7V0BUOIxggYAAGAyBDQAAACTIaAVoc2bN8tisSglJcXepQAAgBLMbgHNYrHc8DVt2jR7lVZobdq0UVJSkjw9PfO9zbRp03TnnXfevqIAAECJY7eLBJKSkqxfr1ixQi+++KIOHz5sXebm5maPsgotKytLTk5O8vHxsXcpAACghLPbCJqPj4/15enpKYvFIh8fH7m7u6tu3bpat26dTftVq1bJ1dVVFy5cUEJCgiwWiz755BO1adNGFSpUUOPGjbVlyxabbX766Sd169ZNbm5uql69uh5//HH98ccf1vWff/65mjRpIhcXF1WpUkVdunTRxYsXrev/85//qFGjRnJ2dpavr69Gjx5tXWexWLRw4ULdf//9cnV11auvvppninPp0qXy8vLSqlWrVKdOHVWoUEFhYWE6efKkdf306dMVGxtrHTlcunRpEX/SAACgpDHdOWiurq7q37+/IiMjbZZHRkaqX79+cnd3ty6bMGGCxo8frwMHDig0NFS9evXSuXPnJEkpKSn617/+pebNm2vv3r1at26dfv/9dz388MOSrozgDRgwQEOHDlVcXJw2b96sBx98UIZhSJIWLlyoUaNGacSIETp48KBWr16t4OBgm5qmTZumBx54QAcPHtTQoUOv2Z+MjAy9+uqr+uCDD7R9+3alpKSof//+kqRHHnlE48ePV6NGjZSUlKSkpCQ98sgjefZx+fJlpaWl2bwAAEDpZcr7oA0bNsx6Ppevr6+Sk5O1Zs0abdiwwabd6NGj1bdvX0lXAtW6dev0/vvva+LEiVqwYIGaN2+umTNnWtv/5z//kb+/v44cOaL09HRlZ2frwQcfVGBgoCSpSZMm1ravvPKKxo8frzFjxliXtWzZ0ub4jz76qIYMGWJ9/+uvv+bpS1ZWlhYsWKC7775bkhQVFaUGDRpoz549atWqldzc3OTo6HjDqdFZs2Zp+vTpN/3cAABA6WC6ETRJatWqlRo1aqSoqChJ0ocffqjAwEC1b9/epl1oaKj1a0dHR4WEhCguLk6SFBsbq02bNsnNzc36ql+/viTp+PHjatasmTp37qwmTZrooYce0rvvvqvz589LkpKTk3XmzBl17tz5hnWGhITctC+Ojo42wa5+/fry8vKy1pkfU6ZMUWpqqvV1dYoUAACUTqYMaNKVUbSr52NFRkZqyJAhsljyf9f89PR09erVSzExMTavo0ePqn379nJwcFB0dLTWrl2rhg0bav78+apXr57i4+Pl4uKSr2O4uroWpmsF5uzsLA8PD5sXAAAovUwb0B577DElJiZq3rx5OnTokAYPHpynza5du6xfZ2dna9++fWrQoIEkqUWLFvr5558VFBSk4OBgm9fVYGWxWNS2bVtNnz5dBw4ckJOTk7788ku5u7srKChIGzduvOV+ZGdna+/evdb3hw8fVkpKirVOJycn5eTk3PJxAABA6WHagFapUiU9+OCDmjBhgu677z7VqFEjT5t33nlHX375pX755ReNGjVK58+ft56sP2rUKP35558aMGCAfvjhBx0/flzr16/XkCFDlJOTo927d2vmzJnau3evTpw4oZUrV+rs2bPW4DRt2jTNnTtX8+bN09GjR7V//37Nnz+/wP0oX768nnnmGe3evVv79u1TeHi4WrdurVatWkmSgoKCFB8fr5iYGP3xxx+6fPnyLXxqAACgNDBtQJOkJ554QpmZmde9QjIiIkIRERFq1qyZtm3bptWrV6tq1aqSJD8/P23fvl05OTm677771KRJE40dO1ZeXl4qV66cPDw8tHXrVnXv3l1169bVv//9b82dO1fdunWTJA0ePFhvvfWW/t//+39q1KiRevbsqaNHjxa4DxUrVtSkSZP06KOPqm3btnJzc9OKFSus6/v27auuXbuqU6dO8vb21scff1yITwoAAJQmFuPqfSVMaNmyZRo3bpzOnDkjJycn6/KEhATVrFlTBw4cMPVd+JcuXaqxY8cW+aOf0tLS5OnpqdTJ7vJwzv95eQBQLKal2rsCwJSsf79TU296Prkpb7ORkZGhpKQkRURE6Mknn7QJZwAAAKWdKQPa7Nmz9eqrr6p9+/aaMmWKvcsxrcaX3lc5o6K9ywDsIiGih71LAIDbxtRTnLi2q0Ok/mM/VTlnAhrKJgIagJKmIFOcpr5IAAAAoCwioAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGUd7F4DC+2l6mDw8POxdBgAAKGKMoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyTjauwAUXuvlreXg4mDvMgAAKDUODj5o7xIkMYIGAABgOgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJONq7ABTersRT8nC22LsMACgdpqXauwLAihE0AAAAkyGgFUB4eLj69Olj7zIAAEApV2oDWnh4uCwWiywWi5ycnBQcHKyXX35Z2dnZN902ISFBFotFMTExt79QAACAfyjV56B17dpVkZGRunz5stasWaNRo0apfPnymjJlir1LAwAAuK5SO4ImSc7OzvLx8VFgYKCeeuopdenSRZ9++qk8PDz0+eef27RdtWqVXF1ddeHCBdWsWVOS1Lx5c1ksFnXs2NGm7Zw5c+Tr66sqVapo1KhRysrKsq47f/68Bg0apEqVKqlixYrq1q2bjh49al2/dOlSeXl5af369WrQoIHc3NzUtWtXJSUl3b4PAgAAlCilOqD9k4uLi8qVK6f+/fsrMjLSZl1kZKT69esnd3d37dmzR5K0YcMGJSUlaeXKldZ2mzZt0vHjx7Vp0yZFRUVp6dKlWrp0qXV9eHi49u7dq9WrV2vnzp0yDEPdu3e3CXEZGRmaM2eOli1bpq1bt+rEiRN6/vnnr1v35cuXlZaWZvMCAAClV5kIaIZhaMOGDVq/fr3+9a9/adiwYVq/fr111Co5OVlr1qzR0KFDJUne3t6SpCpVqsjHx0eVK1e27qtSpUpasGCB6tevr549e6pHjx7auHGjJOno0aNavXq13nvvPbVr107NmjXTRx99pNOnT2vVqlXWfWRlZWnRokUKCQlRixYtNHr0aOs+rmXWrFny9PS0vvz9/Yv6IwIAACZSqgPa119/LTc3N1WoUEHdunXTI488omnTpqlVq1Zq1KiRoqKiJEkffvihAgMD1b59+5vus1GjRnJwcLC+9/X1VXJysiQpLi5Ojo6Ouvvuu63rq1Sponr16ikuLs66rGLFiqpdu/Y193EtU6ZMUWpqqvV18uTJ/H8IAACgxCnVAa1Tp06KiYnR0aNH9ddffykqKkqurq6SpGHDhlmnJiMjIzVkyBBZLDe/6Wv58uVt3lssFuXm5haormvtwzCM67Z3dnaWh4eHzQsAAJRepTqgubq6Kjg4WAEBAXJ0tL1g9bHHHlNiYqLmzZunQ4cOafDgwdZ1Tk5OkqScnJwCHa9BgwbKzs7W7t27rcvOnTunw4cPq2HDhrfQEwAAUJaU6oB2I5UqVdKDDz6oCRMm6L777lONGjWs66pVqyYXFxetW7dOv//+u1JT8/f4jzp16qh3794aPny4tm3bptjYWD322GO644471Lt379vVFQAAUMqU2YAmSU888YQyMzOtFwdc5ejoqHnz5mnx4sXy8/MrULiKjIzUXXfdpZ49eyo0NFSGYWjNmjV5pjUBAACux2Lc6OSnUm7ZsmUaN26czpw5Y53WLAnS0tLk6emp1MnuPCwdAIoKD0vHbWb9+52aetPzyUv1kwSuJyMjQ0lJSYqIiNCTTz5ZosIZAAAo/cpkQJs9e7ZeffVVtW/fvkQ/9qnxpfdVzqho7zJgYgkRPexdAgCgEMrkOWjTpk1TVlaWNm7cKDc3N3uXAwAAYKNMBjQAAAAzI6ABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJlOogLZ161ZlZ2fnWZ6dna2tW7feclEAAABlmcUwDKOgGzk4OCgpKUnVqlWzWX7u3DlVq1ZNOTk5RVYg8kpLS5Onp6dSU1Pl4eFh73IAAEA+FOTvd6FG0AzDkMViybP83LlzcnV1LcwuAQAA8L8cC9L4wQcflCRZLBaFh4fL2dnZui4nJ0c//vij2rRpU7QVAgAAlDEFCmienp6Sroygubu7y8XFxbrOyclJrVu31vDhw4u2QgAAgDKmQAEtMjJSkhQUFKTnn3+e6UwAAIDboFDnoL300ktydnbWhg0btHjxYl24cEGSdObMGaWnpxdpgQAAAGVNgUbQrkpMTFTXrl114sQJXb58Wffee6/c3d312muv6fLly1q0aFFR1wkAAFBmFGoEbcyYMQoJCdH58+dtzkN74IEHtHHjxiIrDgAAoCwq1Aja999/rx07dsjJyclmeVBQkE6fPl0khQEAAJRVhRpBy83NvebNaE+dOiV3d/dbLgoAAKAsK1RAu++++/TWW29Z31ssFqWnp+ull15S9+7di6o2AACAMqlQj3o6deqUwsLCZBiGjh49qpCQEB09elRVq1bV1q1b8zwCCkWLRz0BAFDyFOTvd6ECmnTlwegrVqxQbGys0tPT1aJFCw0cONDmogHcHgQ0AABKnmIJaLAfAhoAACXPbX9YelRUlL755hvr+4kTJ8rLy0tt2rRRYmJiYXYJAACA/1WogDZz5kzrVObOnTu1YMECzZ49W1WrVtW4ceOKtEAAAICyplD3QTt58qSCg4MlSatWrVK/fv00YsQItW3bVh07dizK+gAAAMqcQo2gubm56dy5c5Kkb7/9Vvfee68kqUKFCvrrr7+KrjoAAIAyqFAjaPfee6+GDRum5s2b68iRI9Z7n/38888KCgoqyvoAAADKnEKNoL3zzjsKDQ3V2bNn9cUXX6hKlSqSpH379mnAgAFFWiAAAEBZw202SiBuswEAQMlTkL/fhZrivCojI0MnTpxQZmamzfKmTZveym4BAADKtEIFtLNnzyo8PFzr1q275vprPUgdAAAA+VOoc9DGjh2r1NRU7d69Wy4uLlq3bp2ioqJUp04drV69uqhrBAAAKFMKNYL23Xff6auvvlJISIjKlSunwMBA3XvvvfLw8NCsWbPUo0ePoq4TAACgzCjUCNrFixdVrVo1SVKlSpV09uxZSVKTJk20f//+oqsOAACgDCpUQKtXr54OHz4sSWrWrJkWL16s06dPa9GiRfL19S3SAgEAAMqaQk1xjhkzRklJSZKkl156SV27dtVHH30kJycnLV26tCjrAwAAKHOK5D5oGRkZ+uWXXxQQEKCqVasWRV24Ae6DBgBAyVOQv9+FmuJ8+eWXlZGRYX1fsWJFtWjRQq6urnr55ZcLs0sAAAD8r0KNoDk4OCgpKcl6ocBV586dU7Vq1bgP2m3GCBoAACXPbR9BMwxDFoslz/LY2FhVrly5MLsEAADA/yrQRQKVKlWSxWKRxWJR3bp1bUJaTk6O0tPTNXLkyCIvEgAAoCwpUEB76623ZBiGhg4dqunTp8vT09O6zsnJSUFBQQoNDS3yIgEAAMqSAgW0wYMHS5Jq1qypNm3aqHz58relKAAAgLKsUPdB69Chg/XrS5cuKTMz02Y9J64DAAAUXqEuEsjIyNDo0aNVrVo1ubq6qlKlSjYvAAAAFF6hAtqECRP03XffaeHChXJ2dtZ7772n6dOny8/PTx988EFR1wgAAFCmFGqK87///a8++OADdezYUUOGDFG7du0UHByswMBAffTRRxo4cGBR1wkAAFBmFGoE7c8//1StWrUkXTnf7M8//5Qk3XPPPdq6dWvRVQcAAFAGFSqg1apVS/Hx8ZKk+vXr69NPP5V0ZWTNy8uryIoDAAAoiwoV0IYMGaLY2FhJ0uTJk/XOO++oQoUKGjdunCZMmFCkBQIAAJQ1hXoW5z8lJiZq3759Cg4OVtOmTYuiLtwAz+IEAKDkKcjf7wJfJJCbm6ulS5dq5cqVSkhIkMViUc2aNdWvXz81adKk0EUDAADgigJNcRqGofvvv1/Dhg3T6dOn1aRJEzVq1EiJiYkKDw/XAw88cLvqBAAAKDMKNIK2dOlSbd26VRs3blSnTp1s1n333Xfq06ePPvjgAw0aNKhIiwQAAChLCjSC9vHHH+uFF17IE84k6V//+pcmT56sjz76qMiKAwAAKIsKNIL2448/avbs2ddd361bN82bN++Wi0L+tF7eWg4uDvYuA6XMwcEH7V0CAJR5BRpB+/PPP1W9evXrrq9evbrOnz9/y0UBAACUZQUKaDk5OXJ0vP6gm4ODg7Kzs2+5KAAAgLKsQFOchmEoPDxczs7O11x/+fLlIikKAACgLCtQQBs8ePBN23AFJwAAwK0pUECLjIy8XXUAAADgfxXqWZwAAAC4fQhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAr0JAGYy67EU/Jwtti7DNxu01LtXQEAoJgxggYAAGAyBDQAAACTIaABAACYDAHtJsLDw9WnTx97lwEAAMoQAhoAAIDJENAKYN26dbrnnnvk5eWlKlWqqGfPnjp+/Lh1fZs2bTRp0iSbbc6ePavy5ctr69atkqRly5YpJCRE7u7u8vHx0aOPPqrk5ORi7QcAADA3AloBXLx4Uc8995z27t2rjRs3qly5cnrggQeUm5srSRo4cKA++eQTGYZh3WbFihXy8/NTu3btJElZWVmaMWOGYmNjtWrVKiUkJCg8PPyGx718+bLS0tJsXgAAoPSyGH9PE8gjPDxcKSkpWrVqVZ51f/zxh7y9vXXw4EE1btxYZ8+elZ+fn7777jtrIGvTpo3at2+viIiIa+5/7969atmypS5cuCA3N7drtpk2bZqmT5+eZ3nqZHfug1YWcB80ACgV0tLS5OnpqdTUVHl4eNywLSNoBXD06FENGDBAtWrVkoeHh4KCgiRJJ06ckCR5e3vrvvvu00cffSRJio+P186dOzVw4EDrPvbt26devXopICBA7u7u6tChg80+rmXKlClKTU21vk6ePHmbeggAAMyAgFYAvXr10p9//ql3331Xu3fv1u7duyVJmZmZ1jYDBw7U559/rqysLC1fvlxNmjRRkyZNJF2ZIg0LC5OHh4c++ugj/fDDD/ryyy/z7OOfnJ2d5eHhYfMCAAClFwEtn86dO6fDhw/r3//+tzp37qwGDRro/Pnzedr17t1bly5d0rp167R8+XKb0bNffvlF586dU0REhNq1a6f69etzgQAAAMiDZ3HmU6VKlVSlShUtWbJEvr6+OnHihCZPnpynnaurq/r06aOpU6cqLi5OAwYMsK4LCAiQk5OT5s+fr5EjR+qnn37SjBkzirMbAACgBGAE7SZyc3Pl6OiocuXK6ZNPPtG+ffvUuHFjjRs3Tq+//vo1txk4cKBiY2PVrl07BQQEWJd7e3tr6dKl+uyzz9SwYUNFRERozpw5xdUVAABQQnAV50107dpVwcHBWrBggb1LsbJeBcJVnGUDV3ECQKlQkKs4meK8jvPnz2v79u3avHmzRo4cae9yrqnxpfdVzqho7zKKREJED3uXAACAaRDQrmPo0KH64YcfNH78ePXu3dve5QAAgDKEgHYdV29/AQAAUNy4SAAAAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATMbR3gWg8H6aHiYPDw97lwEAAIoYI2gAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJiMo70LAACgMHJzc5WZmWnvMgCr8uXLy8HBoUj2RUADAJQ4mZmZio+PV25urr1LAWx4eXnJx8dHFovllvZDQAMAlCiGYSgpKUkODg7y9/dXuXKcrQP7MwxDGRkZSk5OliT5+vre0v4IaACAEiU7O1sZGRny8/NTxYoV7V0OYOXi4iJJSk5OVrVq1W5pupN/dgAASpScnBxJkpOTk50rAfK6+o+GrKysW9oPAQ0AUCLd6jk+wO1QVD+XTHGWYK2Xt5aDS9FcLQKg9Dg4+KC9SwBwixhBAwCgGHTs2FFjx4612/HDw8PVp08f09SDG2MEDQBQKgRN/qZYj5cQ0aNYj1fUVq5cqfLly9u7jBIjKChIY8eOLbZQS0ADAKAMqly5sr1LuGWGYSgnJ0eOjqUvzjDFCQBAMcnOztbo0aPl6empqlWraurUqTIMQ5K0bNkyhYSEyN3dXT4+Pnr00Uet99SSpPPnz2vgwIHy9vaWi4uL6tSpo8jISOv6kydP6uGHH5aXl5cqV66s3r17KyEh4bq1/HOKMygoSDNnztTQoUPl7u6ugIAALVmyxGabgh7j765OsU6fPl3e3t7y8PDQyJEjbZ4GkZubq1mzZqlmzZpycXFRs2bN9Pnnn1vXb968WRaLRWvXrtVdd90lZ2dnbdu2Tbm5uZo9e7aCg4Pl7OysgIAAvfrqq/mu+2ptc+bMka+vr6pUqaJRo0ZZr8Ts2LGjEhMTNW7cOFkslmK5QIWABgBAMYmKipKjo6P27Nmjt99+W2+88Ybee+89SVduyzBjxgzFxsZq1apVSkhIUHh4uHXbqVOn6tChQ1q7dq3i4uK0cOFCVa1a1bptWFiY3N3d9f3332v79u1yc3NT165dC/Q4rLlz5yokJEQHDhzQ008/raeeekqHDx8usmNs3LhRcXFx2rx5sz7++GOtXLlS06dPt66fNWuWPvjgAy1atEg///yzxo0bp8cee0xbtmyx2c/kyZMVERGhuLg4NW3aVFOmTFFERIT1M1q+fLmqV69eoLo3bdqk48ePa9OmTYqKitLSpUu1dOlSSVemg2vUqKGXX35ZSUlJSkpKyvdnWlilb0wQAACT8vf315tvvimLxaJ69erp4MGDevPNNzV8+HANHTrU2q5WrVqaN2+eWrZsqfT0dLm5uenEiRNq3ry5QkJCJF0Z8bpqxYoVys3N1XvvvWcd3YmMjJSXl5c2b96s++67L1/1de/eXU8//bQkadKkSXrzzTe1adMm1atXr0iO4eTkpP/85z+qWLGiGjVqpJdfflkTJkzQjBkzlJWVpZkzZ2rDhg0KDQ21fg7btm3T4sWL1aFDB+t+Xn75Zd17772SpAsXLujtt9/WggULNHjwYElS7dq1dc899xTos6lUqZIWLFggBwcH1a9fXz169NDGjRs1fPhwVa5cWQ4ODtbRzeJAQAMAoJi0bt3aZnosNDRUc+fOVU5OjmJiYjRt2jTFxsbq/Pnz1ueMnjhxQg0bNtRTTz2lvn37av/+/brvvvvUp08ftWnTRpIUGxurY8eOyd3d3eZ4ly5d0vHjx/NdX9OmTa1fWywW+fj4WKdZi+IYzZo1s3n6Q2hoqNLT03Xy5Emlp6crIyPDGryuyszMVPPmzW2WXQ2pkhQXF6fLly+rc+fO1zxmfutu1KiRzZ3/fX19dfCg/W5ZQ0ADAMDOLl26pLCwMIWFhemjjz6St7e3Tpw4obCwMOs0XLdu3ZSYmKg1a9YoOjpanTt31qhRozRnzhylp6frrrvu0kcffZRn397e3vmu459XdVosFmtQLKpjXE96erok6ZtvvtEdd9xhs87Z2dnmvaurq/Xrq49XutF+81P3jfpuDwQ0AACKye7du23e79q1S3Xq1NEvv/yic+fOKSIiQv7+/pKkvXv35tne29tbgwcP1uDBg9WuXTtNmDBBc+bMUYsWLbRixQpVq1ZNHh4et6X2ojhGbGys/vrrL2uo2rVrl9zc3OTv76/KlSvL2dlZJ06csJnOvJk6derIxcVFGzdu1LBhw25L3dKV6dmrjxkrDlwkAABAMTlx4oSee+45HT58WB9//LHmz5+vMWPGKCAgQE5OTpo/f75+/fVXrV69WjNmzLDZ9sUXX9RXX32lY8eO6eeff9bXX3+tBg0aSJIGDhyoqlWrqnfv3vr+++8VHx+vzZs369lnn9WpU6eKpPaiOEZmZqaeeOIJHTp0SGvWrNFLL72k0aNHq1y5cnJ3d9fzzz+vcePGKSoqSsePH9f+/fs1f/58RUVFXXefFSpU0KRJkzRx4kR98MEHOn78uHbt2qX333+/SD+boKAgbd26VadPn9Yff/yR7+0KixE0AECpUBJuHDto0CD99ddfatWqlRwcHDRmzBiNGDFCFotFS5cu1QsvvKB58+apRYsWmjNnju6//37rtk5OTpoyZYoSEhLk4uKidu3a6ZNPPpF05QHdW7du1aRJk/Tggw/qwoULuuOOO9S5c+ciG1ErimN07txZderUUfv27XX58mUNGDBA06ZNs66fMWOGvL29NWvWLP3666/y8vJSixYt9MILL9xwv1OnTpWjo6NefPFFnTlzRr6+vho5cmSR1S1duTDhySefVO3atXX58mXr7VFuF4txu4+AIpeWliZPT081WNiAZ3ECyKO0P4vz0qVLio+PV82aNVWhQgV7l4N8Cg8PV0pKilatWmXvUm6rG/18Xv37nZqaetNwyBQnAACAyTDFCQAAbpmbm9t1161du7YYKykdCGgl2K7EU/Jwvv2PmwBMYVqqvSsAcAMxMTHXXXfHHXeoXbt2xVdMKUBAAwAAtyw4ONjeJZQqnIMGAABgMgQ0AAAAkyGgFZHffvtNzzzzjGrVqiVnZ2f5+/urV69e2rhxY562n332mfX5aTt27FCtWrWKu1wAAGBinINWBBISEtS2bVt5eXnp9ddfV5MmTZSVlaX169dr1KhR+uWXX2za79y5U23btpUkff/999avAQAAJAJakXj66adlsVi0Z88emwe4NmrUSEOHDs3TfseOHZo8ebIkadu2berRw/x3vwYAAMWHKc5b9Oeff2rdunUaNWqUTTi7ysvLS5K0fPlyeXl5ycvLS3v27NHjjz8uLy8vrVmzRs8//7y8vLy0fPnyax7j8uXLSktLs3kBAEqWjh07auzYsfYuAyUEI2i36NixYzIMQ/Xr179hu/vvv19t2rTRhg0b9NZbb+nrr7/Wjz/+qJEjR2rHjh2SpKpVq15z21mzZmn69OlFXjsAlCrTPIv5ePa/N9/mzZv15ptvas+ePUpLS1OdOnU0YcIEDRw40Npm6dKlGjJkiM12zs7OunTpUnGXW+wSEhJUs2ZNHThwQHfeeae9yykQRtBuUX4fZerm5qagoCDt379fvXv3VlBQkA4ePKju3bsrKChIQUFB170L85QpU5Sammp9nTx5sii7AAAooXbs2KGmTZvqiy++0I8//qghQ4Zo0KBB+vrrr23aeXh4KCkpyfpKTEy0U8VXZGZm2vX4JQEB7RbVqVNHFoslz4UAf3fixAm5ubnJzc1NS5Ys0dy5c+Xm5qZp06Zp2bJlcnNz08iRI6+7vbOzszw8PGxeAICSJzs7W6NHj5anp6eqVq2qqVOnWv+hHxQUpFdeeUWDBg2Sm5ubAgMDtXr1ap09e1a9e/eWm5ubmjZtqr1791r398ILL2jGjBlq06aNateurTFjxqhr165auXKlzXEtFot8fHysr+rVq+e75qCgIM2YMUMDBgyQq6ur7rjjDr3zzjs2bVJSUjRs2DB5e3vLw8ND//rXvxQbG2tdP23aNN1555167733bB4inpKSoieffFLVq1dXhQoV1LhxY5twuW3bNrVr104uLi7y9/fXs88+q4sXL9rUNnPmTA0dOlTu7u4KCAjQkiVLrOtr1qwpSWrevLksFos6duyY737bGwHtFlWuXFlhYWF65513bH5orkpJSZGfn59iYmK0bt06OTo6KiYmRrt375Z05SrOmJgYvfzyy8VdOgCgmEVFRcnR0VF79uzR22+/rTfeeEPvvfeedf2bb76ptm3b6sCBA+rRo4cef/xxDRo0SI899pj279+v2rVra9CgQTecvUlNTVXlypVtlqWnpyswMFD+/v7q3bu3fv755wLV/frrr6tZs2Y6cOCAJk+erDFjxig6Otq6/qGHHlJycrLWrl2rffv2qUWLFurcubP+/PNPa5tjx47piy++0MqVKxUTE6Pc3Fx169ZN27dv14cffqhDhw4pIiJCDg4OkqTjx4+ra9eu6tu3r3788UetWLFC27Zt0+jRo21qmzt3rkJCQnTgwAE9/fTTeuqpp3T48GFJ0p49eyRJGzZsUFJSUp7gamYWI79zdLiuX3/9VW3btlXlypX18ssvq2nTpsrOzlZ0dLQWLlyouLg4SdInn3yihQsXasuWLdq6dauGDx9u/SEqiLS0NHl6eip1sjvP4kTZYYLzfWAOly5dUnx8vM1IjCTTn4PWsWNHJScn6+eff5bFcuV39+TJk7V69WodOnRIQUFBateunZYtWybpyv01fX19NXXqVOs/4nft2qXQ0FAlJSXJx8cnzzE+/fRTPf7449q/f78aNWok6cqtnY4ePaqmTZsqNTVVc+bM0datW/Xzzz+rRo0aN607KChIDRo0sHngef/+/ZWWlqY1a9ZY70aQnJwsZ2dna5vg4GBNnDhRI0aM0LRp0zRz5kydPn1a3t7ekqRvv/1W3bp1U1xcnOrWrZvnuMOGDZODg4MWL15sXbZt2zZ16NBBFy9eVIUKFfJ8ZoZhyMfHR9OnT9fIkSPtcg7adX8+9be/36mpN50NYwStCNSqVUv79+9Xp06dNH78eDVu3Fj33nuvNm7cqIULF1rbbd68We3bt5ckbdmyxfo1AKBsaN26tTWcSVJoaKiOHj2qnJwcSVLTpk2t665OQzZp0iTPsuTk5Dz73rRpk4YMGaJ3333XGs6uHmPQoEG688471aFDB61cuVLe3t42wedmQkND87y/OvgQGxur9PR0ValSxXo6j5ubm+Lj43X8+HHrNoGBgdZwJl15uHqNGjWuGc6u7nfp0qU2+wwLC1Nubq7i4+Ot7f7+mV2dyr3W51PScBVnEfH19dWCBQu0YMGC67ZZtGiR9eupU6cWR1kAgBKkfPny1q+vBrlrLcvNzbXZbsuWLerVq5fefPNNDRo06KbHaN68uY4dO1YkNaenp8vX11ebN2/Os+7qraYk5bkVlYuLy033++STT+rZZ5/Nsy4gIMD69d8/H+nKZ/TPz6ckIqABAFBMrp5/fNWuXbtUp04d63lXhbF582b17NlTr732mkaMGHHT9jk5Oda7COTXrl278rxv0KCBJKlFixb67bff5OjoqKCgoHzvs2nTpjp16pSOHDlyzVG0Fi1a6NChQwoODs73Pv/JyclJkqwjlCUJAa0Ea3zpfZUzKtq7jBIrIYInOAAoXidOnNBzzz2nJ598Uvv379f8+fM1d+7cQu9v06ZN6tmzp8aMGaO+ffvqt99+k3QlmFy9UODll19W69atFRwcrJSUFL3++utKTEzUsGHD8n2c7du3a/bs2erTp4+io6P12Wef6ZtvvpEkdenSRaGhoerTp49mz56tunXr6syZM/rmm2/0wAMPKCQk5Jr77NChg9q3b6++ffvqjTfeUHBwsH755RdZLBZ17dpVkyZNUuvWrTV69GgNGzZMrq6uOnTokKKjo284W/V31apVk4uLi9atW6caNWqoQoUK8vQs5nMVC4lz0AAAKCaDBg3SX3/9pVatWmnUqFEaM2ZMvka9ricqKkoZGRmaNWuWfH19ra8HH3zQ2ub8+fMaPny4GjRooO7duystLU07duxQw4YN832c8ePHa+/evWrevLleeeUVvfHGGwoLC5N0ZUpxzZo1at++vYYMGaK6deuqf//+SkxMvOntPL744gu1bNlSAwYMUMOGDTVx4kSb8/G2bNmiI0eOqF27dmrevLlefPFF+fn55btuR0dHzZs3T4sXL5afn5969+6d723tjas4S6CrV4H4j/1U5ZwZQSssRtCAkulGV8mh6AUFBWns2LE8piqfuIoTAACglCKgAQBQRn3//fc2t7H45wv2w0UCAACUUSEhIYqJiblhm4SEhGKpBbYIaAAAlFEuLi63dBsL3D5McQIAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAoxTZv3iyLxaKUlBR7l4IC4DYbAIBSoUlUk2I93sHBB4v1eLh1CQkJqlmzpg4cOKA777zT3uXcECNoAACYkGEYys7OtncZxSIzM9PeJZgOI2gl2E/Tw276sFUAgHlcvnxZEyZM0CeffKK0tDSFhITozTffVMuWLbV582Z16tRJa9as0b///W8dPHhQ3377rfz9/fXcc89p165dunjxoho0aKBZs2apS5cuNvt98cUXtXz5ciUnJ8vf319TpkzRE088cc06tm3bpilTpmjv3r2qWrWqHnjgAc2aNUuurq437UNQUJCeeOIJHTp0SKtXr5aXl5deeOEFjRo1ytomJSVFzz//vL766itdvnzZ2s9mzZpJkqZNm6ZVq1Zp9OjRevXVV5WYmKjc3FylpKRo0qRJWrVqlVJTUxUcHKyIiAj17NkzX3UHBQVpxIgROnbsmD777DNVqlRJ//73vzVixAhJUs2aNSVJzZs3lyR16NBBmzdvLuB3sXgwggYAQDGZOHGivvjiC0VFRWn//v0KDg5WWFiY/vzzT2ubyZMnKyIiQnFxcWratKnS09PVvXt3bdy4UQcOHFDXrl3Vq1cvnThxwrrNoEGD9PHHH2vevHmKi4vT4sWLr/sszePHj6tr167q27evfvzxR61YsULbtm3T6NGj892P119/Xc2aNdOBAwc0efJkjRkzRtHR0db1Dz30kJKTk7V27Vrt27dPLVq0UOfOnW36eezYMX3xxRdauXKlYmJilJubq27dumn79u368MMPdejQIUVERMjBwaFAdc+dO1chISE6cOCAnn76aT311FM6fPiwJGnPnj2SpA0bNigpKUkrV67Md5+Lm8UwDMPeRaBg0tLS5OnpqdTUVEbQAJQ5ly5dUnx8vGrWrKkKFSpYl5v9HLSLFy+qUqVKWrp0qR599FFJUlZWloKCgjR27Fi1bNlSnTp10qpVq9S7d+8b7qtx48YaOXKkRo8erSNHjqhevXqKjo62GVW76urI3Pnz5+Xl5aVhw4bJwcFBixcvtrbZtm2bOnTooIsXL9p8ptcSFBSkBg0aaO3atdZl/fv3V1pamtasWaNt27apR48eSk5OlrOzs7VNcHCwJk6cqBEjRmjatGmaOXOmTp8+LW9vb0nSt99+q27duikuLk5169bNc9z81B0UFKR27dpp2bJlkq5ME/v4+Gj69OkaOXJksZyDdr2fT6lgf78ZQQMAoBgcP35cWVlZatu2rXVZ+fLl1apVK8XFxVmXhYSE2GyXnp6u559/Xg0aNJCXl5fc3NwUFxdnHUGLiYmRg4ODOnTokK86YmNjtXTpUrm5uVlfYWFhys3NVXx8fL72ERoamuf91T7ExsYqPT1dVapUsTlGfHy8jh8/bt0mMDDQGs6u9qNGjRrXDGcFqbtp06bWry0Wi3x8fJScnJyvfpkJ56ABAGAi/zwP7Pnnn1d0dLTmzJmj4OBgubi4qF+/ftYT611cXAq0//T0dD355JN69tln86wLCAgofOF/27+vr+81z+3y8vKyfv3Pft6sH/mtu3z58jbrLBaLcnNz81G5uRDQAAAoBrVr15aTk5O2b9+uwMBASVemOH/44QeNHTv2uttt375d4eHheuCBByRdCSoJCQnW9U2aNFFubq62bNlyzSnOf2rRooUOHTqk4ODgQvdl165ded43aNDAuv/ffvtNjo6OCgoKyvc+mzZtqlOnTunIkSPXHEUrirqdnJwkSTk5OYXeR3FhihMAgGLg6uqqp556ShMmTNC6det06NAhDR8+XBkZGde92lKS6tSpYz2RPjY2Vo8++qjNiFBQUJAGDx6soUOHatWqVYqPj9fmzZv16aefXnN/kyZN0o4dOzR69GjFxMTo6NGj+uqrrwp0kcD27ds1e/ZsHTlyRO+8844+++wzjRkzRpLUpUsXhYaGqk+fPvr222+VkJCgHTt26H/+53+0d+/e6+6zQ4cOat++vfr27avo6GjFx8dr7dq1WrduXZHVXa1aNbm4uGjdunX6/ffflZqamu9tixsBDQCAYhIREaG+ffvq8ccfV4sWLXTs2DGtX79elSpVuu42b7zxhipVqqQ2bdqoV69eCgsLU4sWLWzaLFy4UP369dPTTz+t+vXra/jw4bp48eI199e0aVNt2bJFR44cUbt27dS8eXO9+OKL8vPzy3c/xo8fr71796p58+Z65ZVX9MYbbygsLEzSlSnFNWvWqH379hoyZIjq1q2r/v37KzExUdWrV7/hfr/44gu1bNlSAwYMUMOGDTVx4kTraFdR1O3o6Kh58+Zp8eLF8vPzu+nFGPbEVZwlEFdxAijLbnSVHG6/q1ed3mhatizjKk4AAIBSioAGAAAkSd9//73NbSz++ULx4SpOAAAg6co92GJiYm7Y5u9XkOL2IaABAABJV+5Fdiu3sUDRYYoTAADAZAhoAIASiZsQwIyK6qkFTHECAEqU8uXLy2Kx6OzZs/L29pbFYrF3SYAMw1BmZqbOnj2rcuXKWZ9aUFgENABAieLg4KAaNWro1KlTnLAO06lYsaICAgJUrtytTVIS0AAAJY6bm5vq1KmjrKwse5cCWDk4OMjR0bFIRnUJaACAEsnBwUEODg72LgO4LbhIAAAAwGQIaAAAACZDQAMAADAZzkErga7e+yctLc3OlQAAgPy6+nc7P/fwI6CVQOfOnZMk+fv727kSAABQUBcuXJCnp+cN2xDQSqDKlStLkk6cOHHTb3BJlZaWJn9/f508eVIeHh72LqfIlfb+SaW/j6W9f1Lp72Np759EH83GMAxduHBBfn5+N21LQCuBrt78ztPT0/Q/jLfKw8OjVPextPdPKv19LO39k0p/H0t7/yT6aCb5HVjhIgEAAACTIaABAACYDAGtBHJ2dtZLL70kZ2dne5dy25T2Ppb2/kmlv4+lvX9S6e9jae+fRB9LMouRn2s9AQAAUGwYQQMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGglUDvvPOOgoKCVKFCBd19993as2ePvUsqErNmzVLLli3l7u6uatWqqU+fPjp8+LC9y7ptIiIiZLFYNHbsWHuXUqROnz6txx57TFWqVJGLi4uaNGmivXv32rusIpOTk6OpU6eqZs2acnFxUe3atTVjxox8PfzYrLZu3apevXrJz89PFotFq1atsllvGIZefPFF+fr6ysXFRV26dNHRo0ftU2wh3Kh/WVlZmjRpkpo0aSJXV1f5+flp0KBBOnPmjP0KLoSbfQ//buTIkbJYLHrrrbeKrb5blZ/+xcXF6f7775enp6dcXV3VsmVLnThxoviLLSIEtBJmxYoVeu655/TSSy9p//79atasmcLCwpScnGzv0m7Zli1bNGrUKO3atUvR0dHKysrSfffdp4sXL9q7tCL3ww8/aPHixWratKm9SylS58+fV9u2bVW+fHmtXbtWhw4d0ty5c1WpUiV7l1ZkXnvtNS1cuFALFixQXFycXnvtNc2ePVvz58+3d2mFdvHiRTVr1kzvvPPONdfPnj1b8+bN06JFi7R79265uroqLCxMly5dKuZKC+dG/cvIyND+/fs1depU7d+/XytXrtThw4d1//3326HSwrvZ9/CqL7/8Urt27crXsyDN5Gb9O378uO655x7Vr19fmzdv1o8//qipU6eqQoUKxVxpETJQorRq1coYNWqU9X1OTo7h5+dnzJo1y45V3R7JycmGJGPLli32LqVIXbhwwahTp44RHR1tdOjQwRgzZoy9SyoykyZNMu655x57l3Fb9ejRwxg6dKjNsgcffNAYOHCgnSoqWpKML7/80vo+NzfX8PHxMV5//XXrspSUFMPZ2dn4+OOP7VDhrfln/65lz549hiQjMTGxeIoqYtfr46lTp4w77rjD+Omnn4zAwEDjzTffLPbaisK1+vfII48Yjz32mH0Kuk0YQStBMjMztW/fPnXp0sW6rFy5curSpYt27txpx8puj9TUVElS5cqV7VxJ0Ro1apR69Ohh830sLVavXq2QkBA99NBDqlatmpo3b653333X3mUVqTZt2mjjxo06cuSIJCk2Nlbbtm1Tt27d7FzZ7REfH6/ffvvN5ufV09NTd999d6n8vSNd+d1jsVjk5eVl71KKTG5urh5//HFNmDBBjRo1snc5RSo3N1fffPON6tatq7CwMFWrVk133333Dad5SwICWgnyxx9/KCcnR9WrV7dZXr16df322292qur2yM3N1dixY9W2bVs1btzY3uUUmU8++UT79+/XrFmz7F3KbfHrr79q4cKFqlOnjtavX6+nnnpKzz77rKKiouxdWpGZPHmy+vfvr/r166t8+fJq3ry5xo4dq4EDB9q7tNvi6u+WsvB7R5IuXbqkSZMmacCAAfLw8LB3OUXmtddek6Ojo5599ll7l1LkkpOTlZ6eroiICHXt2lXffvutHnjgAT344IPasmWLvcsrNEd7FwBcy6hRo/TTTz9p27Zt9i6lyJw8eVJjxoxRdHR0yT4v4gZyc3MVEhKimTNnSpKaN2+un376SYsWLdLgwYPtXF3R+PTTT/XRRx9p+fLlatSokWJiYjR27Fj5+fmVmj6WVVlZWXr44YdlGIYWLlxo73KKzL59+/T2229r//79slgs9i6nyOXm5kqSevfurXHjxkmS7rzzTu3YsUOLFi1Shw4d7FleoTGCVoJUrVpVDg4O+v33322W//777/Lx8bFTVUVv9OjR+vrrr7Vp0ybVqFHD3uUUmX379ik5OVktWrSQo6OjHB0dtWXLFs2bN0+Ojo7Kycmxd4m3zNfXVw0bNrRZ1qBBgxJ9JdU/TZgwwTqK1qRJEz3++OMaN25cqR0Vvfq7pbT/3rkazhITExUdHV2qRs++//57JScnKyAgwPq7JzExUePHj1dQUJC9y7tlVatWlaOjY6n73UNAK0GcnJx01113aePGjdZlubm52rhxo0JDQ+1YWdEwDEOjR4/Wl19+qe+++041a9a0d0lFqnPnzjp48KBiYmKsr5CQEA0cOFAxMTFycHCwd4m3rG3btnlujXLkyBEFBgbaqaKil5GRoXLlbH91Ojg4WP8VX9rUrFlTPj4+Nr930tLStHv37lLxe0f6v3B29OhRbdiwQVWqVLF3SUXq8ccf148//mjzu8fPz08TJkzQ+vXr7V3eLXNyclLLli1L3e8epjhLmOeee06DBw9WSEiIWrVqpbfeeksXL17UkCFD7F3aLRs1apSWL1+ur776Su7u7tbzWzw9PeXi4mLn6m6du7t7nvPpXF1dVaVKlVJznt24cePUpk0bzZw5Uw8//LD27NmjJUuWaMmSJfYurcj06tVLr776qgICAtSoUSMdOHBAb7zxhoYOHWrv0gotPT1dx44ds76Pj49XTEyMKleurICAAI0dO1avvPKK6tSpo5o1a2rq1Kny8/NTnz597Fd0Adyof76+vurXr5/279+vr7/+Wjk5OdbfPZUrV5aTk5O9yi6Qm30P/xk6y5cvLx8fH9WrV6+4Sy2Um/VvwoQJeuSRR9S+fXt16tRJ69at03//+19t3rzZfkXfKntfRoqCmz9/vhEQEGA4OTkZrVq1Mnbt2mXvkoqEpGu+IiMj7V3abVPabrNhGIbx3//+12jcuLHh7Oxs1K9f31iyZIm9SypSaWlpxpgxY4yAgACjQoUKRq1atYz/+Z//MS5fvmzv0gpt06ZN1/x/b/DgwYZhXLnVxtSpU43q1asbzs7ORufOnY3Dhw/bt+gCuFH/4uPjr/u7Z9OmTfYuPd9u9j38p5J2m4389O/99983goODjQoVKhjNmjUzVq1aZb+Ci4DFMErw7a8BAABKIc5BAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEzm/wMIimRbDe+ozgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAGzCAYAAACb/us4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJc0lEQVR4nO3deVRVZd//8c8RBJHRAQUSAcUppzS10BzKAce0tNIsRXMq7dZy7neXUyW32aT2mN0VkGmZZeZTDqmJ5pwTmpIDAWphmAmIpCDs3x8+nNURUECEDbxfa521ztn72nt/r7MFPl57shiGYQgAAACmUaGkCwAAAIAtAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAlCL+/v4KCQkp6TIA3GEENACl2pEjRzRgwAD5+fmpUqVKuuuuu9S1a1ctXLjQ2ub111/X6tWr72gdMTExGj16tOrUqaNKlSrJzc1N7dq107vvvqu///77jm77Tpg5c6YsFkuerx07dljbdurUyWaeg4ODAgICNGrUKJ05c6YEewGUXhaexQmgtNq5c6cefPBB1a5dW0OHDpWXl5fOnDmj3bt3KyYmRqdOnZIkubi4aMCAAQoPD78jdXz33Xd67LHH5OjoqCFDhqhJkyZKT0/X9u3b9dVXXykkJEQffPBBkWzL399fnTp1umN9yXb48GEdPnw4x/SXXnpJqampOnfunBwcHCRdD2gxMTGaO3euJCk9PV3Hjh3T+++/r2rVqik6OlqVK1e+o/UCZY19SRcAAIX12muvyd3dXT/99JM8PDxs5iUmJt7RbV++fFnOzs6KjY3VwIED5efnpx9++EHe3t7WNmPHjtWpU6f03Xff3dFaCuvatWvKysqyBq1/atasmZo1a2Yz7cyZMzp79qxGjBiRYxl3d3c99dRTNtMCAgI0btw47dixQ127di36DgBlGIc4AZRaMTExaty4cY5wJkk1atSQJFksFl2+fFkRERHWQ3DZ53DFx8frueeeU4MGDeTk5KRq1arpscceU1xcnM26wsPDZbFYtHXrVj333HOqUaOGatWqJUmaN2+eUlNT9dFHH9mEs2yBgYEaP3689fO1a9c0Z84c1a1bV46OjvL399dLL72kq1ev2ixnGIZeffVV1apVS5UrV9aDDz6oo0eP5vo9JCUlacKECfL19ZWjo6MCAwP1n//8R1lZWdY2cXFxslgsmj9/vt555x3r9o8dO3bL7znbZ599JsMwNHjw4Hy19/LykiTZ2zMWABQUPzUASi0/Pz/t2rVLP//8s5o0aZJrm6VLl2rEiBFq06aNRo0aJUmqW7euJOmnn37Szp07NXDgQNWqVUtxcXFavHixOnXqpGPHjuU4LPfcc8/J09NTr7zyii5fvixJ+t///V/VqVNHbdu2zVfNI0aMUEREhAYMGKCJEydqz549mjt3rqKjo/X1119b273yyit69dVX1bNnT/Xs2VMHDhxQt27dlJ6ebrO+tLQ0dezYUb/99ptGjx6t2rVra+fOnZo+fboSEhL0zjvv2LQPCwvTlStXNGrUKDk6Oqpq1ar5qluSli1bJl9fX3Xo0CHHvMzMTP3555+SpIyMDEVHR2vGjBkKDAxUu3bt8r0NAP/HAIBS6vvvvzfs7OwMOzs7IygoyJgyZYqxYcMGIz093aads7OzMXTo0BzLp6Wl5Zi2a9cuQ5LxySefWKeFhYUZkowHHnjAuHbtmnV6cnKyIcno27dvvuo9dOiQIckYMWKEzfRJkyYZkowffvjBMAzDSExMNBwcHIxevXoZWVlZ1nYvvfSSIcmmL3PmzDGcnZ2NEydO2Kxz2rRphp2dnXH69GnDMAwjNjbWkGS4ubkZiYmJ+ar3n37++WdDkjFlypQc8zp27GhIyvFq1KiR8euvvxZ4WwAMg0OcAEqtrl27ateuXXr44YcVFRWlefPmKTg4WHfddZfWrFlzy+WdnJys7zMyMnThwgUFBgbKw8NDBw4cyNF+5MiRsrOzs35OSUmRJLm6uuar3rVr10qSXnzxRZvpEydOlCTruWqbNm1Senq6nn/+eVksFmu7CRMm5FjnypUr1b59e1WpUkV//vmn9dWlSxdlZmZq27ZtNu379+8vT0/PfNX7T8uWLZOkPA9v+vv7a+PGjdq4caPWrVund955R8nJyerRo4fOnz9f4O0B5R2HOAGUaq1bt9aqVauUnp6uqKgoff3113r77bc1YMAAHTp0SHfffXeey/7999+aO3euwsLC9Ntvv8n4x0XtycnJOdoHBATYfHZzc5MkXbp0KV+1xsfHq0KFCgoMDLSZ7uXlJQ8PD8XHx1vbSVK9evVs2nl6eqpKlSo2006ePKnDhw/nGbpuvFjixj6cO3fO5rO7u7tNcJWunw+3fPlyNWnSJMeFA9mcnZ3VpUsX6+fu3bvrgQceUKtWrRQaGqo333wz1+UA5I6ABqBMcHBwUOvWrdW6dWvVr19fw4YN08qVKzVjxow8l3n++ecVFhamCRMmKCgoSO7u7rJYLBo4cKDNCfbZbgwubm5u8vHx0c8//1ygWv85Kna7srKy1LVrV02ZMiXX+fXr17f5fGMfbrywISwsLMeNcHfs2KH4+HjrbTTy695775W7u3uOUTwAt0ZAA1DmtGrVSpKUkJAgKe9A9OWXX2ro0KE2oztXrlxRUlJSvrfVu3dvffDBB9q1a5eCgoJu2tbPz09ZWVk6efKkGjVqZJ3+xx9/KCkpSX5+ftZ20vXRsTp16ljbnT9/XhcvXrRZZ926dZWammozelUQGzdutPncuHHjHG2WLVsmi8WiJ598ssDrz8zMVGpqaqFqA8ozzkEDUGpt2bLF5rBktuxzvRo0aCDp+uG33EKXnZ1djuUXLlyozMzMfNcwZcoUOTs7a8SIEfrjjz9yzI+JidG7774rSerZs6ck5biy8q233pIk9erVS5LUpUsXVaxYUQsXLrSp78blJOnxxx/Xrl27tGHDhhzzkpKSdO3atZvW36VLF5vXjSNqGRkZWrlypR544AHVrl37puu60ZYtW5SamqrmzZsXaDkAjKABKMWef/55paWl6ZFHHlHDhg2Vnp6unTt3asWKFfL399ewYcMkXT/UtmnTJr311lvy8fFRQECA7rvvPvXu3VtLly6Vu7u77r77bu3atUubNm1StWrV8l1D3bp1tXz5cj3xxBNq1KiRzZMEdu7cqZUrV1oPGTZv3lxDhw7VBx98oKSkJHXs2FF79+5VRESE+vXrpwcffFDS9XPNJk2apLlz56p3797q2bOnDh48qHXr1ql69eo22588ebLWrFmj3r17KyQkRPfee68uX76sI0eO6Msvv1RcXFyOZQpiw4YNunDhwi3vfZacnKxPP/1U0vV7vR0/flyLFy+Wk5OTpk2bVujtA+VWiV5DCgC3Yd26dcbw4cONhg0bGi4uLoaDg4MRGBhoPP/888Yff/xhbffLL78YHTp0MJycnGxuU3Hx4kVj2LBhRvXq1Q0XFxcjODjY+OWXXww/Pz+bW1lk32bjp59+yrOWEydOGCNHjjT8/f0NBwcHw9XV1WjXrp2xcOFC48qVK9Z2GRkZxqxZs4yAgACjYsWKhq+vrzF9+nSbNoZhGJmZmcasWbMMb29vw8nJyejUqZPx888/56jNMAzj0qVLxvTp043AwEDDwcHBqF69utG2bVtj/vz51luOZN9m44033ijQdzxw4ECjYsWKxoULF/Jsc+NtNiwWi1G1alXj4YcfNvbv31+g7QG4jmdxAgAAmAznoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIYb1ZZCWVlZ+v333+Xq6lqkz/QDAAB3jmEYunTpknx8fFShws3HyAhopdDvv/8uX1/fki4DAAAUwpkzZ1SrVq2btiGglUKurq6Sru9gNze3Eq4GAADkR0pKinx9fa1/x2+GgFYKZR/WdHNzI6ABAFDK5Of0JC4SAAAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAy9iVdAArv/uX3y87JrqTLAIAy68jQIyVdAsopRtAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZjX9IFoPB2x5+Vm6OlpMsAgJxmJpd0BUCpxggaAACAyRDQAAAATIaAVoQiIyNlsViUlJRU0qUAAIBSrMQCmsViuelr5syZJVVaobVt21YJCQlyd3fP9zIzZ87UPffcc+eKAgAApU6JXSSQkJBgfb9ixQq98sorOn78uHWai4tLSZRVaBkZGXJwcJCXl1dJlwIAAEq5EhtB8/Lysr7c3d1lsVjk5eUlV1dX1a9fX+vXr7dpv3r1ajk7O+vSpUuKi4uTxWLR559/rrZt26pSpUpq0qSJtm7darPMzz//rB49esjFxUU1a9bU008/rT///NM6/8svv1TTpk3l5OSkatWqqUuXLrp8+bJ1/scff6zGjRvL0dFR3t7eGjdunHWexWLR4sWL9fDDD8vZ2VmvvfZajkOc4eHh8vDw0OrVq1WvXj1VqlRJwcHBOnPmjHX+rFmzFBUVZR05DA8PL+JvGgAAlDamOwfN2dlZAwcOVFhYmM30sLAwDRgwQK6urtZpkydP1sSJE3Xw4EEFBQWpT58+unDhgiQpKSlJDz30kFq0aKF9+/Zp/fr1+uOPP/T4449Luj6CN2jQIA0fPlzR0dGKjIzUo48+KsMwJEmLFy/W2LFjNWrUKB05ckRr1qxRYGCgTU0zZ87UI488oiNHjmj48OG59ictLU2vvfaaPvnkE+3YsUNJSUkaOHCgJOmJJ57QxIkT1bhxYyUkJCghIUFPPPFEjnVcvXpVKSkpNi8AAFB2mfI+aCNGjLCez+Xt7a3ExEStXbtWmzZtsmk3btw49e/fX9L1QLV+/Xp99NFHmjJlihYtWqQWLVro9ddft7b/+OOP5evrqxMnTig1NVXXrl3To48+Kj8/P0lS06ZNrW1fffVVTZw4UePHj7dOa926tc32n3zySQ0bNsz6+ddff83Rl4yMDC1atEj33XefJCkiIkKNGjXS3r171aZNG7m4uMje3v6mh0bnzp2rWbNm3fJ7AwAAZYPpRtAkqU2bNmrcuLEiIiIkSZ9++qn8/PzUoUMHm3ZBQUHW9/b29mrVqpWio6MlSVFRUdqyZYtcXFysr4YNG0qSYmJi1Lx5c3Xu3FlNmzbVY489pv/+97+6ePGiJCkxMVG///67OnfufNM6W7Vqdcu+2Nvb2wS7hg0bysPDw1pnfkyfPl3JycnWV/YhUgAAUDaZMqBJ10fRss/HCgsL07Bhw2Sx5P+u+ampqerTp48OHTpk8zp58qQ6dOggOzs7bdy4UevWrdPdd9+thQsXqkGDBoqNjZWTk1O+tuHs7FyYrhWYo6Oj3NzcbF4AAKDsMm1Ae+qppxQfH68FCxbo2LFjGjp0aI42u3fvtr6/du2a9u/fr0aNGkmSWrZsqaNHj8rf31+BgYE2r+xgZbFY1K5dO82aNUsHDx6Ug4ODvv76a7m6usrf31+bN2++7X5cu3ZN+/bts34+fvy4kpKSrHU6ODgoMzPztrcDAADKDtMGtCpVqujRRx/V5MmT1a1bN9WqVStHm/fee09ff/21fvnlF40dO1YXL160nqw/duxY/fXXXxo0aJB++uknxcTEaMOGDRo2bJgyMzO1Z88evf7669q3b59Onz6tVatW6fz589bgNHPmTL355ptasGCBTp48qQMHDmjhwoUF7kfFihX1/PPPa8+ePdq/f79CQkJ0//33q02bNpIkf39/xcbG6tChQ/rzzz919erV2/jWAABAWWDagCZJzzzzjNLT0/O8QjI0NFShoaFq3ry5tm/frjVr1qh69eqSJB8fH+3YsUOZmZnq1q2bmjZtqgkTJsjDw0MVKlSQm5ubtm3bpp49e6p+/fr697//rTfffFM9evSQJA0dOlTvvPOO/ud//keNGzdW7969dfLkyQL3oXLlypo6daqefPJJtWvXTi4uLlqxYoV1fv/+/dW9e3c9+OCD8vT01GeffVaIbwoAAJQlFiP7vhImtHTpUr3wwgv6/fff5eDgYJ0eFxengIAAHTx40NR34Q8PD9eECROK/NFPKSkpcnd3V/I0V7k55v+8PAAoNjOTS7oCwHSsf7+Tk295Prkpb7ORlpamhIQEhYaGavTo0TbhDAAAoKwzZUCbN2+eXnvtNXXo0EHTp08v6XJMq8mVj1TBqFzSZQCmFhfaq6RLAIACM/UhTuQue4jUd8IXquBIQANuhoAGwCwKcojT1BcJAAAAlEcENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmY1/SBaDwfp4VLDc3t5IuAwAAFDFG0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZOxLugAU3v3L75edk11JlwEAQJlxZOiRki5BEiNoAAAApkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYjH1JF4DC2x1/Vm6OlpIuAwDwTzOTS7oClAGMoAEAAJgMAa0AQkJC1K9fv5IuAwAAlHFlNqCFhITIYrHIYrHIwcFBgYGBmj17tq5du3bLZePi4mSxWHTo0KE7XygAAMANyvQ5aN27d1dYWJiuXr2qtWvXauzYsapYsaKmT59e0qUBAADkqcyOoEmSo6OjvLy85Ofnp2effVZdunTRF198ITc3N3355Zc2bVevXi1nZ2ddunRJAQEBkqQWLVrIYrGoU6dONm3nz58vb29vVatWTWPHjlVGRoZ13sWLFzVkyBBVqVJFlStXVo8ePXTy5Enr/PDwcHl4eGjDhg1q1KiRXFxc1L17dyUkJNy5LwIAAJQqZTqg3cjJyUkVKlTQwIEDFRYWZjMvLCxMAwYMkKurq/bu3StJ2rRpkxISErRq1Spruy1btigmJkZbtmxRRESEwsPDFR4ebp0fEhKiffv2ac2aNdq1a5cMw1DPnj1tQlxaWprmz5+vpUuXatu2bTp9+rQmTZqUZ91Xr15VSkqKzQsAAJRd5SKgGYahTZs2acOGDXrooYc0YsQIbdiwwTpqlZiYqLVr12r48OGSJE9PT0lStWrV5OXlpapVq1rXVaVKFS1atEgNGzZU79691atXL23evFmSdPLkSa1Zs0Yffvih2rdvr+bNm2vZsmX67bfftHr1aus6MjIy9P7776tVq1Zq2bKlxo0bZ11HbubOnSt3d3fry9fXt6i/IgAAYCJlOqB9++23cnFxUaVKldSjRw898cQTmjlzptq0aaPGjRsrIiJCkvTpp5/Kz89PHTp0uOU6GzduLDs7O+tnb29vJSYmSpKio6Nlb2+v++67zzq/WrVqatCggaKjo63TKleurLp16+a6jtxMnz5dycnJ1teZM2fy/yUAAIBSp0wHtAcffFCHDh3SyZMn9ffffysiIkLOzs6SpBEjRlgPTYaFhWnYsGGyWG5909eKFSvafLZYLMrKyipQXbmtwzCMPNs7OjrKzc3N5gUAAMquMh3QnJ2dFRgYqNq1a8ve3vaC1aeeekrx8fFasGCBjh07pqFDh1rnOTg4SJIyMzMLtL1GjRrp2rVr2rNnj3XahQsXdPz4cd1999230RMAAFCelOmAdjNVqlTRo48+qsmTJ6tbt26qVauWdV6NGjXk5OSk9evX648//lBycv4e21GvXj317dtXI0eO1Pbt2xUVFaWnnnpKd911l/r27XunugIAAMqYchvQJOmZZ55Renq69eKAbPb29lqwYIGWLFkiHx+fAoWrsLAw3Xvvverdu7eCgoJkGIbWrl2b47AmAABAXizGzU5+KuOWLl2qF154Qb///rv1sGZpkJKSInd3dyVPc+Vh6QBgNjwsHXmw/v1OTr7l+eRl+kkCeUlLS1NCQoJCQ0M1evToUhXOAABA2VcuA9q8efP02muvqUOHDqX6sU9NrnykCkblki4DyCEutFdJlwAApVq5PAdt5syZysjI0ObNm+Xi4lLS5QAAANgolwENAADAzAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkUKqBt27ZN165dyzH92rVr2rZt220XBQAAUJ5ZDMMwCrqQnZ2dEhISVKNGDZvpFy5cUI0aNZSZmVlkBSKnlJQUubu7Kzk5WW5ubiVdDgAAyIeC/P0u1AiaYRiyWCw5pl+4cEHOzs6FWSUAAAD+j31BGj/66KOSJIvFopCQEDk6OlrnZWZm6vDhw2rbtm3RVggAAFDOFCigubu7S7o+gubq6ionJyfrPAcHB91///0aOXJk0VYIAABQzhQooIWFhUmS/P39NWnSJA5nAgAA3AGFOgdtxowZcnR01KZNm7RkyRJdunRJkvT7778rNTW1SAsEAAAobwo0gpYtPj5e3bt31+nTp3X16lV17dpVrq6u+s9//qOrV6/q/fffL+o6AQAAyo1CjaCNHz9erVq10sWLF23OQ3vkkUe0efPmIisOAACgPCrUCNqPP/6onTt3ysHBwWa6v7+/fvvttyIpDAAAoLwq1AhaVlZWrjejPXv2rFxdXW+7KAAAgPKsUAGtW7dueuedd6yfLRaLUlNTNWPGDPXs2bOoagMAACiXCvWop7Nnzyo4OFiGYejkyZNq1aqVTp48qerVq2vbtm05HgGFosWjngAAKH0K8ve7UAFNuv5g9BUrVigqKkqpqalq2bKlBg8ebHPRAO4MAhoAAKVPsQQ0lBwCGgAApc8df1h6RESEvvvuO+vnKVOmyMPDQ23btlV8fHxhVgkAAID/U6iA9vrrr1sPZe7atUuLFi3SvHnzVL16db3wwgtFWiAAAEB5U6j7oJ05c0aBgYGSpNWrV2vAgAEaNWqU2rVrp06dOhVlfQAAAOVOoUbQXFxcdOHCBUnS999/r65du0qSKlWqpL///rvoqgMAACiHCjWC1rVrV40YMUItWrTQiRMnrPc+O3r0qPz9/YuyPgAAgHKnUCNo7733noKCgnT+/Hl99dVXqlatmiRp//79GjRoUJEWCAAAUN5wm41SiNtsAABQ+hTk73ehDnFmS0tL0+nTp5Wenm4zvVmzZrezWgAAgHKtUAHt/PnzCgkJ0fr163Odn9uD1AEAAJA/hToHbcKECUpOTtaePXvk5OSk9evXKyIiQvXq1dOaNWuKukYAAIBypVAjaD/88IO++eYbtWrVShUqVJCfn5+6du0qNzc3zZ07V7169SrqOgEAAMqNQo2gXb58WTVq1JAkValSRefPn5ckNW3aVAcOHCi66gAAAMqhQgW0Bg0a6Pjx45Kk5s2ba8mSJfrtt9/0/vvvy9vbu0gLBAAAKG8KdYhz/PjxSkhIkCTNmDFD3bt317Jly+Tg4KDw8PCirA8AAKDcKZL7oKWlpemXX35R7dq1Vb169aKoCzfBfdAAACh9CvL3u1CHOGfPnq20tDTr58qVK6tly5ZydnbW7NmzC7NKAAAA/J9CjaDZ2dkpISHBeqFAtgsXLqhGjRrcB+0OYwQNAIDS546PoBmGIYvFkmN6VFSUqlatWphVAgAA4P8U6CKBKlWqyGKxyGKxqH79+jYhLTMzU6mpqRozZkyRFwkAAFCeFCigvfPOOzIMQ8OHD9esWbPk7u5unefg4CB/f38FBQUVeZEAAADlSYEC2tChQyVJAQEBatu2rSpWrHhHigIAACjPCnUftI4dO1rfX7lyRenp6TbzOXEdAACg8Ap1kUBaWprGjRunGjVqyNnZWVWqVLF5AQAAoPAKFdAmT56sH374QYsXL5ajo6M+/PBDzZo1Sz4+Pvrkk0+KukYAAIBypVCHOP/3f/9Xn3zyiTp16qRhw4apffv2CgwMlJ+fn5YtW6bBgwcXdZ0AAADlRqFG0P766y/VqVNH0vXzzf766y9J0gMPPKBt27YVXXUAAADlUKECWp06dRQbGytJatiwob744gtJ10fWPDw8iqw4AACA8qhQAW3YsGGKioqSJE2bNk3vvfeeKlWqpBdeeEGTJ08u0gIBAADKm0I9i/NG8fHx2r9/vwIDA9WsWbOiqAs3wbM4AQAofQry97vAFwlkZWUpPDxcq1atUlxcnCwWiwICAjRgwAA1bdq00EUDAADgugId4jQMQw8//LBGjBih3377TU2bNlXjxo0VHx+vkJAQPfLII3eqTgAAgHKjQCNo4eHh2rZtmzZv3qwHH3zQZt4PP/ygfv366ZNPPtGQIUOKtEgAAIDypEAjaJ999pleeumlHOFMkh566CFNmzZNy5YtK7LiAAAAyqMCjaAdPnxY8+bNy3N+jx49tGDBgtsuCvlz//L7ZedkV9JlADoy9EhJlwAAZUqBRtD++usv1axZM8/5NWvW1MWLF2+7KAAAgPKsQAEtMzNT9vZ5D7rZ2dnp2rVrt10UAABAeVagQ5yGYSgkJESOjo65zr969WqRFAUAAFCeFSigDR069JZtuIITAADg9hQooIWFhd2pOgAAAPB/CvUsTgAAANw5BDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBXqSAMxld/xZuTlaSroMmNnM5JKuAABQCIygAQAAmAwBDQAAwGQIaAAAACZDQLuFkJAQ9evXr6TLAAAA5QgBDQAAwGQIaAWwfv16PfDAA/Lw8FC1atXUu3dvxcTEWOe3bdtWU6dOtVnm/PnzqlixorZt2yZJWrp0qVq1aiVXV1d5eXnpySefVGJiYrH2AwAAmBsBrQAuX76sF198Ufv27dPmzZtVoUIFPfLII8rKypIkDR48WJ9//rkMw7Aus2LFCvn4+Kh9+/aSpIyMDM2ZM0dRUVFavXq14uLiFBISctPtXr16VSkpKTYvAABQdlmMf6YJ5BASEqKkpCStXr06x7w///xTnp6eOnLkiJo0aaLz58/Lx8dHP/zwgzWQtW3bVh06dFBoaGiu69+3b59at26tS5cuycXFJdc2M2fO1KxZs3JMT57myn3QcHPcBw0ATCMlJUXu7u5KTk6Wm5vbTdsyglYAJ0+e1KBBg1SnTh25ubnJ399fknT69GlJkqenp7p166Zly5ZJkmJjY7Vr1y4NHjzYuo79+/erT58+ql27tlxdXdWxY0ebdeRm+vTpSk5Otr7OnDlzh3oIAADMgIBWAH369NFff/2l//73v9qzZ4/27NkjSUpPT7e2GTx4sL788ktlZGRo+fLlatq0qZo2bSrp+iHS4OBgubm5admyZfrpp5/09ddf51jHjRwdHeXm5mbzAgAAZRcBLZ8uXLig48eP69///rc6d+6sRo0a6eLFizna9e3bV1euXNH69eu1fPlym9GzX375RRcuXFBoaKjat2+vhg0bcoEAAADIgWdx5lOVKlVUrVo1ffDBB/L29tbp06c1bdq0HO2cnZ3Vr18/vfzyy4qOjtagQYOs82rXri0HBwctXLhQY8aM0c8//6w5c+YUZzcAAEApwAjaLWRlZcne3l4VKlTQ559/rv3796tJkyZ64YUX9MYbb+S6zODBgxUVFaX27durdu3a1umenp4KDw/XypUrdffddys0NFTz588vrq4AAIBSgqs4b6F79+4KDAzUokWLSroUK+tVIFzFiVvhKk4AMI2CXMXJIc48XLx4UTt27FBkZKTGjBlT0uXkqsmVj1TBqFzSZZhSXGivki4BAIBCI6DlYfjw4frpp580ceJE9e3bt6TLAQAA5QgBLQ/Zt78AAAAoblwkAAAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmY1/SBaDwfp4VLDc3t5IuAwAAFDFG0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBn7ki4AAIDCyMrKUnp6ekmXAVhVrFhRdnZ2RbIuAhoAoNRJT09XbGyssrKySroUwIaHh4e8vLxksVhuaz0ENABAqWIYhhISEmRnZydfX19VqMDZOih5hmEoLS1NiYmJkiRvb+/bWh8BDQBQqly7dk1paWny8fFR5cqVS7ocwMrJyUmSlJiYqBo1atzW4U7+2wEAKFUyMzMlSQ4ODiVcCZBT9n8aMjIybms9BDQAQKl0u+f4AHdCUf275BBnKXb/8vtl51Q0V4sAKFlHhh4p6RIAmAgjaAAAFINOnTppwoQJJbb9kJAQ9evXzzT14OYYQQMAlAn+074r1u3FhfYq1u0VtVWrVqlixYolXUap4e/vrwkTJhRbqCWgAQBQDlWtWrWkS7hthmEoMzNT9vZlL85wiBMAgGJy7do1jRs3Tu7u7qpevbpefvllGYYhSVq6dKlatWolV1dXeXl56cknn7TeU0uSLl68qMGDB8vT01NOTk6qV6+ewsLCrPPPnDmjxx9/XB4eHqpatar69u2ruLi4PGu58RCnv7+/Xn/9dQ0fPlyurq6qXbu2PvjgA5tlCrqNf8o+xDpr1ix5enrKzc1NY8aMsXkaRFZWlubOnauAgAA5OTmpefPm+vLLL63zIyMjZbFYtG7dOt17771ydHTU9u3blZWVpXnz5ikwMFCOjo6qXbu2XnvttXzXnV3b/Pnz5e3trWrVqmns2LHWKzE7deqk+Ph4vfDCC7JYLMVygQoBDQCAYhIRESF7e3vt3btX7777rt566y19+OGHkq7flmHOnDmKiorS6tWrFRcXp5CQEOuyL7/8so4dO6Z169YpOjpaixcvVvXq1a3LBgcHy9XVVT/++KN27NghFxcXde/evUCPw3rzzTfVqlUrHTx4UM8995yeffZZHT9+vMi2sXnzZkVHRysyMlKfffaZVq1apVmzZlnnz507V5988onef/99HT16VC+88IKeeuopbd261WY906ZNU2hoqKKjo9WsWTNNnz5doaGh1u9o+fLlqlmzZoHq3rJli2JiYrRlyxZFREQoPDxc4eHhkq4fDq5Vq5Zmz56thIQEJSQk5Ps7LayyNyYIAIBJ+fr66u2335bFYlGDBg105MgRvf322xo5cqSGDx9ubVenTh0tWLBArVu3VmpqqlxcXHT69Gm1aNFCrVq1knR9xCvbihUrlJWVpQ8//NA6uhMWFiYPDw9FRkaqW7du+aqvZ8+eeu655yRJU6dO1dtvv60tW7aoQYMGRbINBwcHffzxx6pcubIaN26s2bNna/LkyZozZ44yMjL0+uuva9OmTQoKCrJ+D9u3b9eSJUvUsWNH63pmz56trl27SpIuXbqkd999V4sWLdLQoUMlSXXr1tUDDzxQoO+mSpUqWrRokezs7NSwYUP16tVLmzdv1siRI1W1alXZ2dlZRzeLAwENAIBicv/999scHgsKCtKbb76pzMxMHTp0SDNnzlRUVJQuXrxofc7o6dOndffdd+vZZ59V//79deDAAXXr1k39+vVT27ZtJUlRUVE6deqUXF1dbbZ35coVxcTE5Lu+Zs2aWd9bLBZ5eXlZD7MWxTaaN29u8/SHoKAgpaam6syZM0pNTVVaWpo1eGVLT09XixYtbKZlh1RJio6O1tWrV9W5c+dct5nfuhs3bmxz539vb28dOVJyt78hoAEAUMKuXLmi4OBgBQcHa9myZfL09NTp06cVHBxsPQzXo0cPxcfHa+3atdq4caM6d+6ssWPHav78+UpNTdW9996rZcuW5Vi3p6dnvuu48apOi8ViDYpFtY28pKamSpK+++473XXXXTbzHB0dbT47Oztb32c/Xulm681P3Tfre0kgoAEAUEz27Nlj83n37t2qV6+efvnlF124cEGhoaHy9fWVJO3bty/H8p6enho6dKiGDh2q9u3ba/LkyZo/f75atmypFStWqEaNGnJzc7sjtRfFNqKiovT3339bQ9Xu3bvl4uIiX19fVa1aVY6Ojjp9+rTN4cxbqVevnpycnLR582aNGDHijtQtXT88m/2YseLARQIAABST06dP68UXX9Tx48f12WefaeHChRo/frxq164tBwcHLVy4UL/++qvWrFmjOXPm2Cz7yiuv6JtvvtGpU6d09OhRffvtt2rUqJEkafDgwapevbr69u2rH3/8UbGxsYqMjNS//vUvnT17tkhqL4ptpKen65lnntGxY8e0du1azZgxQ+PGjVOFChXk6uqqSZMm6YUXXlBERIRiYmJ04MABLVy4UBEREXmus1KlSpo6daqmTJmiTz75RDExMdq9e7c++uijIv1u/P39tW3bNv3222/6888/871cYTGCBgAoE0rDjWOHDBmiv//+W23atJGdnZ3Gjx+vUaNGyWKxKDw8XC+99JIWLFigli1bav78+Xr44Yetyzo4OGj69OmKi4uTk5OT2rdvr88//1zS9Qd0b9u2TVOnTtWjjz6qS5cu6a677lLnzp2LbEStKLbRuXNn1atXTx06dNDVq1c1aNAgzZw50zp/zpw58vT01Ny5c/Xrr7/Kw8NDLVu21EsvvXTT9b788suyt7fXK6+8ot9//13e3t4aM2ZMkdUtXb8wYfTo0apbt66uXr1qvT3KnWIx7vQWUORSUlLk7u6uRosb8SxOoIzgWZz5d+XKFcXGxiogIECVKlUq6XKQTyEhIUpKStLq1atLupQ76mb/PrP/ficnJ98yHHKIEwAAwGQ4xAkAAG6bi4tLnvPWrVtXjJWUDQS0Umx3/Fm5Od75x00ApjQzuaQrAPAPhw4dynPeXXfdpfbt2xdfMWUAAQ0AANy2wMDAki6hTOEcNAAAAJMhoAEAAJgMAa2InDt3Ts8//7zq1KkjR0dH+fr6qk+fPtq8eXOOtitXrrQ+P23nzp2qU6dOcZcLAABMjHPQikBcXJzatWsnDw8PvfHGG2ratKkyMjK0YcMGjR07Vr/88otN+127dqldu3aSpB9//NH6HgAAQCKgFYnnnntOFotFe/futXmAa+PGjTV8+PAc7Xfu3Klp06ZJkrZv365evcx/92sAAFB8OMR5m/766y+tX79eY8eOtQln2Tw8PCRJy5cvl4eHhzw8PLR37149/fTT8vDw0Nq1azVp0iR5eHho+fLluW7j6tWrSklJsXkBAEqXTp06acKECSVdBkoJRtBu06lTp2QYhho2bHjTdg8//LDatm2rTZs26Z133tG3336rw4cPa8yYMdq5c6ckqXr16rkuO3fuXM2aNavIaweAMmWmezFvr+TvxRcZGam3335be/fuVUpKiurVq6fJkydr8ODB1jbh4eEaNmyYzXKOjo66cuVKcZdb7OLi4hQQEKCDBw/qnnvuKelyCoQRtNuU30eZuri4yN/fXwcOHFDfvn3l7++vI0eOqGfPnvL395e/v3+ed2GePn26kpOTra8zZ84UZRcAAKXUzp071axZM3311Vc6fPiwhg0bpiFDhujbb7+1aefm5qaEhATrKz4+voQqvi49Pb1Et18aENBuU7169WSxWHJcCPBPp0+flouLi1xcXPTBBx/ozTfflIuLi2bOnKmlS5fKxcVFY8aMyXN5R0dHubm52bwAAKXPtWvXNG7cOLm7u6t69ep6+eWXrf/R9/f316uvvqohQ4bIxcVFfn5+WrNmjc6fP6++ffvKxcVFzZo10759+6zre+mllzRnzhy1bdtWdevW1fjx49W9e3etWrXKZrsWi0VeXl7WV82aNfNds7+/v+bMmaNBgwbJ2dlZd911l9577z2bNklJSRoxYoQ8PT3l5uamhx56SFFRUdb5M2fO1D333KMPP/zQ5iHiSUlJGj16tGrWrKlKlSqpSZMmNuFy+/btat++vZycnOTr66t//etfunz5sk1tr7/+uoYPHy5XV1fVrl1bH3zwgXV+QECAJKlFixayWCzq1KlTvvtd0ghot6lq1aoKDg7We++9Z/OPJltSUpJ8fHx06NAhrV+/Xvb29jp06JD27Nkj6fpVnIcOHdLs2bOLu3QAQDGLiIiQvb299u7dq3fffVdvvfWWPvzwQ+v8t99+W+3atdPBgwfVq1cvPf300xoyZIieeuopHThwQHXr1tWQIUNuevQmOTlZVatWtZmWmpoqPz8/+fr6qm/fvjp69GiB6n7jjTfUvHlzHTx4UNOmTdP48eO1ceNG6/zHHntMiYmJWrdunfbv36+WLVuqc+fO+uuvv6xtTp06pa+++kqrVq3SoUOHlJWVpR49emjHjh369NNPdezYMYWGhsrOzk6SFBMTo+7du6t///46fPiwVqxYoe3bt2vcuHE2tb355ptq1aqVDh48qOeee07PPvusjh8/Lknau3evJGnTpk1KSEjIEVzNzGLk9xgd8vTrr7+qXbt2qlq1qmbPnq1mzZrp2rVr2rhxoxYvXqzo6GhJ0ueff67Fixdr69at2rZtm0aOHGn9R1QQKSkpcnd3V/I0V57FifLLBOf/oGRcuXJFsbGxNiMxkkx/DlqnTp2UmJioo0ePymK5/rt72rRpWrNmjY4dOyZ/f3+1b99eS5culXT9/pre3t56+eWXrf+J3717t4KCgpSQkCAvL68c2/jiiy/09NNP68CBA2rcuLGk67d2OnnypJo1a6bk5GTNnz9f27Zt09GjR1WrVq1b1u3v769GjRrZPPB84MCBSklJ0dq1a613I0hMTJSjo6O1TWBgoKZMmaJRo0Zp5syZev311/Xbb7/J09NTkvT999+rR48eio6OVv369XNsd8SIEbKzs9OSJUus07Zv366OHTvq8uXLqlSpUo7vzDAMeXl5adasWRozZkyJnIOW579P/ePvd3LyLY+GMYJWBOrUqaMDBw7owQcf1MSJE9WkSRN17dpVmzdv1uLFi63tIiMj1aFDB0nS1q1bre8BAOXD/fffbw1nkhQUFKSTJ08qMzNTktSsWTPrvOzDkE2bNs0xLTExMce6t2zZomHDhum///2vNZxlb2PIkCG655571LFjR61atUqenp42wedWgoKCcnzOHnyIiopSamqqqlWrZj2dx8XFRbGxsYqJibEu4+fnZw1n0vWHq9eqVSvXcJa93vDwcJt1BgcHKysrS7GxsdZ2//zOsg/l5vb9lDZcxVlEvL29tWjRIi1atCjPNu+//771/csvv1wcZQEASpGKFSta32cHudymZWVl2Sy3detW9enTR2+//baGDBlyy220aNFCp06dKpKaU1NT5e3trcjIyBzzsm81JSnHraicnJxuud7Ro0frX//6V455tWvXtr7/5/cjXf+Obvx+SiMCGgAAxST7/ONsu3fvVr169aznXRVGZGSkevfurf/85z8aNWrULdtnZmZa7yKQX7t3787xuVGjRpKkli1b6ty5c7K3t5e/v3++19msWTOdPXtWJ06cyHUUrWXLljp27JgCAwPzvc4bOTg4SJJ1hLI0IaCVYk2ufKQKRuWSLqNciAvlaQ8Abt/p06f14osvavTo0Tpw4IAWLlyoN998s9Dr27Jli3r37q3x48erf//+OnfunKTrwST7QoHZs2fr/vvvV2BgoJKSkvTGG28oPj5eI0aMyPd2duzYoXnz5qlfv37auHGjVq5cqe+++06S1KVLFwUFBalfv36aN2+e6tevr99//13fffedHnnkEbVq1SrXdXbs2FEdOnRQ//799dZbbykwMFC//PKLLBaLunfvrqlTp+r+++/XuHHjNGLECDk7O+vYsWPauHHjTY9W/VONGjXk5OSk9evXq1atWqpUqZLc3Yv5XMVC4hw0AACKyZAhQ/T333+rTZs2Gjt2rMaPH5+vUa+8REREKC0tTXPnzpW3t7f19eijj1rbXLx4USNHjlSjRo3Us2dPpaSkaOfOnbr77rvzvZ2JEydq3759atGihV599VW99dZbCg4OlnT9kOLatWvVoUMHDRs2TPXr19fAgQMVHx9/y9t5fPXVV2rdurUGDRqku+++W1OmTLE5H2/r1q06ceKE2rdvrxYtWuiVV16Rj49Pvuu2t7fXggULtGTJEvn4+Khv3775XrakcRVnKZR9FYjvhC9UwZERtOLACBpgHje7Sg5Fz9/fXxMmTOAxVfnEVZwAAABlFAENAIBy6scff7S5jcWNL5QcLhIAAKCcatWqlQ4dOnTTNnFxccVSC2wR0AAAKKecnJxu6zYWuHM4xAkAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwCgDIuMjJTFYlFSUlJJl4IC4DYbAIAyoWlE02Ld3pGhR4p1e7h9cXFxCggI0MGDB3XPPfeUdDk3xQgaAAAmZBiGrl27VtJlFIv09PSSLsF0GEErxX6eFXzLh60CAMzj6tWrmjx5sj7//HOlpKSoVatWevvtt9W6dWtFRkbqwQcf1Nq1a/Xvf/9bR44c0ffffy9fX1+9+OKL2r17ty5fvqxGjRpp7ty56tKli816X3nlFS1fvlyJiYny9fXV9OnT9cwzz+Rax/bt2zV9+nTt27dP1atX1yOPPKK5c+fK2dn5ln3w9/fXM888o2PHjmnNmjXy8PDQSy+9pLFjx1rbJCUladKkSfrmm2909epVaz+bN28uSZo5c6ZWr16tcePG6bXXXlN8fLyysrKUlJSkqVOnavXq1UpOTlZgYKBCQ0PVu3fvfNXt7++vUaNG6dSpU1q5cqWqVKmif//73xo1apQkKSAgQJLUokULSVLHjh0VGRlZwL1YPBhBAwCgmEyZMkVfffWVIiIidODAAQUGBio4OFh//fWXtc20adMUGhqq6OhoNWvWTKmpqerZs6c2b96sgwcPqnv37urTp49Onz5tXWbIkCH67LPPtGDBAkVHR2vJkiV5PkszJiZG3bt3V//+/XX48GGtWLFC27dv17hx4/LdjzfeeEPNmzfXwYMHNW3aNI0fP14bN260zn/ssceUmJiodevWaf/+/WrZsqU6d+5s089Tp07pq6++0qpVq3To0CFlZWWpR48e2rFjhz799FMdO3ZMoaGhsrOzK1Ddb775plq1aqWDBw/queee07PPPqvjx49Lkvbu3StJ2rRpkxISErRq1ap897m4WQzDMEq6CBRMSkqK3N3dlZyczAgagHLnypUrio2NVUBAgCpVqmSdbvZz0C5fvqwqVaooPDxcTz75pCQpIyND/v7+mjBhglq3bq0HH3xQq1evVt++fW+6riZNmmjMmDEaN26cTpw4oQYNGmjjxo02o2rZskfmLl68KA8PD40YMUJ2dnZasmSJtc327dvVsWNHXb582eY7zY2/v78aNWqkdevWWacNHDhQKSkpWrt2rbZv365evXopMTFRjo6O1jaBgYGaMmWKRo0apZkzZ+r111/Xb7/9Jk9PT0nS999/rx49eig6Olr169fPsd381O3v76/27dtr6dKlkq4fJvby8tKsWbM0ZsyYYjkHLa9/n1LB/n4zggYAQDGIiYlRRkaG2rVrZ51WsWJFtWnTRtHR0dZprVq1slkuNTVVkyZNUqNGjeTh4SEXFxdFR0dbR9AOHTokOzs7dezYMV91REVFKTw8XC4uLtZXcHCwsrKyFBsbm691BAUF5fic3YeoqCilpqaqWrVqNtuIjY1VTEyMdRk/Pz9rOMvuR61atXINZwWpu1mzZtb3FotFXl5eSkxMzFe/zIRz0AAAMJEbzwObNGmSNm7cqPnz5yswMFBOTk4aMGCA9cR6JyenAq0/NTVVo0eP1r/+9a8c82rXrl34wv+xfm9v71zP7fLw8LC+v7Gft+pHfuuuWLGizTyLxaKsrKx8VG4uBDQAAIpB3bp15eDgoB07dsjPz0/S9UOcP/30kyZMmJDncjt27FBISIgeeeQRSdeDSlxcnHV+06ZNlZWVpa1bt+Z6iPNGLVu21LFjxxQYGFjovuzevTvH50aNGlnXf+7cOdnb28vf3z/f62zWrJnOnj2rEydO5DqKVhR1Ozg4SJIyMzMLvY7iwiFOAACKgbOzs5599llNnjxZ69ev17FjxzRy5EilpaXlebWlJNWrV896In1UVJSefPJJmxEhf39/DR06VMOHD9fq1asVGxuryMhIffHFF7mub+rUqdq5c6fGjRunQ4cO6eTJk/rmm28KdJHAjh07NG/ePJ04cULvvfeeVq5cqfHjx0uSunTpoqCgIPXr10/ff/+94uLitHPnTv2///f/tG/fvjzX2bFjR3Xo0EH9+/fXxo0bFRsbq3Xr1mn9+vVFVneNGjXk5OSk9evX648//lBycnK+ly1uBDQAAIpJaGio+vfvr6efflotW7bUqVOntGHDBlWpUiXPZd566y1VqVJFbdu2VZ8+fRQcHKyWLVvatFm8eLEGDBig5557Tg0bNtTIkSN1+fLlXNfXrFkzbd26VSdOnFD79u3VokULvfLKK/Lx8cl3PyZOnKh9+/apRYsWevXVV/XWW28pODhY0vVDimvXrlWHDh00bNgw1a9fXwMHDlR8fLxq1qx50/V+9dVXat26tQYNGqS7775bU6ZMsY52FUXd9vb2WrBggZYsWSIfH59bXoxRkriKsxTiKk4A5dnNrpLDnZd91enNDsuWZ1zFCQAAUEYR0AAAgCTpxx9/tLmNxY0vFB+u4gQAAJKu34Pt0KFDN23zzytIcecQ0AAAgKTr9yK7ndtYoOhwiBMAAMBkCGgAgFKJmxDAjIrqqQUc4gQAlCoVK1aUxWLR+fPn5enpKYvFUtIlATIMQ+np6Tp//rwqVKhgfWpBYRHQAAClip2dnWrVqqWzZ89ywjpMp3Llyqpdu7YqVLi9g5QENABAqePi4qJ69eopIyOjpEsBrOzs7GRvb18ko7oENABAqWRnZyc7O7uSLgO4I7hIAAAAwGQIaAAAACZDQAMAADAZzkErhbLv/ZOSklLClQAAgPzK/rudn3v4EdBKoQsXLkiSfH19S7gSAABQUJcuXZK7u/tN2xDQSqGqVatKkk6fPn3LHVwWpaSkyNfXV2fOnJGbm1tJl1OsynPfJfpP/8tv/8tz36Wy03/DMHTp0iX5+Pjcsi0BrRTKvvmdu7t7qf6Hervc3NzKbf/Lc98l+k//y2//y3PfpbLR//wOrHCRAAAAgMkQ0AAAAEyGgFYKOTo6asaMGXJ0dCzpUkpEee5/ee67RP/pf/ntf3nuu1Q++28x8nOtJwAAAIoNI2gAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENJN677335O/vr0qVKum+++7T3r17b9p+5cqVatiwoSpVqqSmTZtq7dq1xVRp0Zo7d65at24tV1dX1ahRQ/369dPx48dvukx4eLgsFovNq1KlSsVUcdGaOXNmjr40bNjwpsuUlX3v7++fo+8Wi0Vjx47NtX1p3+/btm1Tnz595OPjI4vFotWrV9vMNwxDr7zyiry9veXk5KQuXbro5MmTt1xvQX93lJSb9T8jI0NTp05V06ZN5ezsLB8fHw0ZMkS///77TddZmJ+fknCrfR8SEpKjH927d7/lesvCvpeU6+8Bi8WiN954I891lpZ9XxAENBNasWKFXnzxRc2YMUMHDhxQ8+bNFRwcrMTExFzb79y5U4MGDdIzzzyjgwcPql+/furXr59+/vnnYq789m3dulVjx47V7t27tXHjRmVkZKhbt266fPnyTZdzc3NTQkKC9RUfH19MFRe9xo0b2/Rl+/btebYtS/v+p59+sun3xo0bJUmPPfZYnsuU5v1++fJlNW/eXO+9916u8+fNm6cFCxbo/fff1549e+Ts7Kzg4GBduXIlz3UW9HdHSbpZ/9PS0nTgwAG9/PLLOnDggFatWqXjx4/r4YcfvuV6C/LzU1Jute8lqXv37jb9+Oyzz266zrKy7yXZ9DshIUEff/yxLBaL+vfvf9P1loZ9XyAGTKdNmzbG2LFjrZ8zMzMNHx8fY+7cubm2f/zxx41evXrZTLvvvvuM0aNH39E6i0NiYqIhydi6dWuebcLCwgx3d/fiK+oOmjFjhtG8efN8ty/L+378+PFG3bp1jaysrFznl6X9Lsn4+uuvrZ+zsrIMLy8v44033rBOS0pKMhwdHY3PPvssz/UU9HeHWdzY/9zs3bvXkGTEx8fn2aagPz9mkFvfhw4davTt27dA6ynL+75v377GQw89dNM2pXHf3wojaCaTnp6u/fv3q0uXLtZpFSpUUJcuXbRr165cl9m1a5dNe0kKDg7Os31pkpycLEmqWrXqTdulpqbKz89Pvr6+6tu3r44ePVoc5d0RJ0+elI+Pj+rUqaPBgwfr9OnTebYtq/s+PT1dn376qYYPHy6LxZJnu7K03/8pNjZW586ds9m37u7uuu+++/Lct4X53VGaJCcny2KxyMPD46btCvLzY2aRkZGqUaOGGjRooGeffVYXLlzIs21Z3vd//PGHvvvuOz3zzDO3bFtW9n02AprJ/Pnnn8rMzFTNmjVtptesWVPnzp3LdZlz584VqH1pkZWVpQkTJqhdu3Zq0qRJnu0aNGigjz/+WN98840+/fRTZWVlqW3btjp79mwxVls07rvvPoWHh2v9+vVavHixYmNj1b59e126dCnX9mV1369evVpJSUkKCQnJs01Z2u83yt5/Bdm3hfndUVpcuXJFU6dO1aBBg+Tm5pZnu4L+/JhV9+7d9cknn2jz5s36z3/+o61bt6pHjx7KzMzMtX1Z3vcRERFydXXVo48+etN2ZWXf/5N9SRcA5GXs2LH6+eefb3keQVBQkIKCgqyf27Ztq0aNGmnJkiWaM2fOnS6zSPXo0cP6vlmzZrrvvvvk5+enL774Il//gywrPvroI/Xo0UM+Pj55tilL+x15y8jI0OOPPy7DMLR48eKbti0rPz8DBw60vm/atKmaNWumunXrKjIyUp07dy7Byorfxx9/rMGDB9/yAqCysu//iRE0k6levbrs7Oz0xx9/2Ez/448/5OXllesyXl5eBWpfGowbN07ffvuttmzZolq1ahVo2YoVK6pFixY6derUHaqu+Hh4eKh+/fp59qUs7vv4+Hht2rRJI0aMKNByZWm/Z++/guzbwvzuMLvscBYfH6+NGzfedPQsN7f6+Skt6tSpo+rVq+fZj7K47yXpxx9/1PHjxwv8u0AqG/uegGYyDg4Ouvfee7V582brtKysLG3evNlmtOCfgoKCbNpL0saNG/Nsb2aGYWjcuHH6+uuv9cMPPyggIKDA68jMzNSRI0fk7e19ByosXqmpqYqJicmzL2Vp32cLCwtTjRo11KtXrwItV5b2e0BAgLy8vGz2bUpKivbs2ZPnvi3M7w4zyw5nJ0+e1KZNm1StWrUCr+NWPz+lxdmzZ3XhwoU8+1HW9n22jz76SPfee6+aN29e4GXLxL4v6asUkNPnn39uODo6GuHh4caxY8eMUaNGGR4eHsa5c+cMwzCMp59+2pg2bZq1/Y4dOwx7e3tj/vz5RnR0tDFjxgyjYsWKxpEjR0qqC4X27LPPGu7u7kZkZKSRkJBgfaWlpVnb3Nj/WbNmGRs2bDBiYmKM/fv3GwMHDjQqVapkHD16tCS6cFsmTpxoREZGGrGxscaOHTuMLl26GNWrVzcSExMNwyjb+94wrl95Vrt2bWPq1Kk55pW1/X7p0iXj4MGDxsGDBw1JxltvvWUcPHjQepViaGio4eHhYXzzzTfG4cOHjb59+xoBAQHG33//bV3HQw89ZCxcuND6+Va/O8zkZv1PT083Hn74YaNWrVrGoUOHbH4XXL161bqOG/t/q58fs7hZ3y9dumRMmjTJ2LVrlxEbG2ts2rTJaNmypVGvXj3jypUr1nWU1X2fLTk52ahcubKxePHiXNdRWvd9QRDQTGrhwoVG7dq1DQcHB6NNmzbG7t27rfM6duxoDB061Kb9F198YdSvX99wcHAwGjdubHz33XfFXHHRkJTrKywszNrmxv5PmDDB+l3VrFnT6Nmzp3HgwIHiL74IPPHEE4a3t7fh4OBg3HXXXcYTTzxhnDp1yjq/LO97wzCMDRs2GJKM48eP55hX1vb7li1bcv23nt3HrKws4+WXXzZq1qxpODo6Gp07d87xvfj5+RkzZsywmXaz3x1mcrP+x8bG5vm7YMuWLdZ13Nj/W/38mMXN+p6WlmZ069bN8PT0NCpWrGj4+fkZI0eOzBG0yuq+z7ZkyRLDycnJSEpKynUdpXXfF4TFMAzjjg7RAQAAoEA4Bw0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwmf8P8I4oqE4ogMUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAGzCAYAAACb/us4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIrUlEQVR4nO3deVwVZf//8fcRZJHVBQRyAQN3NA1NcU8T1zS1bs1yyy31Tq1M7Zu55ZK5dLt81epOzLQsNbNSS00091wg9y3EjcIVxBVhfn/45fw64QJInEFez8fjPG7OXHOu+czEzXl7zcw1FsMwDAEAAMA0Cti7AAAAANgioAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAF4ZERFRclisSgqKsrepUiyfz0nTpyQxWJRZGSkXbYPIPsIaABM46uvvpLFYtE333yToa1q1aqyWCxav359hrZSpUopPDw8N0rMMVFRUWrXrp38/Pzk5OQkX19ftW7dWsuWLbN3adkSHx+vYcOGqVGjRvLw8LhvMA0MDJTFYrG+XFxcFBISoiFDhujixYu5WzhgUgQ0AKZRt25dSdKmTZtsliclJWnfvn1ydHTU5s2bbdpOnTqlU6dOqW7duqpfv76uX7+u+vXr51rN2TFy5Eg1atRI+/btU58+fTRnzhwNGTJEycnJat++vRYtWmTvErPs8OHDev/993XmzBmFhoY+cP0nnnhCCxYs0IIFCzRz5kw1adJEH374oZo1a5YL1QLm52jvAgAgXUBAgIKCgjIEtK1bt8owDD3//PMZ2tLf161bVwUKFJCLi0uu1WsYhm7cuCFXV9dMf2bJkiUaM2aMOnTooEWLFqlgwYLWtiFDhujHH39USkrKP1HuQ7t69arc3Nzu2vbkk0/qwoULKlKkiJYsWaLnn3/+vn099thjeumll6zve/bsKXd3d02ePFlHjx5VSEhIjtYO5DWMoAEwlbp162rPnj26fv26ddnmzZtVqVIlNW/eXNu2bVNaWppNm8ViUZ06dTJc8xUZGWlzKu2vr4YNG1r7mDdvnp5++mn5+vrK2dlZFStW1OzZszPUFhgYqFatWunHH39UWFiYXF1dNXfuXEnS6dOn1bZtW7m5ucnX11eDBw/WzZs3M/QxYsQIFSlSRJ9++qlNOEsXERGhVq1aWd8nJCTolVdeUfHixeXi4qKqVatq/vz5GT53+fJldevWTV5eXvL29lbXrl11+fLlux7jQ4cOqUOHDipSpIhcXFwUFhamFStW2KyTfuw2bNigfv36ydfXVyVKlLhrf5Lk4eGhIkWK3LM9M/z8/CRJjo6MHQD8vwCAqdStW1cLFizQ9u3brSFq8+bNCg8PV3h4uBITE7Vv3z5VqVLF2la+fHkVLVo0Q1/169fXggULbJbFxcXpnXfeka+vr3XZ7NmzValSJT377LNydHTUd999p379+iktLU39+/e3+fzhw4fVqVMn9enTR7169VK5cuV0/fp1NW7cWCdPntRrr72mgIAALViwQD///LPNZ48ePapDhw6pR48e8vDweOCxuH79uho2bKhjx45pwIABCgoK0tdff61u3brp8uXLGjhwoKQ7I3lt2rTRpk2b1LdvX1WoUEHffPONunbtmqHP/fv3q06dOnrsscc0bNgwubm56auvvlLbtm21dOlSPffcczbr9+vXTz4+Pnr33Xd19erVB9acWSkpKTp//rwk6caNG9qzZ4+mTp2q+vXrKygoKMe2A+RZBgCYyP79+w1JxtixYw3DMIyUlBTDzc3NmD9/vmEYhlG8eHFj1qxZhmEYRlJSkuHg4GD06tXLMAzDWL9+vSHJWL9+/V37vn79uvHkk08aAQEBRnx8vHX5tWvXMqwbERFhlClTxmZZ6dKlDUnG6tWrbZZ/+OGHhiTjq6++si67evWqERwcbFPPt99+a0gypk2blqljkd7v559/bl1269Yto3bt2oa7u7uRlJRkGIZhLF++3JBkTJo0ybre7du3jXr16hmSjHnz5lmXN27c2AgNDTVu3LhhXZaWlmaEh4cbISEh1mXz5s0zJBl169Y1bt++nal603399df3/e+Qfhz//qpTp45x/vz5LG0LeFRxihOAqVSoUEFFixa1XlsWExOjq1evWu/SDA8Pt94osHXrVqWmplpvLniQfv36ae/evVq6dKn1dJokm2vIEhMTdf78eTVo0EC///67EhMTbfoICgpSRESEzbKVK1fK399fHTp0sC4rVKiQevfubbNeUlKSJGVq9Cy9Xz8/P3Xq1Mm6rGDBgnrttdeUnJysDRs2WNdzdHTUq6++al3PwcFB//73v236u3jxon7++We98MILunLlis6fP6/z58/rwoULioiI0NGjR3XmzBmbz/Tq1UsODg6ZqjcrnnrqKa1Zs0Zr1qzR999/r3Hjxmn//v169tlnbU5vA/kVpzgBmIrFYlF4eLg2btyotLQ0bd68Wb6+vgoODpZ0J6DNnDlTkqxBLTMBbe7cuZo3b57mzp2rWrVq2bRt3rxZI0eO1NatW3Xt2jWbtsTERHl5eVnf3+30W1xcnIKDg2WxWGyWlytXzua9p6enJOnKlSsPrDe935CQEBUoYPtv6QoVKljb0//X399f7u7u993+sWPHZBiGRowYoREjRtx1mwkJCXrssces7/+6v7du3cowDYaPj0+2AlyxYsXUpEkT6/uWLVuqXLly6tChgz755JMM4RLIbwhoAEynbt26+u6777R3717r9WfpwsPDNWTIEJ05c0abNm1SQECAypQpc9/+duzYoYEDB6pnz54ZRrWOHz+uxo0bq3z58po6dapKliwpJycnrVy5UtOmTbO5IUFSlu7Y/Lvy5ctLkvbu3ZvtPh5G+r68+eabGUYB06UH4XR/3d8tW7aoUaNGNu2xsbEKDAzMkfoaN24sSdq4cSMBDfkeAQ2A6fx1PrTNmzdr0KBB1rYnn3xSzs7OioqK0vbt29WiRYv79nXu3Dl16NBBTzzxhGbNmpWh/bvvvtPNmze1YsUKlSpVyrr8bhPi3kvp0qW1b98+GYZhM4p2+PBhm/XKli2rcuXK6dtvv9V//vOfDCNed+v3t99+U1pams0o2qFDh6zt6f+7bt06JScn2/T59+2nB9mCBQvajF5lVtWqVbVmzRqbZX89Vfywbt++LUlKTk7OsT6BvIpr0ACYTlhYmFxcXLRw4UKdOXPGZgTN2dlZ1atX16xZs3T16tX7nt5MTU1Vx44ddevWLS1dulROTk4Z1kk/PWcYhnVZYmKi5s2bl+l6W7RoobNnz2rJkiXWZdeuXdNHH32UYd3Ro0frwoUL6tmzpzWQ/NVPP/2k77//3trvH3/8ocWLF1vbb9++rRkzZsjd3V0NGjSwrnf79m2bqUFSU1M1Y8YMm759fX3VsGFDzZ07V/Hx8Rm2fe7cufvuZ+HChdWkSRObV07OO/fdd99JuhMEgfyOETQApuPk5KQaNWrol19+kbOzs5588kmb9vDwcE2ZMkXS/a8/mzNnjn7++Wf17ds3w4hY8eLF9cwzz6hp06ZycnJS69at1adPHyUnJ+vjjz+Wr6/vXUPM3fTq1UszZ85Uly5dtGvXLvn7+2vBggUqVKhQhnX/9a9/ae/evRo3bpz27NmjTp06qXTp0rpw4YJWr16tdevWWZ8k0Lt3b82dO1fdunXTrl27FBgYqCVLlmjz5s368MMPrTcbtG7dWnXq1NGwYcN04sQJVaxYUcuWLctwg4MkzZo1S3Xr1lVoaKh69eqlMmXK6M8//9TWrVt1+vRpxcTEZGqf7+a9996TdGcqD0lasGCB9WaPd955x2bdM2fO6PPPP5d059q2mJgYzZ07V8WKFeP0JiAxzQYAcxo+fLghyQgPD8/QtmzZMkOS4eHhYTMFxN+n2Rg5cuRdp3OQZDRo0MD6uRUrVhhVqlQxXFxcjMDAQOP99983Pv30U0OSERsba12vdOnSRsuWLe9ab1xcnPHss88ahQoVMooVK2YMHDjQWL169T2nm1i3bp3Rpk0bw9fX13B0dDR8fHyM1q1bG99++63Nen/++afRvXt3o1ixYoaTk5MRGhpqM21GugsXLhgvv/yy4enpaXh5eRkvv/yysWfPngzTbBiGYRw/ftzo0qWL4efnZxQsWNB47LHHjFatWhlLliyxrpM+zcavv/561/29m3sd679/1fx9mo0CBQoYvr6+RqdOnYxjx45lenvAo8xiGH8Z1wcAAIDdcQ0aAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkmKg2D0pLS9PZs2fl4eGR4eHMAADAnAzD0JUrVxQQEGDz+La7IaDlQWfPnlXJkiXtXQYAAMiGU6dOqUSJEvddh4CWB6U/3uXUqVPy9PS0czUAACAzkpKSVLJkSev3+P0Q0PKg9NOanp6eBDQAAPKYzFyexE0CAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEzG0d4FIPtqLaolB1cHe5cBAMiGvV332rsEmBgjaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAk3G0dwHIvm1xp+XpbLF3GQDyo1GJ9q4AeKQxggYAAGAyBDQAAACTIaDloKioKFksFl2+fNnepQAAgDzMbgHNYrHc9zVq1Ch7lZZt4eHhio+Pl5eXV6Y/M2rUKD3xxBP/XFEAACDPsdtNAvHx8dafFy9erHfffVeHDx+2LnN3d7dHWdmWkpIiJycn+fn52bsUAACQx9ltBM3Pz8/68vLyksVikZ+fnzw8PFS2bFmtXr3aZv3ly5fLzc1NV65c0YkTJ2SxWPTll18qPDxcLi4uqly5sjZs2GDzmX379ql58+Zyd3dX8eLF9fLLL+v8+fPW9iVLlig0NFSurq4qWrSomjRpoqtXr1rbP/30U1WqVEnOzs7y9/fXgAEDrG0Wi0WzZ8/Ws88+Kzc3N40bNy7DKc7IyEh5e3tr+fLlCgkJkYuLiyIiInTq1Clr++jRoxUTE2MdOYyMjMzhIw0AAPIa012D5ubmpo4dO2revHk2y+fNm6cOHTrIw8PDumzIkCF64403tGfPHtWuXVutW7fWhQsXJEmXL1/W008/rWrVqmnnzp1avXq1/vzzT73wwguS7ozgderUST169NDBgwcVFRWldu3ayTAMSdLs2bPVv39/9e7dW3v37tWKFSsUHBxsU9OoUaP03HPPae/everRo8dd9+fatWsaN26cPvvsM23evFmXL19Wx44dJUn/+te/9MYbb6hSpUqKj49XfHy8/vWvf2Xo4+bNm0pKSrJ5AQCAR5cp50Hr2bOn9Xouf39/JSQkaOXKlVq7dq3NegMGDFD79u0l3QlUq1ev1n//+1+99dZbmjlzpqpVq6bx48db1//0009VsmRJHTlyRMnJybp9+7batWun0qVLS5JCQ0Ot67733nt64403NHDgQOuyGjVq2Gz/xRdfVPfu3a3vf//99wz7kpKSopkzZ+qpp56SJM2fP18VKlTQjh07VLNmTbm7u8vR0fG+p0YnTJig0aNHP/C4AQCAR4PpRtAkqWbNmqpUqZLmz58vSfr8889VunRp1a9f32a92rVrW392dHRUWFiYDh48KEmKiYnR+vXr5e7ubn2VL19eknT8+HFVrVpVjRs3VmhoqJ5//nl9/PHHunTpkiQpISFBZ8+eVePGje9bZ1hY2AP3xdHR0SbYlS9fXt7e3tY6M2P48OFKTEy0vtJPkQIAgEeTKQOadGcULf16rHnz5ql79+6yWDI/a35ycrJat26t6Ohom9fRo0dVv359OTg4aM2aNVq1apUqVqyoGTNmqFy5coqNjZWrq2umtuHm5padXcsyZ2dneXp62rwAAMCjy7QB7aWXXlJcXJymT5+uAwcOqGvXrhnW2bZtm/Xn27dva9euXapQoYIkqXr16tq/f78CAwMVHBxs80oPVhaLRXXq1NHo0aO1Z88eOTk56ZtvvpGHh4cCAwO1bt26h96P27dva+fOndb3hw8f1uXLl611Ojk5KTU19aG3AwAAHh2mDWiFCxdWu3btNGTIEDVt2lQlSpTIsM6sWbP0zTff6NChQ+rfv78uXbpkvVi/f//+unjxojp16qRff/1Vx48f148//qju3bsrNTVV27dv1/jx47Vz506dPHlSy5Yt07lz56zBadSoUZoyZYqmT5+uo0ePavfu3ZoxY0aW96NgwYL697//re3bt2vXrl3q1q2batWqpZo1a0qSAgMDFRsbq+joaJ0/f143b958iKMGAAAeBaYNaJL0yiuv6NatW/e8Q3LixImaOHGiqlatqk2bNmnFihUqVqyYJCkgIECbN29WamqqmjZtqtDQUA0aNEje3t4qUKCAPD09tXHjRrVo0UJly5bVO++8oylTpqh58+aSpK5du+rDDz/U//7v/6pSpUpq1aqVjh49muV9KFSokIYOHaoXX3xRderUkbu7uxYvXmxtb9++vZo1a6ZGjRrJx8dHX3zxRTaOFAAAeJRYjPR5JUxowYIFGjx4sM6ePSsnJyfr8hMnTigoKEh79uwx9Sz8kZGRGjRoUI4/+ikpKUleXl5KHOYhT+fMX5cHADlmVKK9KwDyHOv3d2LiA68nN+U0G9euXVN8fLwmTpyoPn362IQzAACAR50pA9qkSZM0btw41a9fX8OHD7d3OaZV+cZ/VcAoZO8ygEw7MbGlvUsAgDzB1Kc4cXfpQ6QlB32lAs4ENOQdBDQA+VlWTnGa+iYBAACA/IiABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkHO1dALJv3+gIeXp62rsMAACQwxhBAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTcbR3Aci+WotqycHVwd5lAADwyNjbda+9S5DECBoAAIDpENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACbjaO8CkH3b4k7L09li7zIA4P5GJdq7AiDPYQQNAADAZAhoWdCtWze1bdvW3mUAAIBH3CMb0Lp16yaLxSKLxSInJycFBwdrzJgxun379gM/e+LECVksFkVHR//zhQIAAPzNI30NWrNmzTRv3jzdvHlTK1euVP/+/VWwYEENHz7c3qUBAADc0yM7giZJzs7O8vPzU+nSpfXqq6+qSZMm+uqrr+Tp6aklS5bYrLt8+XK5ubnpypUrCgoKkiRVq1ZNFotFDRs2tFl38uTJ8vf3V9GiRdW/f3+lpKRY2y5duqQuXbqocOHCKlSokJo3b66jR49a2yMjI+Xt7a0ff/xRFSpUkLu7u5o1a6b4+Ph/7kAAAIA85ZEOaH/n6uqqAgUKqGPHjpo3b55N27x589ShQwd5eHhox44dkqS1a9cqPj5ey5Yts663fv16HT9+XOvXr9f8+fMVGRmpyMhIa3u3bt20c+dOrVixQlu3bpVhGGrRooVNiLt27ZomT56sBQsWaOPGjTp58qTefPPNe9Z98+ZNJSUl2bwAAMCjK18ENMMwtHbtWv344496+umn1bNnT/3444/WUauEhAStXLlSPXr0kCT5+PhIkooWLSo/Pz8VKVLE2lfhwoU1c+ZMlS9fXq1atVLLli21bt06SdLRo0e1YsUKffLJJ6pXr56qVq2qhQsX6syZM1q+fLm1j5SUFM2ZM0dhYWGqXr26BgwYYO3jbiZMmCAvLy/rq2TJkjl9iAAAgIk80gHt+++/l7u7u1xcXNS8eXP961//0qhRo1SzZk1VqlRJ8+fPlyR9/vnnKl26tOrXr//APitVqiQHBwfre39/fyUkJEiSDh48KEdHRz311FPW9qJFi6pcuXI6ePCgdVmhQoX0+OOP37WPuxk+fLgSExOtr1OnTmX+IAAAgDznkQ5ojRo1UnR0tI4eParr169r/vz5cnNzkyT17NnTempy3rx56t69uyyWB0/6WrBgQZv3FotFaWlpWarrbn0YhnHP9Z2dneXp6WnzAgAAj65HOqC5ubkpODhYpUqVkqOj7Q2rL730kuLi4jR9+nQdOHBAXbt2tbY5OTlJklJTU7O0vQoVKuj27dvavn27ddmFCxd0+PBhVaxY8SH2BAAA5CePdEC7n8KFC6tdu3YaMmSImjZtqhIlSljbfH195erqqtWrV+vPP/9UYmLmHlMSEhKiNm3aqFevXtq0aZNiYmL00ksv6bHHHlObNm3+qV0BAACPmHwb0CTplVde0a1bt6w3B6RzdHTU9OnTNXfuXAUEBGQpXM2bN09PPvmkWrVqpdq1a8swDK1cuTLDaU0AAIB7sRj3u/jpEbdgwQINHjxYZ8+etZ7WzAuSkpLk5eWlxGEePCwdgPnxsHRA0l++vxMTH3g9+SP9JIF7uXbtmuLj4zVx4kT16dMnT4UzAADw6MuXAW3SpEkaN26c6tevn6cf+1T5xn9VwChk7zIe2omJLe1dAgAAppIvr0EbNWqUUlJStG7dOrm7u9u7HAAAABv5MqABAACYGQENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMJlsBbSNGzfq9u3bGZbfvn1bGzdufOiiAAAA8jOLYRhGVj/k4OCg+Ph4+fr62iy/cOGCfH19lZqammMFIqOkpCR5eXkpMTFRnp6e9i4HAABkQla+v7M1gmYYhiwWS4blFy5ckJubW3a6BAAAwP9xzMrK7dq1kyRZLBZ169ZNzs7O1rbU1FT99ttvCg8Pz9kKAQAA8pksBTQvLy9Jd0bQPDw85Orqam1zcnJSrVq11KtXr5ytEAAAIJ/JUkCbN2+eJCkwMFBvvvkmpzMBAAD+Adm6Bm3kyJFydnbW2rVrNXfuXF25ckWSdPbsWSUnJ+dogQAAAPlNlkbQ0sXFxalZs2Y6efKkbt68qWeeeUYeHh56//33dfPmTc2ZMyen6wQAAMg3sjWCNnDgQIWFhenSpUs216E999xzWrduXY4VBwAAkB9lawTtl19+0ZYtW+Tk5GSzPDAwUGfOnMmRwgAAAPKrbI2gpaWl3XUy2tOnT8vDw+OhiwIAAMjPshXQmjZtqg8//ND63mKxKDk5WSNHjlSLFi1yqjYAAIB8KVuPejp9+rQiIiJkGIaOHj2qsLAwHT16VMWKFdPGjRszPAIKOYtHPQEAkPdk5fs7WwFNuvNg9MWLFysmJkbJycmqXr26OnfubHPTAP4ZBDQAAPKeXAlosB8CGgAAec8//rD0+fPn64cffrC+f+utt+Tt7a3w8HDFxcVlp0sAAAD8n2wFtPHjx1tPZW7dulUzZ87UpEmTVKxYMQ0ePDhHCwQAAMhvsjUP2qlTpxQcHCxJWr58uTp06KDevXurTp06atiwYU7WBwAAkO9kawTN3d1dFy5ckCT99NNPeuaZZyRJLi4uun79es5VBwAAkA9lawTtmWeeUc+ePVWtWjUdOXLEOvfZ/v37FRgYmJP1AQAA5DvZGkGbNWuWateurXPnzmnp0qUqWrSoJGnXrl3q1KlTjhYIAACQ3zDNRh7ENBsAAOQ9Wfn+ztYpznTXrl3TyZMndevWLZvlVapUeZhuAQAA8rVsBbRz586pW7duWr169V3b7/YgdQAAAGROtq5BGzRokBITE7V9+3a5urpq9erVmj9/vkJCQrRixYqcrhEAACBfydYI2s8//6xvv/1WYWFhKlCggEqXLq1nnnlGnp6emjBhglq2bJnTdQIAAOQb2RpBu3r1qnx9fSVJhQsX1rlz5yRJoaGh2r17d85VBwAAkA9lK6CVK1dOhw8fliRVrVpVc+fO1ZkzZzRnzhz5+/vnaIEAAAD5TbZOcQ4cOFDx8fGSpJEjR6pZs2ZauHChnJycFBkZmZP1AQAA5Ds5Mg/atWvXdOjQIZUqVUrFihXLibpwH8yDBgBA3pOV7+9sneIcM2aMrl27Zn1fqFAhVa9eXW5ubhozZkx2ugQAAMD/ydYImoODg+Lj4603CqS7cOGCfH19mQftH8YIGgAAec8/PoJmGIYsFkuG5TExMSpSpEh2ugQAAMD/ydJNAoULF5bFYpHFYlHZsmVtQlpqaqqSk5PVt2/fHC8SAAAgP8lSQPvwww9lGIZ69Oih0aNHy8vLy9rm5OSkwMBA1a5dO8eLBAAAyE+yFNC6du0qSQoKClJ4eLgKFiz4jxQFAACQn2VrHrQGDRpYf75x44Zu3bpl086F6wAAANmXrZsErl27pgEDBsjX11dubm4qXLiwzQsAAADZl62ANmTIEP3888+aPXu2nJ2d9cknn2j06NEKCAjQZ599ltM1AgAA5CvZOsX53Xff6bPPPlPDhg3VvXt31atXT8HBwSpdurQWLlyozp0753SdAAAA+Ua2RtAuXryoMmXKSLpzvdnFixclSXXr1tXGjRtzrjoAAIB8KFsBrUyZMoqNjZUklS9fXl999ZWkOyNr3t7eOVYcAABAfpStgNa9e3fFxMRIkoYNG6ZZs2bJxcVFgwcP1pAhQ3K0QAAAgPwmW8/i/Lu4uDjt2rVLwcHBqlKlSk7UhfvgWZwAAOQ9Wfn+zvJNAmlpaYqMjNSyZct04sQJWSwWBQUFqUOHDgoNDc120QAAALgjS6c4DcPQs88+q549e+rMmTMKDQ1VpUqVFBcXp27duum55577p+oEAADIN7I0ghYZGamNGzdq3bp1atSokU3bzz//rLZt2+qzzz5Tly5dcrRIAACA/CRLI2hffPGF3n777QzhTJKefvppDRs2TAsXLsyx4gAAAPKjLI2g/fbbb5o0adI925s3b67p06c/dFHInFqLasnB1cHeZQD3tLfrXnuXAAB5UpZG0C5evKjixYvfs7148eK6dOnSQxcFAACQn2UpoKWmpsrR8d6Dbg4ODrp9+/ZDFwUAAJCfZekUp2EY6tatm5ydne/afvPmzRwpCgAAID/LUkDr2rXrA9fhDk4AAICHk6WANm/evH+qDgAAAPyfbD2LEwAAAP8cAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADCZLD1JAOayLe60PJ0t9i4DZjAq0d4VAAByECNoAAAAJkNAAwAAMBkCGgAAgMkQ0B6gW7duatu2rb3LAAAA+QgBDQAAwGQIaFmwevVq1a1bV97e3ipatKhatWql48ePW9vDw8M1dOhQm8+cO3dOBQsW1MaNGyVJCxYsUFhYmDw8POTn56cXX3xRCQkJubofAADA3AhoWXD16lW9/vrr2rlzp9atW6cCBQroueeeU1pamiSpc+fO+vLLL2UYhvUzixcvVkBAgOrVqydJSklJ0dixYxUTE6Ply5frxIkT6tat2323e/PmTSUlJdm8AADAo8ti/DVNIINu3brp8uXLWr58eYa28+fPy8fHR3v37lXlypV17tw5BQQE6Oeff7YGsvDwcNWvX18TJ068a/87d+5UjRo1dOXKFbm7u991nVGjRmn06NEZlicO82AeNNzBPGgAYHpJSUny8vJSYmKiPD0977suI2hZcPToUXXq1EllypSRp6enAgMDJUknT56UJPn4+Khp06ZauHChJCk2NlZbt25V586drX3s2rVLrVu3VqlSpeTh4aEGDRrY9HE3w4cPV2JiovV16tSpf2gPAQCAGRDQsqB169a6ePGiPv74Y23fvl3bt2+XJN26dcu6TufOnbVkyRKlpKRo0aJFCg0NVWhoqKQ7p0gjIiLk6emphQsX6tdff9U333yToY+/c3Z2lqenp80LAAA8ughomXThwgUdPnxY77zzjho3bqwKFSro0qVLGdZr06aNbty4odWrV2vRokU2o2eHDh3ShQsXNHHiRNWrV0/ly5fnBgEAAJABz+LMpMKFC6to0aL66KOP5O/vr5MnT2rYsGEZ1nNzc1Pbtm01YsQIHTx4UJ06dbK2lSpVSk5OTpoxY4b69u2rffv2aezYsbm5GwAAIA9gBO0B0tLS5OjoqAIFCujLL7/Url27VLlyZQ0ePFgffPDBXT/TuXNnxcTEqF69eipVqpR1uY+PjyIjI/X111+rYsWKmjhxoiZPnpxbuwIAAPII7uJ8gGbNmik4OFgzZ860dylW1rtAuIsT6biLEwBMLyt3cXKK8x4uXbqkzZs3KyoqSn379rV3OXdV+cZ/VcAoZO8yHujExJb2LgEAgDyFgHYPPXr00K+//qo33nhDbdq0sXc5AAAgHyGg3UP69BcAAAC5jZsEAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkHO1dALJv3+gIeXp62rsMAACQwxhBAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZBztXQAAANmRlpamW7du2bsMwKpgwYJycHDIkb4IaACAPOfWrVuKjY1VWlqavUsBbHh7e8vPz08Wi+Wh+iGgAQDyFMMwFB8fLwcHB5UsWVIFCnC1DuzPMAxdu3ZNCQkJkiR/f/+H6o+ABgDIU27fvq1r164pICBAhQoVsnc5gJWrq6skKSEhQb6+vg91upN/dgAA8pTU1FRJkpOTk50rATJK/0dDSkrKQ/VDQAMA5EkPe40P8E/Iqd9LTnHmYbUW1ZKDa87cLQIAmbG36157lwDkC4ygAQCQCxo2bKhBgwbZbfvdunVT27ZtTVMP7o8RNADAIyFw2A+5ur0TE1vm6vZy2rJly1SwYEF7l5FnBAYGatCgQbkWagloAADkQ0WKFLF3CQ/NMAylpqbK0fHRizOc4gQAIJfcvn1bAwYMkJeXl4oVK6YRI0bIMAxJ0oIFCxQWFiYPDw/5+fnpxRdftM6pJUmXLl1S586d5ePjI1dXV4WEhGjevHnW9lOnTumFF16Qt7e3ihQpojZt2ujEiRP3rOXvpzgDAwM1fvx49ejRQx4eHipVqpQ++ugjm89kdRt/lX6KdfTo0fLx8ZGnp6f69u1r8zSItLQ0TZgwQUFBQXJ1dVXVqlW1ZMkSa3tUVJQsFotWrVqlJ598Us7Oztq0aZPS0tI0adIkBQcHy9nZWaVKldK4ceMyXXd6bZMnT5a/v7+KFi2q/v37W+/EbNiwoeLi4jR48GBZLJZcuUGFgAYAQC6ZP3++HB0dtWPHDv3nP//R1KlT9cknn0i6My3D2LFjFRMTo+XLl+vEiRPq1q2b9bMjRozQgQMHtGrVKh08eFCzZ89WsWLFrJ+NiIiQh4eHfvnlF23evFnu7u5q1qxZlh6HNWXKFIWFhWnPnj3q16+fXn31VR0+fDjHtrFu3TodPHhQUVFR+uKLL7Rs2TKNHj3a2j5hwgR99tlnmjNnjvbv36/BgwfrpZde0oYNG2z6GTZsmCZOnKiDBw+qSpUqGj58uCZOnGg9RosWLVLx4sWzVPf69et1/PhxrV+/XvPnz1dkZKQiIyMl3TkdXKJECY0ZM0bx8fGKj4/P9DHNrkdvTBAAAJMqWbKkpk2bJovFonLlymnv3r2aNm2aevXqpR49eljXK1OmjKZPn64aNWooOTlZ7u7uOnnypKpVq6awsDBJd0a80i1evFhpaWn65JNPrKM78+bNk7e3t6KiotS0adNM1deiRQv169dPkjR06FBNmzZN69evV7ly5XJkG05OTvr0009VqFAhVapUSWPGjNGQIUM0duxYpaSkaPz48Vq7dq1q165tPQ6bNm3S3Llz1aBBA2s/Y8aM0TPPPCNJunLliv7zn/9o5syZ6tq1qyTp8ccfV926dbN0bAoXLqyZM2fKwcFB5cuXV8uWLbVu3Tr16tVLRYoUkYODg3V0MzcQ0AAAyCW1atWyOT1Wu3ZtTZkyRampqYqOjtaoUaMUExOjS5cuWZ8zevLkSVWsWFGvvvqq2rdvr927d6tp06Zq27atwsPDJUkxMTE6duyYPDw8bLZ348YNHT9+PNP1ValSxfqzxWKRn5+f9TRrTmyjatWqNk9/qF27tpKTk3Xq1CklJyfr2rVr1uCV7tatW6pWrZrNsvSQKkkHDx7UzZs31bhx47tuM7N1V6pUyWbmf39/f+3da79pZQhoAADY2Y0bNxQREaGIiAgtXLhQPj4+OnnypCIiIqyn4Zo3b664uDitXLlSa9asUePGjdW/f39NnjxZycnJevLJJ7Vw4cIMffv4+GS6jr/f1WmxWKxBMae2cS/JycmSpB9++EGPPfaYTZuzs7PNezc3N+vP6Y9Xul+/man7fvtuDwQ0AAByyfbt223eb9u2TSEhITp06JAuXLigiRMnqmTJkpKknTt3Zvi8j4+Punbtqq5du6pevXoaMmSIJk+erOrVq2vx4sXy9fWVp6fnP1J7TmwjJiZG169ft4aqbdu2yd3dXSVLllSRIkXk7OyskydP2pzOfJCQkBC5urpq3bp16tmz5z9St3Tn9Gz6Y8ZyAzcJAACQS06ePKnXX39dhw8f1hdffKEZM2Zo4MCBKlWqlJycnDRjxgz9/vvvWrFihcaOHWvz2XfffVfffvutjh07pv379+v7779XhQoVJEmdO3dWsWLF1KZNG/3yyy+KjY1VVFSUXnvtNZ0+fTpHas+Jbdy6dUuvvPKKDhw4oJUrV2rkyJEaMGCAChQoIA8PD7355psaPHiw5s+fr+PHj2v37t2aMWOG5s+ff88+XVxcNHToUL311lv67LPPdPz4cW3btk3//e9/c/TYBAYGauPGjTpz5ozOnz+f6c9lFyNoAIBHQl6YOLZLly66fv26atasKQcHBw0cOFC9e/eWxWJRZGSk3n77bU2fPl3Vq1fX5MmT9eyzz1o/6+TkpOHDh+vEiRNydXVVvXr19OWXX0q684DujRs3aujQoWrXrp2uXLmixx57TI0bN86xEbWc2Ebjxo0VEhKi+vXr6+bNm+rUqZNGjRplbR87dqx8fHw0YcIE/f777/L29lb16tX19ttv37ffESNGyNHRUe+++67Onj0rf39/9e3bN8fqlu7cmNCnTx89/vjjunnzpnV6lH+Kxfint4Acl5SUJC8vL1WYXYFncQLIVWZ4FueNGzcUGxuroKAgubi42LscZFK3bt10+fJlLV++3N6l/KPu9/uZ/v2dmJj4wHDIKU4AAACT4RQnAAB4aO7u7vdsW7VqVS5W8mggoOVh2+JOy9P5n3/cBJArRiXauwIADyE6OvqebY899pjq1auXe8U8AghoAADgoQUHB9u7hEcK16ABAACYDAENAADAZAhoOeSPP/7Qv//9b5UpU0bOzs4qWbKkWrdurXXr1mVY9+uvv7Y+P23Lli0qU6ZMbpcLAABMjGvQcsCJEydUp04deXt764MPPlBoaKhSUlL0448/qn///jp06JDN+lu3blWdOnUkSb/88ov1ZwAAAImAliP69esni8WiHTt22DzAtVKlSurRo0eG9bds2aJhw4ZJkjZt2qSWLc0/+zUAAMg9nOJ8SBcvXtTq1avVv39/m3CWztvbW5K0aNEieXt7y9vbWzt27NDLL78sb29vrVy5Um+++aa8vb21aNGiu27j5s2bSkpKsnkBAPKWhg0batCgQfYuA3kEI2gP6dixYzIMQ+XLl7/ves8++6zCw8O1du1affjhh/r+++/122+/qW/fvtqyZYskqVixYnf97IQJEzR69Ogcrx0AHimjvHJ5e/afuy8qKkrTpk3Tjh07lJSUpJCQEA0ZMkSdO3e2rhMZGanu3bvbfM7Z2Vk3btzI7XJz3YkTJxQUFKQ9e/boiSeesHc5WcII2kPK7KNM3d3dFRgYqN27d6tNmzYKDAzU3r171aJFCwUGBiowMPCeszAPHz5ciYmJ1tepU6dychcAAHnUli1bVKVKFS1dulS//fabunfvri5duuj777+3Wc/T01Px8fHWV1xcnJ0qvuPWrVt23X5eQEB7SCEhIbJYLBluBPirkydPyt3dXe7u7vroo480ZcoUubu7a9SoUVqwYIHc3d3Vt2/fe37e2dlZnp6eNi8AQN5z+/ZtDRgwQF5eXipWrJhGjBhh/Yd+YGCg3nvvPXXp0kXu7u4qXbq0VqxYoXPnzqlNmzZyd3dXlSpVtHPnTmt/b7/9tsaOHavw8HA9/vjjGjhwoJo1a6Zly5bZbNdiscjPz8/6Kl68eKZrDgwM1NixY9WpUye5ubnpscce06xZs2zWuXz5snr27CkfHx95enrq6aefVkxMjLV91KhReuKJJ/TJJ5/YPET88uXL6tOnj4oXLy4XFxdVrlzZJlxu2rRJ9erVk6urq0qWLKnXXntNV69etalt/Pjx6tGjhzw8PFSqVCl99NFH1vagoCBJUrVq1WSxWNSwYcNM77e9EdAeUpEiRRQREaFZs2bZ/NKku3z5sgICAhQdHa3Vq1fL0dFR0dHR2r59u6Q7d3FGR0drzJgxuV06ACCXzZ8/X46OjtqxY4f+85//aOrUqfrkk0+s7dOmTVOdOnW0Z88etWzZUi+//LK6dOmil156Sbt379bjjz+uLl263PfsTWJioooUKWKzLDk5WaVLl1bJkiXVpk0b7d+/P0t1f/DBB6patar27NmjYcOGaeDAgVqzZo21/fnnn1dCQoJWrVqlXbt2qXr16mrcuLEuXrxoXefYsWNaunSpli1bpujoaKWlpal58+bavHmzPv/8cx04cEATJ06Ug4ODJOn48eNq1qyZ2rdvr99++02LFy/Wpk2bNGDAAJvapkyZorCwMO3Zs0f9+vXTq6++qsOHD0uSduzYIUlau3at4uPjMwRXM7MYmT1Hh3v6/fffVadOHRUpUkRjxoxRlSpVdPv2ba1Zs0azZ8/WwYMHJUlffvmlZs+erQ0bNmjjxo3q1auX9ZcoK5KSkuTl5aXEYR48ixOPDhNcz4O84caNG4qNjbUZiZFk+mvQGjZsqISEBO3fv18Wy52/3cOGDdOKFSt04MABBQYGql69elqwYIGkO/Nr+vv7a8SIEdZ/xG/btk21a9dWfHy8/Pz8Mmzjq6++0ssvv6zdu3erUqVKku5M7XT06FFVqVJFiYmJmjx5sjZu3Kj9+/erRIkSD6w7MDBQFSpUsHngeceOHZWUlKSVK1daZyNISEiQs7OzdZ3g4GC99dZb6t27t0aNGqXx48frzJkz8vHxkST99NNPat68uQ4ePKiyZctm2G7Pnj3l4OCguXPnWpdt2rRJDRo00NWrV+Xi4pLhmBmGIT8/P40ePVp9+/a1yzVo9/z91F++vxMTH3g2jBG0HFCmTBnt3r1bjRo10htvvKHKlSvrmWee0bp16zR79mzrelFRUapfv74kacOGDdafAQD5Q61atazhTJJq166to0ePKjU1VZJUpUoVa1v6acjQ0NAMyxISEjL0vX79enXv3l0ff/yxNZylb6NLly564okn1KBBAy1btkw+Pj42wedBateuneF9+uBDTEyMkpOTVbRoUevlPO7u7oqNjdXx48etnyldurQ1nEl3Hq5eokSJu4az9H4jIyNt+oyIiFBaWppiY2Ot6/31mKWfyr3b8clruIszh/j7+2vmzJmaOXPmPdeZM2eO9ecRI0bkRlkAgDykYMGC1p/Tg9zdlqWlpdl8bsOGDWrdurWmTZumLl26PHAb1apV07Fjx3Kk5uTkZPn7+ysqKipDW/pUU5IyTEXl6ur6wH779Omj1157LUNbqVKlrD//9fhId47R349PXkRAAwAgl6Rff5xu27ZtCgkJsV53lR1RUVFq1aqV3n//ffXu3fuB66emplpnEcisbdu2ZXhfoUIFSVL16tX1xx9/yNHRUYGBgZnus0qVKjp9+rSOHDly11G06tWr68CBAwoODs50n3/n5OQkSdYRyryEgJaHVb7xXxUwCtm7jFx1YiJPXQCQd508eVKvv/66+vTpo927d2vGjBmaMmVKtvtbv369WrVqpYEDB6p9+/b6448/JN0JJuk3CowZM0a1atVScHCwLl++rA8++EBxcXHq2bNnprezefNmTZo0SW3bttWaNWv09ddf64cffpAkNWnSRLVr11bbtm01adIklS1bVmfPntUPP/yg5557TmFhYXfts0GDBqpfv77at2+vqVOnKjg4WIcOHZLFYlGzZs00dOhQ1apVSwMGDFDPnj3l5uamAwcOaM2aNfc9W/VXvr6+cnV11erVq1WiRAm5uLjIyyuXr1XMJq5BAwAgl3Tp0kXXr19XzZo11b9/fw0cODBTo173Mn/+fF27dk0TJkyQv7+/9dWuXTvrOpcuXVKvXr1UoUIFtWjRQklJSdqyZYsqVqyY6e288cYb2rlzp6pVq6b33ntPU6dOVUREhKQ7pxRXrlyp+vXrq3v37ipbtqw6duyouLi4B07nsXTpUtWoUUOdOnVSxYoV9dZbb9lcj7dhwwYdOXJE9erVU7Vq1fTuu+8qICAg03U7Ojpq+vTpmjt3rgICAtSmTZtMf9beuIszD0q/C6TkoK9UwJkRNAD5y/3ukkPOCwwM1KBBg3hMVSZxFycAAMAjioAGAEA+9csvv9hMY/H3F+yHmwQAAMinwsLCFB0dfd91Tpw4kSu1wBYBDQCAfMrV1fWhprHAP4dTnAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAeYVFRUbJYLLp8+bK9S0EWMM0GAOCREDo/NFe3t7fr3lzdHh7eiRMnFBQUpD179uiJJ56wdzn3xQgaAAAmZBiGbt++be8ycsWtW7fsXYLpMIKWh+0bHfHAh60CAMzj5s2bGjJkiL788kslJSUpLCxM06ZNU40aNRQVFaVGjRpp5cqVeuedd7R371799NNPKlmypF5//XVt27ZNV69eVYUKFTRhwgQ1adLEpt93331XixYtUkJCgkqWLKnhw4frlVdeuWsdmzZt0vDhw7Vz504VK1ZMzz33nCZMmCA3N7cH7kNgYKBeeeUVHThwQCtWrJC3t7fefvtt9e/f37rO5cuX9eabb+rbb7/VzZs3rftZtWpVSdKoUaO0fPlyDRgwQOPGjVNcXJzS0tJ0+fJlDR06VMuXL1diYqKCg4M1ceJEtWrVKlN1BwYGqnfv3jp27Ji+/vprFS5cWO+884569+4tSQoKCpIkVatWTZLUoEEDRUVFZfG/Yu5gBA0AgFzy1ltvaenSpZo/f752796t4OBgRURE6OLFi9Z1hg0bpokTJ+rgwYOqUqWKkpOT1aJFC61bt0579uxRs2bN1Lp1a508edL6mS5duuiLL77Q9OnTdfDgQc2dO/eez9I8fvy4mjVrpvbt2+u3337T4sWLtWnTJg0YMCDT+/HBBx+oatWq2rNnj4YNG6aBAwdqzZo11vbnn39eCQkJWrVqlXbt2qXq1aurcePGNvt57NgxLV26VMuWLVN0dLTS0tLUvHlzbd68WZ9//rkOHDigiRMnysHBIUt1T5kyRWFhYdqzZ4/69eunV199VYcPH5Yk7dixQ5K0du1axcfHa9myZZne59xmMQzDsHcRyJqkpCR5eXkpMTGRETQA+c6NGzcUGxuroKAgubi4WJeb/Rq0q1evqnDhwoqMjNSLL74oSUpJSVFgYKAGDRqkGjVqqFGjRlq+fLnatGlz374qV66svn37asCAATpy5IjKlSunNWvW2IyqpUsfmbt06ZK8vb3Vs2dPOTg4aO7cudZ1Nm3apAYNGujq1as2x/RuAgMDVaFCBa1atcq6rGPHjkpKStLKlSu1adMmtWzZUgkJCXJ2drauExwcrLfeeku9e/fWqFGjNH78eJ05c0Y+Pj6SpJ9++knNmzfXwYMHVbZs2QzbzUzdgYGBqlevnhYsWCDpzmliPz8/jR49Wn379s2Va9Du9fspZe37mxE0AABywfHjx5WSkqI6depYlxUsWFA1a9bUwYMHrcvCwsJsPpecnKw333xTFSpUkLe3t9zd3XXw4EHrCFp0dLQcHBzUoEGDTNURExOjyMhIubu7W18RERFKS0tTbGxspvqoXbt2hvfp+xATE6Pk5GQVLVrUZhuxsbE6fvy49TOlS5e2hrP0/ShRosRdw1lW6q5SpYr1Z4vFIj8/PyUkJGRqv8yEa9AAADCRv18H9uabb2rNmjWaPHmygoOD5erqqg4dOlgvrHd1dc1S/8nJyerTp49ee+21DG2lSpXKfuF/6d/f3/+u13Z5e3tbf/77fj5oPzJbd8GCBW3aLBaL0tLSMlG5uRDQAADIBY8//ricnJy0efNmlS5dWtKdU5y//vqrBg0adM/Pbd68Wd26ddNzzz0n6U5QOXHihLU9NDRUaWlp2rBhw11Pcf5d9erVdeDAAQUHB2d7X7Zt25bhfYUKFaz9//HHH3J0dFRgYGCm+6xSpYpOnz6tI0eO3HUULSfqdnJykiSlpqZmu4/cwilOAABygZubm1599VUNGTJEq1ev1oEDB9SrVy9du3btnndbSlJISIj1QvqYmBi9+OKLNiNCgYGB6tq1q3r06KHly5crNjZWUVFR+uqrr+7a39ChQ7VlyxYNGDBA0dHROnr0qL799tss3SSwefNmTZo0SUeOHNGsWbP09ddfa+DAgZKkJk2aqHbt2mrbtq1++uknnThxQlu2bNH//M//aOfOnffss0GDBqpfv77at2+vNWvWKDY2VqtWrdLq1atzrG5fX1+5urpq9erV+vPPP5WYmJjpz+Y2AhoAALlk4sSJat++vV5++WVVr15dx44d048//qjChQvf8zNTp05V4cKFFR4ertatWysiIkLVq1e3WWf27Nnq0KGD+vXrp/Lly6tXr166evXqXfurUqWKNmzYoCNHjqhevXqqVq2a3n33XQUEBGR6P9544w3t3LlT1apV03vvvaepU6cqIiJC0p1TiitXrlT9+vXVvXt3lS1bVh07dlRcXJyKFy9+336XLl2qGjVqqFOnTqpYsaLeeust62hXTtTt6Oio6dOna+7cuQoICHjgzRj2xF2ceRB3cQLIz+53lxz+eel3nd7vtGx+xl2cAAAAjygCGgAAkCT98ssvNtNY/P2F3MNdnAAAQNKdOdiio6Pvu85f7yDFP4eABgAAJN2Zi+xhprFAzuEUJwAAgMkQ0AAAeRKTEMCMcuqpBZziBADkKQULFpTFYtG5c+fk4+Mji8Vi75IAGYahW7du6dy5cypQoID1qQXZRUADAOQpDg4OKlGihE6fPs0F6zCdQoUKqVSpUipQ4OFOUhLQAAB5jru7u0JCQpSSkmLvUgArBwcHOTo65sioLgENAJAnOTg4yMHBwd5lAP8IbhIAAAAwGQIaAACAyRDQAAAATIZr0PKg9Ll/kpKS7FwJAADIrPTv7czM4UdAy4MuXLggSSpZsqSdKwEAAFl15coVeXl53XcdAloeVKRIEUnSyZMnH/gfOL9KSkpSyZIlderUKXl6etq7HNPiOD0YxyhzOE4PxjF6sEf9GBmGoStXriggIOCB6xLQ8qD0ye+8vLweyV/gnOTp6ckxygSO04NxjDKH4/RgHKMHe5SPUWYHVrhJAAAAwGQIaAAAACZDQMuDnJ2dNXLkSDk7O9u7FNPiGGUOx+nBOEaZw3F6MI7Rg3GM/j+LkZl7PQEAAJBrGEEDAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoOVBs2bNUmBgoFxcXPTUU09px44d9i7JNCZMmKAaNWrIw8NDvr6+atu2rQ4fPmzvskxt4sSJslgsGjRokL1LMZ0zZ87opZdeUtGiReXq6qrQ0FDt3LnT3mWZRmpqqkaMGKGgoCC5urrq8ccf19ixYzP1IOhH2caNG9W6dWsFBATIYrFo+fLlNu2GYejdd9+Vv7+/XF1d1aRJEx09etQ+xdrJ/Y5RSkqKhg4dqtDQULm5uSkgIEBdunTR2bNn7VewHRDQ8pjFixfr9ddf18iRI7V7925VrVpVERERSkhIsHdpprBhwwb1799f27Zt05o1a5SSkqKmTZvq6tWr9i7NlH799VfNnTtXVapUsXcppnPp0iXVqVNHBQsW1KpVq3TgwAFNmTJFhQsXtndppvH+++9r9uzZmjlzpg4ePKj3339fkyZN0owZM+xdml1dvXpVVatW1axZs+7aPmnSJE2fPl1z5szR9u3b5ebmpoiICN24cSOXK7Wf+x2ja9euaffu3RoxYoR2796tZcuW6fDhw3r22WftUKkdGchTatasafTv39/6PjU11QgICDAmTJhgx6rMKyEhwZBkbNiwwd6lmM6VK1eMkJAQY82aNUaDBg2MgQMH2rskUxk6dKhRt25de5dhai1btjR69Ohhs6xdu3ZG586d7VSR+UgyvvnmG+v7tLQ0w8/Pz/jggw+syy5fvmw4OzsbX3zxhR0qtL+/H6O72bFjhyHJiIuLy52iTIARtDzk1q1b2rVrl5o0aWJdVqBAATVp0kRbt261Y2XmlZiYKEkqUqSInSsxn/79+6tly5Y2v0/4/1asWKGwsDA9//zz8vX1VbVq1fTxxx/buyxTCQ8P17p163TkyBFJUkxMjDZt2qTmzZvbuTLzio2N1R9//GHz/zsvLy899dRT/B2/j8TERFksFnl7e9u7lFzjaO8CkHnnz59XamqqihcvbrO8ePHiOnTokJ2qMq+0tDQNGjRIderUUeXKle1djql8+eWX2r17t3799Vd7l2Jav//+u2bPnq3XX39db7/9tn799Ve99tprcnJyUteuXe1dnikMGzZMSUlJKl++vBwcHJSamqpx48apc+fO9i7NtP744w9Juuvf8fQ22Lpx44aGDh2qTp06ydPT097l5BoCGh5Z/fv31759+7Rp0yZ7l2Iqp06d0sCBA7VmzRq5uLjYuxzTSktLU1hYmMaPHy9Jqlatmvbt26c5c+YQ0P7PV199pYULF2rRokWqVKmSoqOjNWjQIAUEBHCMkCNSUlL0wgsvyDAMzZ49297l5CpOceYhxYoVk4ODg/7880+b5X/++af8/PzsVJU5DRgwQN9//73Wr1+vEiVK2LscU9m1a5cSEhJUvXp1OTo6ytHRURs2bND06dPl6Oio1NRUe5doCv7+/qpYsaLNsgoVKujkyZN2qsh8hgwZomHDhqljx44KDQ3Vyy+/rMGDB2vChAn2Ls200v9W83f8wdLDWVxcnNasWZOvRs8kAlqe4uTkpCeffFLr1q2zLktLS9O6detUu3ZtO1ZmHoZhaMCAAfrmm2/0888/KygoyN4lmU7jxo21d+9eRUdHW19hYWHq3LmzoqOj5eDgYO8STaFOnToZpmg5cuSISpcubaeKzOfatWsqUMD2a8TBwUFpaWl2qsj8goKC5OfnZ/N3PCkpSdu3b+fv+F+kh7OjR49q7dq1Klq0qL1LynWc4sxjXn/9dXXt2lVhYWGqWbOmPvzwQ129elXdu3e3d2mm0L9/fy1atEjffvutPDw8rNd0eHl5ydXV1c7VmYOHh0eGa/Lc3NxUtGhRrtX7i8GDBys8PFzjx4/XCy+8oB07duijjz7SRx99ZO/STKN169YaN26cSpUqpUqVKmnPnj2aOnWqevToYe/S7Co5OVnHjh2zvo+NjVV0dLSKFCmiUqVKadCgQXrvvfcUEhKioKAgjRgxQgEBAWrbtq39is5l9ztG/v7+6tChg3bv3q3vv/9eqamp1r/lRYoUkZOTk73Kzl32vo0UWTdjxgyjVKlShpOTk1GzZk1j27Zt9i7JNCTd9TVv3jx7l2ZqTLNxd999951RuXJlw9nZ2Shfvrzx0Ucf2bskU0lKSjIGDhxolCpVynBxcTHKlClj/M///I9x8+ZNe5dmV+vXr7/r36GuXbsahnFnqo0RI0YYxYsXN5ydnY3GjRsbhw8ftm/Ruex+xyg2Nvaef8vXr19v79JzjcUw8vmUzwAAACbDNWgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyfw/wbcmw9ZSsEUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAGzCAYAAACb/us4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLMklEQVR4nO3dfXzO9f////thsxM7dbLZhtm0OQ3RiDktauQ0VCSMnIV3qIQ+b+WkWCJy8pXONolSkVQiyQghJ1vOctbM2WpON3Nue/3+8N7x62hOtpkdr2236+VyXNrxOn08Dzp293y+Xs+XxTAMQwAAADCNYvYuAAAAALYIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAKjdjYWFksFsXGxtq7FEn2r+fw4cOyWCyKiYmxy/kB5B4BDYBpfPHFF7JYLPr666+zrKtdu7YsFovWrFmTZV1gYKDCw8Pzo8Q8Exsbq06dOsnPz09OTk7y9fVVu3bttGTJEnuXlivr1q1T+/btVaFCBbm4uMjPz0+tWrXShg0bsmwbFBQki8Vifbm4uCg0NFQjRozQmTNn7FA9YD6O9i4AADI1btxYkrR+/Xo98cQT1uWpqanatWuXHB0dtWHDBj388MPWdUePHtXRo0fVtWtXNW3aVJcuXZKTk1O+154Tr7/+usaPH6/Q0FANGDBAFStW1OnTp7V8+XJ17txZCxYs0DPPPGPvMnNk//79KlasmAYOHCg/Pz+dPXtWn376qZo2barvv/9erVq1stn+gQce0EsvvSRJunz5srZt26bp06dr7dq12rJliz2aAJgKAQ2AaQQEBCg4OFjr16+3Wf7rr7/KMAw9+eSTWdZlvm/cuLGKFSsmFxeXfKvXMAxdvnxZrq6u2d7nq6++0vjx49WlSxctXLhQxYsXt64bMWKEVq5cqWvXrt2Lcu/ahQsX5ObmdtN1ffv2Vd++fW2WDRo0SJUqVdL06dOzBLRy5crp2Weftdnf3d1dU6ZM0YEDBxQaGpr3DQAKEIY4AZhK48aNtWPHDl26dMm6bMOGDapRo4Zat26tTZs2KSMjw2adxWJRo0aNslzzFRMTYzOU9s9X8+bNrceIjo7WI488Il9fXzk7O6t69eqaM2dOltqCgoLUtm1brVy5UmFhYXJ1ddXcuXMlSceOHVPHjh3l5uYmX19fDR8+XFeuXMlyjDFjxqhUqVL6+OOPbcJZpoiICLVt29b6Pjk5Wc8995zKli0rFxcX1a5dW/Pmzcuy37lz5xQZGSkvLy95e3urV69eOnfu3E0/4z/++ENdunRRqVKl5OLiorCwMC1btsxmm8zPbu3atRo0aJB8fX1Vvnz5mx7vVkqUKCEfH59b1vFvfn5+kiRHR/oOAP4vAGAqjRs31vz587V582ZriNqwYYPCw8MVHh6ulJQU7dq1S7Vq1bKuq1q1qkqXLp3lWE2bNtX8+fNtliUmJuq///2vfH19rcvmzJmjGjVqqH379nJ0dNS3336rQYMGKSMjQ4MHD7bZf9++ferWrZsGDBigfv36qUqVKrp06ZJatGihI0eO6IUXXlBAQIDmz5+vn3/+2WbfAwcO6I8//lCfPn3k4eFxx8/i0qVLat68uQ4ePKghQ4YoODhYX375pSIjI3Xu3DkNHTpU0o2evA4dOmj9+vUaOHCgqlWrpq+//lq9evXKcszdu3erUaNGKleunEaNGiU3Nzd98cUX6tixoxYvXmwztCzd6AXz8fHRa6+9pgsXLtyx5tTUVF29elWnTp3SJ598ol27dunVV1/Nst21a9d06tQpSTeGOHfs2KF33nlHTZs2VXBw8B3PAxR6BgCYyO7duw1JxoQJEwzDMIxr164Zbm5uxrx58wzDMIyyZcsas2fPNgzDMFJTUw0HBwejX79+hmEYxpo1awxJxpo1a2567EuXLhkPPvigERAQYCQlJVmXX7x4Mcu2ERERRqVKlWyWVaxY0ZBkrFixwmb59OnTDUnGF198YV124cIFIyQkxKaeb775xpBkTJs2LVufReZxP/30U+uyq1evGg0bNjTc3d2N1NRUwzAMY+nSpYYkY/Lkydbtrl+/bjRp0sSQZERHR1uXt2jRwqhZs6Zx+fJl67KMjAwjPDzcCA0NtS6Ljo42JBmNGzc2rl+/nq16DePG5ybJkGQ4OTkZAwYMMC5dumSzTebn+O9Xo0aNjFOnTmX7XEBhxhAnAFOpVq2aSpcubb22LD4+XhcuXLDepRkeHm69M/DXX39Venq69eaCOxk0aJB27typxYsXW4fTJNlcQ5aSkqJTp06pWbNm+vPPP5WSkmJzjODgYEVERNgsW758ufz9/dWlSxfrshIlSqh///4226WmpkpStnrPMo/r5+enbt26WZcVL15cL7zwgtLS0rR27Vrrdo6Ojnr++eet2zk4OOg///mPzfHOnDmjn3/+WU899ZTOnz+vU6dO6dSpUzp9+rQiIiJ04MABHT9+3Gaffv36ycHBIVv1SlJUVJR+/PFHffTRR2rQoIGuXr2q69evZ9nuoYce0qpVq7Rq1Sp99913evPNN7V79261b9/eZngbKKoY4gRgKhaLReHh4Vq3bp0yMjK0YcMG+fr6KiQkRNKNgDZr1ixJsga17AS0uXPnKjo6WnPnzlWDBg1s1m3YsEGvv/66fv31V128eNFmXUpKiry8vKzvbzb8lpiYqJCQEFksFpvlVapUsXnv6ekpSTp//vwd6808bmhoqIoVs/23dLVq1azrM//r7+8vd3f3257/4MGDMgxDY8aM0ZgxY256zuTkZJUrV876/p/tvXr1apZpMHx8fGwC3AMPPGD9+dlnn1XdunUVGRmpr776yma/MmXKqGXLltb3bdq0UZUqVdSlSxd9+OGHWcIlUNQQ0ACYTuPGjfXtt99q586d1uvPMoWHh2vEiBE6fvy41q9fr4CAAFWqVOm2x9uyZYuGDh2qvn37ZunVOnTokFq0aKGqVavqnXfeUYUKFeTk5KTly5dr2rRpNjckSMrRHZv/VrVqVUnSzp07c32Mu5HZlpdffjlLL2CmzCCc6Z/t3bhxo80UJ5KUkJCgoKCgmx7LyclJ7du3V1RUlC5dunTHz65FixaSbsypRkBDUUdAA2A6/5wPbcOGDRo2bJh13YMPPihnZ2fFxsZq8+bNevzxx297rJMnT6pLly564IEHNHv27Czrv/32W125ckXLli1TYGCgdfnNJsS9lYoVK2rXrl0yDMOmF23fvn0221WuXFlVqlTRN998o3fffTdLj9fNjvv7778rIyPDphftjz/+sK7P/O/q1auVlpZmc8x/nz8zyBYvXtym9yq7ateurVWrVtks++dQ8c1cunRJhmHo/PnzdwxomUOhaWlpOa4NKGy4Bg2A6YSFhcnFxUULFizQ8ePHbXrQnJ2dVbduXc2ePVsXLly47fBmenq6unbtqqtXr2rx4sU3ncA2c3jOMAzrspSUFEVHR2e73scff1wnTpywGca7ePGi3n///Szbjhs3TqdPn1bfvn1vem3Wjz/+qO+++8563L/++kuLFi2yrr9+/bpmzpwpd3d3NWvWzLrd9evXbaYGSU9P18yZM22O7evrq+bNm2vu3LlKSkrKcu6TJ0/etp0lS5ZUy5YtbV6Z884lJydn2f7cuXNavHixKlSoYHPX7K18++23km4EQaCoowcNgOk4OTmpXr16+uWXX+Ts7KwHH3zQZn14eLimTp0q6fbXn7333nv6+eefNXDgwCw9YmXLltWjjz6qxx57TE5OTmrXrp0GDBigtLQ0ffDBB/L19b1piLmZfv36adasWerZs6e2bdsmf39/zZ8/XyVKlMiy7dNPP62dO3fqzTff1I4dO9StWzfrkwRWrFih1atXa+HChZKk/v37a+7cuYqMjNS2bdsUFBSkr776Shs2bND06dOtNxu0a9dOjRo10qhRo3T48GFVr15dS5YsyXKDgyTNnj1bjRs3Vs2aNdWvXz9VqlRJf//9t3799VcdO3ZM8fHx2Wrzv7Vu3Vrly5fXQw89JF9fXx05ckTR0dE6ceKETcDMdPz4cX366aeSblzbFh8fr7lz56pMmTIMbwIS02wAMKfRo0cbkozw8PAs65YsWWJIMjw8PGymgPj3NBuvv/76TadzkGQ0a9bMut+yZcuMWrVqGS4uLkZQUJDx1ltvGR9//LEhyUhISLBuV7FiRaNNmzY3rTcxMdFo3769UaJECaNMmTLG0KFDjRUrVtxy2o/Vq1cbHTp0MHx9fQ1HR0fDx8fHaNeunfHNN9/YbPf3338bvXv3NsqUKWM4OTkZNWvWtJk2I9Pp06eNHj16GJ6enoaXl5fRo0cPY8eOHVmm2TAMwzh06JDRs2dPw8/PzyhevLhRrlw5o23btsZXX31l3SZzmo3ffvvtpu39t1mzZhmNGzc2ypQpY9OedevWZdn239NsFCtWzPD19TW6detmHDx4MFvnAwo7i2H8o18fAAAAdsc1aAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAk2Gi2gIoIyNDJ06ckIeHR5aHMwMAAHMy/vfYs4CAAJvHt90MAa0AOnHihCpUqGDvMgAAQC4cPXpU5cuXv+02BLQCKPPxLkePHpWnp6edqwEAANmRmpqqChUqWH+P3w4BrQDKHNb09PQkoAEAUMBk5/IkbhIAAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDKO9i4AuddgYQM5uDrYuwwAKLJ29tpp7xJQSNGDBgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGUd7F4Dc25R4TJ7OFnuXAQDS2BR7VwAUKvSgAQAAmAwBDQAAwGQIaHkoNjZWFotF586ds3cpAACgALNbQLNYLLd9jR071l6l5Vp4eLiSkpLk5eWV7X3Gjh2rBx544N4VBQAAChy73SSQlJRk/XnRokV67bXXtG/fPusyd3d3e5SVa9euXZOTk5P8/PzsXQoAACjg7NaD5ufnZ315eXnJYrHIz89PHh4eqly5slasWGGz/dKlS+Xm5qbz58/r8OHDslgs+vzzzxUeHi4XFxfdf//9Wrt2rc0+u3btUuvWreXu7q6yZcuqR48eOnXqlHX9V199pZo1a8rV1VWlS5dWy5YtdeHCBev6jz/+WDVq1JCzs7P8/f01ZMgQ6zqLxaI5c+aoffv2cnNz05tvvplliDMmJkbe3t5aunSpQkND5eLiooiICB09etS6fty4cYqPj7f2HMbExOTxJw0AAAoa012D5ubmpq5duyo6OtpmeXR0tLp06SIPDw/rshEjRuill17Sjh071LBhQ7Vr106nT5+WJJ07d06PPPKI6tSpo61bt2rFihX6+++/9dRTT0m60YPXrVs39enTR3v37lVsbKw6deokwzAkSXPmzNHgwYPVv39/7dy5U8uWLVNISIhNTWPHjtUTTzyhnTt3qk+fPjdtz8WLF/Xmm2/qk08+0YYNG3Tu3Dl17dpVkvT000/rpZdeUo0aNZSUlKSkpCQ9/fTTWY5x5coVpaam2rwAAEDhZcp50Pr27Wu9nsvf31/Jyclavny5fvrpJ5vthgwZos6dO0u6EahWrFihjz76SK+88opmzZqlOnXqaOLEidbtP/74Y1WoUEH79+9XWlqarl+/rk6dOqlixYqSpJo1a1q3feONN/TSSy9p6NCh1mX16tWzOf8zzzyj3r17W9//+eefWdpy7do1zZo1Sw899JAkad68eapWrZq2bNmi+vXry93dXY6OjrcdGp00aZLGjRt3x88NAAAUDqbrQZOk+vXrq0aNGpo3b54k6dNPP1XFihXVtGlTm+0aNmxo/dnR0VFhYWHau3evJCk+Pl5r1qyRu7u79VW1alVJ0qFDh1S7dm21aNFCNWvW1JNPPqkPPvhAZ8+elSQlJyfrxIkTatGixW3rDAsLu2NbHB0dbYJd1apV5e3tba0zO0aPHq2UlBTrK3OIFAAAFE6mDGjSjV60zOuxoqOj1bt3b1ks2Z81Py0tTe3atVNcXJzN68CBA2ratKkcHBy0atUq/fDDD6pevbpmzpypKlWqKCEhQa6urtk6h5ubW26almPOzs7y9PS0eQEAgMLLtAHt2WefVWJiombMmKE9e/aoV69eWbbZtGmT9efr169r27ZtqlatmiSpbt262r17t4KCghQSEmLzygxWFotFjRo10rhx47Rjxw45OTnp66+/loeHh4KCgrR69eq7bsf169e1detW6/t9+/bp3Llz1jqdnJyUnp5+1+cBAACFh2kDWsmSJdWpUyeNGDFCjz32mMqXL59lm9mzZ+vrr7/WH3/8ocGDB+vs2bPWi/UHDx6sM2fOqFu3bvrtt9906NAhrVy5Ur1791Z6ero2b96siRMnauvWrTpy5IiWLFmikydPWoPT2LFjNXXqVM2YMUMHDhzQ9u3bNXPmzBy3o3jx4vrPf/6jzZs3a9u2bYqMjFSDBg1Uv359SVJQUJASEhIUFxenU6dO6cqVK3fxqQEAgMLAtAFNkp577jldvXr1lndIRkVFKSoqSrVr19b69eu1bNkylSlTRpIUEBCgDRs2KD09XY899phq1qypYcOGydvbW8WKFZOnp6fWrVunxx9/XJUrV9Z///tfTZ06Va1bt5Yk9erVS9OnT9f/+3//TzVq1FDbtm114MCBHLehRIkSGjlypJ555hk1atRI7u7uWrRokXV9586d1apVKz388MPy8fHRZ599lotPCgAAFCYWI3NeCROaP3++hg8frhMnTsjJycm6/PDhwwoODtaOHTtMPQt/TEyMhg0bluePfkpNTZWXl5dSRnnI0zn71+UBwD0zNsXeFQCmZ/39nZJyx+vJTTnNxsWLF5WUlKSoqCgNGDDAJpwBAAAUdqYMaJMnT9abb76ppk2bavTo0fYux7Tuv/yRihkl7F0GYAqHo9rYuwQAyDOmHuLEzWV2kVYY9oWKORPQAImABsD8cjLEaeqbBAAAAIoiAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAk3G0dwHIvV3jIuTp6WnvMgAAQB6jBw0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATMbR3gUg9xosbCAHVwd7lwEAQKGxs9dOe5cgiR40AAAA0yGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMxtHeBSD3NiUek6ezxd5lAEDRNDbF3hWgEKMHDQAAwGQIaDkQGRmpjh072rsMAABQyBXagBYZGSmLxSKLxSInJyeFhIRo/Pjxun79+h33PXz4sCwWi+Li4u59oQAAAP9SqK9Ba9WqlaKjo3XlyhUtX75cgwcPVvHixTV69Gh7lwYAAHBLhbYHTZKcnZ3l5+enihUr6vnnn1fLli31xRdfyNPTU1999ZXNtkuXLpWbm5vOnz+v4OBgSVKdOnVksVjUvHlzm22nTJkif39/lS5dWoMHD9a1a9es686ePauePXuqZMmSKlGihFq3bq0DBw5Y18fExMjb21srV65UtWrV5O7urlatWikpKenefRAAAKBAKdQB7d9cXV1VrFgxde3aVdHR0TbroqOj1aVLF3l4eGjLli2SpJ9++klJSUlasmSJdbs1a9bo0KFDWrNmjebNm6eYmBjFxMRY10dGRmrr1q1atmyZfv31VxmGoccff9wmxF28eFFTpkzR/PnztW7dOh05ckQvv/zyLeu+cuWKUlNTbV4AAKDwKhIBzTAM/fTTT1q5cqUeeeQR9e3bVytXrrT2WiUnJ2v58uXq06ePJMnHx0eSVLp0afn5+alUqVLWY5UsWVKzZs1S1apV1bZtW7Vp00arV6+WJB04cEDLli3Thx9+qCZNmqh27dpasGCBjh8/rqVLl1qPce3aNb333nsKCwtT3bp1NWTIEOsxbmbSpEny8vKyvipUqJDXHxEAADCRQh3QvvvuO7m7u8vFxUWtW7fW008/rbFjx6p+/fqqUaOG5s2bJ0n69NNPVbFiRTVt2vSOx6xRo4YcHBys7/39/ZWcnCxJ2rt3rxwdHfXQQw9Z15cuXVpVqlTR3r17rctKlCih++6776bHuJnRo0crJSXF+jp69Gj2PwQAAFDgFOqA9vDDDysuLk4HDhzQpUuXNG/ePLm5uUmS+vbtax2ajI6OVu/evWWx3HnS1+LFi9u8t1gsysjIyFFdNzuGYRi33N7Z2Vmenp42LwAAUHgV6oDm5uamkJAQBQYGytHR9obVZ599VomJiZoxY4b27NmjXr16Wdc5OTlJktLT03N0vmrVqun69evavHmzddnp06e1b98+Va9e/S5aAgAAipJCHdBup2TJkurUqZNGjBihxx57TOXLl7eu8/X1laurq1asWKG///5bKSnZe5xHaGioOnTooH79+mn9+vWKj4/Xs88+q3LlyqlDhw73qikAAKCQKbIBTZKee+45Xb161XpzQCZHR0fNmDFDc+fOVUBAQI7CVXR0tB588EG1bdtWDRs2lGEYWr58eZZhTQAAgFuxGLe7+KmQmz9/voYPH64TJ05YhzULgtTUVHl5eSlllAcPSwcAe+Fh6cgh6+/vlJQ7Xk9eqJ8kcCsXL15UUlKSoqKiNGDAgAIVzgAAQOFXJAPa5MmT9eabb6pp06YF+rFP91/+SMWMEvYuA4XI4ag29i4BAKAieg3a2LFjde3aNa1evVru7u72LgcAAMBGkQxoAAAAZkZAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEwmVwFt3bp1un79epbl169f17p16+66KAAAgKLMYhiGkdOdHBwclJSUJF9fX5vlp0+flq+vr9LT0/OsQGSVmpoqLy8vpaSkyNPT097lAACAbMjJ7+9c9aAZhiGLxZJl+enTp+Xm5pabQwIAAOB/HHOycadOnSRJFotFkZGRcnZ2tq5LT0/X77//rvDw8LytEAAAoIjJUUDz8vKSdKMHzcPDQ66urtZ1Tk5OatCggfr165e3FQIAABQxOQpo0dHRkqSgoCC9/PLLDGcCAADcA7m6Bu3111+Xs7OzfvrpJ82dO1fnz5+XJJ04cUJpaWl5WiAAAEBRk6MetEyJiYlq1aqVjhw5oitXrujRRx+Vh4eH3nrrLV25ckXvvfdeXtcJAABQZOSqB23o0KEKCwvT2bNnba5De+KJJ7R69eo8Kw4AAKAoylUP2i+//KKNGzfKycnJZnlQUJCOHz+eJ4UBAAAUVbnqQcvIyLjpZLTHjh2Th4fHXRcFAABQlOUqoD322GOaPn269b3FYlFaWppef/11Pf7443lVGwAAQJGUq0c9HTt2TBERETIMQwcOHFBYWJgOHDigMmXKaN26dVkeAYW8xaOeAAAoeHLy+ztXAU268WD0RYsWKT4+Xmlpaapbt666d+9uc9MA7g0CGgAABU++BDTYDwENAICC554/LH3evHn6/vvvre9feeUVeXt7Kzw8XImJibk5JAAAAP4nVwFt4sSJ1qHMX3/9VbNmzdLkyZNVpkwZDR8+PE8LBAAAKGpyNQ/a0aNHFRISIklaunSpunTpov79+6tRo0Zq3rx5XtYHAABQ5OSqB83d3V2nT5+WJP3444969NFHJUkuLi66dOlS3lUHAABQBOWqB+3RRx9V3759VadOHe3fv98699nu3bsVFBSUl/UBAAAUObnqQZs9e7YaNmyokydPavHixSpdurQkadu2berWrVueFggAAFDUMM1GAcQ0GwAAFDw5+f2dqyHOTBcvXtSRI0d09epVm+W1atW6m8MCAAAUabkKaCdPnlRkZKRWrFhx0/U3e5A6AAAAsidX16ANGzZMKSkp2rx5s1xdXbVixQrNmzdPoaGhWrZsWV7XCAAAUKTkqgft559/1jfffKOwsDAVK1ZMFStW1KOPPipPT09NmjRJbdq0yes6AQAAioxc9aBduHBBvr6+kqSSJUvq5MmTkqSaNWtq+/bteVcdAABAEZSrgFalShXt27dPklS7dm3NnTtXx48f13vvvSd/f/88LRAAAKCoydUQ59ChQ5WUlCRJev3119WqVSstWLBATk5OiomJycv6AAAAipw8mQft4sWL+uOPPxQYGKgyZcrkRV24DeZBAwCg4MnJ7+9cDXGOHz9eFy9etL4vUaKE6tatKzc3N40fPz43hwQAAMD/5KoHzcHBQUlJSdYbBTKdPn1avr6+zIN2j9GDBgBAwXPPe9AMw5DFYsmyPD4+XqVKlcrNIQEAAPA/ObpJoGTJkrJYLLJYLKpcubJNSEtPT1daWpoGDhyY50UCAAAUJTkKaNOnT5dhGOrTp4/GjRsnLy8v6zonJycFBQWpYcOGeV4kAABAUZKjgNarVy9JUnBwsMLDw1W8ePF7UhQAAEBRlqt50Jo1a2b9+fLly7p69arNei5cBwAAyL1c3SRw8eJFDRkyRL6+vnJzc1PJkiVtXgAAAMi9XAW0ESNG6Oeff9acOXPk7OysDz/8UOPGjVNAQIA++eSTvK4RAACgSMnVEOe3336rTz75RM2bN1fv3r3VpEkThYSEqGLFilqwYIG6d++e13UCAAAUGbnqQTtz5owqVaok6cb1ZmfOnJEkNW7cWOvWrcu76gAAAIqgXAW0SpUqKSEhQZJUtWpVffHFF5Ju9Kx5e3vnWXEAAABFUa4CWu/evRUfHy9JGjVqlGbPni0XFxcNHz5cI0aMyNMCAQAAippcPYvz3xITE7Vt2zaFhISoVq1aeVEXboNncQIAUPDk5Pd3jm8SyMjIUExMjJYsWaLDhw/LYrEoODhYXbp0Uc2aNXNdNAAAAG7I0RCnYRhq3769+vbtq+PHj6tmzZqqUaOGEhMTFRkZqSeeeOJe1QkAAFBk5KgHLSYmRuvWrdPq1av18MMP26z7+eef1bFjR33yySfq2bNnnhYJAABQlOSoB+2zzz7Tq6++miWcSdIjjzyiUaNGacGCBXlWHAAAQFGUox6033//XZMnT77l+tatW2vGjBl3XRSyp8HCBnJwdbB3GShEdvbaae8SAADKYQ/amTNnVLZs2VuuL1u2rM6ePXvXRQEAABRlOQpo6enpcnS8daebg4ODrl+/ftdFAQAAFGU5GuI0DEORkZFydna+6forV67kSVEAAABFWY4CWq9eve64DXdwAgAA3J0cBbTo6Oh7VQcAAAD+J1fP4gQAAMC9Q0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmk6MnCcBcNiUek6ezxd5l4F4bm2LvCgAA+YweNAAAAJMhoAEAAJgMAQ0AAMBkCGh3EBkZqY4dO9q7DAAAUIQQ0AAAAEyGgJYDK1asUOPGjeXt7a3SpUurbdu2OnTokHV9eHi4Ro4cabPPyZMnVbx4ca1bt06SNH/+fIWFhcnDw0N+fn565plnlJycnK/tAAAA5kZAy4ELFy7oxRdf1NatW7V69WoVK1ZMTzzxhDIyMiRJ3bt31+effy7DMKz7LFq0SAEBAWrSpIkk6dq1a5owYYLi4+O1dOlSHT58WJGRkbc975UrV5SammrzAgAAhZfF+GeaQBaRkZE6d+6cli5dmmXdqVOn5OPjo507d+r+++/XyZMnFRAQoJ9//tkayMLDw9W0aVNFRUXd9Phbt25VvXr1dP78ebm7u990m7Fjx2rcuHFZlqeM8mAetKKAedAAoFBITU2Vl5eXUlJS5Onpedtt6UHLgQMHDqhbt26qVKmSPD09FRQUJEk6cuSIJMnHx0ePPfaYFixYIElKSEjQr7/+qu7du1uPsW3bNrVr106BgYHy8PBQs2bNbI5xM6NHj1ZKSor1dfTo0XvUQgAAYAYEtBxo166dzpw5ow8++ECbN2/W5s2bJUlXr161btO9e3d99dVXunbtmhYuXKiaNWuqZs2akm4MkUZERMjT01MLFizQb7/9pq+//jrLMf7N2dlZnp6eNi8AAFB4EdCy6fTp09q3b5/++9//qkWLFqpWrZrOnj2bZbsOHTro8uXLWrFihRYuXGjTe/bHH3/o9OnTioqKUpMmTVS1alVuEAAAAFnwLM5sKlmypEqXLq33339f/v7+OnLkiEaNGpVlOzc3N3Xs2FFjxozR3r171a1bN+u6wMBAOTk5aebMmRo4cKB27dqlCRMm5GczAABAAUAP2h1kZGTI0dFRxYoV0+eff65t27bp/vvv1/Dhw/X222/fdJ/u3bsrPj5eTZo0UWBgoHW5j4+PYmJi9OWXX6p69eqKiorSlClT8qspAACggOAuzjto1aqVQkJCNGvWLHuXYmW9C4S7OIsG7uIEgEIhJ3dxMsR5C2fPntWGDRsUGxurgQMH2rucm7r/8kcqZpSwdxl37XBUG3uXAACAqRDQbqFPnz767bff9NJLL6lDhw72LgcAABQhBLRbyJz+AgAAIL9xkwAAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIDJENAAAABMhoAGAABgMgQ0AAAAkyGgAQAAmIyjvQtA7u0aFyFPT097lwEAAPIYPWgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJgMAQ0AAMBkCGgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIENAAAAJMhoAEAAJiMo70LAAAgNzIyMnT16lV7lwFYFS9eXA4ODnlyLAIaAKDAuXr1qhISEpSRkWHvUgAb3t7e8vPzk8ViuavjENAAAAWKYRhKSkqSg4ODKlSooGLFuFoH9mcYhi5evKjk5GRJkr+//10dj4AGAChQrl+/rosXLyogIEAlSpSwdzmAlaurqyQpOTlZvr6+dzXcyT87AAAFSnp6uiTJycnJzpUAWWX+o+HatWt3dRwCGgCgQLrba3yAeyGv/l4yxFmANVjYQA6ueXO3CIDCYWevnfYuAUAeoAcNAIB80Lx5cw0bNsxu54+MjFTHjh1NUw9ujx40AEChEDTq+3w93+GoNvl6vry2ZMkSFS9e3N5lFBhBQUEaNmxYvoVaAhoAAEVQqVKl7F3CXTMMQ+np6XJ0LHxxhiFOAADyyfXr1zVkyBB5eXmpTJkyGjNmjAzDkCTNnz9fYWFh8vDwkJ+fn5555hnrnFqSdPbsWXXv3l0+Pj5ydXVVaGiooqOjreuPHj2qp556St7e3ipVqpQ6dOigw4cP37KWfw9xBgUFaeLEierTp488PDwUGBio999/32afnJ7jnzKHWMeNGycfHx95enpq4MCBNk+DyMjI0KRJkxQcHCxXV1fVrl1bX331lXV9bGysLBaLfvjhBz344INydnbW+vXrlZGRocmTJyskJETOzs4KDAzUm2++me26M2ubMmWK/P39Vbp0aQ0ePNh6J2bz5s2VmJio4cOHy2Kx5MsNKgQ0AADyybx58+To6KgtW7bo3Xff1TvvvKMPP/xQ0o1pGSZMmKD4+HgtXbpUhw8fVmRkpHXfMWPGaM+ePfrhhx+0d+9ezZkzR2XKlLHuGxERIQ8PD/3yyy/asGGD3N3d1apVqxw9Dmvq1KkKCwvTjh07NGjQID3//PPat29fnp1j9erV2rt3r2JjY/XZZ59pyZIlGjdunHX9pEmT9Mknn+i9997T7t27NXz4cD377LNau3atzXFGjRqlqKgo7d27V7Vq1dLo0aMVFRVl/YwWLlyosmXL5qjuNWvW6NChQ1qzZo3mzZunmJgYxcTESLoxHFy+fHmNHz9eSUlJSkpKyvZnmluFr08QAACTqlChgqZNmyaLxaIqVapo586dmjZtmvr166c+ffpYt6tUqZJmzJihevXqKS0tTe7u7jpy5Ijq1KmjsLAwSTd6vDItWrRIGRkZ+vDDD629O9HR0fL29lZsbKwee+yxbNX3+OOPa9CgQZKkkSNHatq0aVqzZo2qVKmSJ+dwcnLSxx9/rBIlSqhGjRoaP368RowYoQkTJujatWuaOHGifvrpJzVs2ND6Oaxfv15z585Vs2bNrMcZP368Hn30UUnS+fPn9e6772rWrFnq1auXJOm+++5T48aNc/TZlCxZUrNmzZKDg4OqVq2qNm3aaPXq1erXr59KlSolBwcHa+9mfiCgAQCQTxo0aGAzPNawYUNNnTpV6enpiouL09ixYxUfH6+zZ89anzN65MgRVa9eXc8//7w6d+6s7du367HHHlPHjh0VHh4uSYqPj9fBgwfl4eFhc77Lly/r0KFD2a6vVq1a1p8tFov8/Pysw6x5cY7atWvbPP2hYcOGSktL09GjR5WWlqaLFy9ag1emq1evqk6dOjbLMkOqJO3du1dXrlxRixYtbnrO7NZdo0YNm5n//f39tXOn/aatIaABAGBnly9fVkREhCIiIrRgwQL5+PjoyJEjioiIsA7DtW7dWomJiVq+fLlWrVqlFi1aaPDgwZoyZYrS0tL04IMPasGCBVmO7ePjk+06/n1Xp8VisQbFvDrHraSlpUmSvv/+e5UrV85mnbOzs817Nzc368+Zj1e63XGzU/ft2m4PBDQAAPLJ5s2bbd5v2rRJoaGh+uOPP3T69GlFRUWpQoUKkqStW7dm2d/Hx0e9evVSr1691KRJE40YMUJTpkxR3bp1tWjRIvn6+srT0/Oe1J4X54iPj9elS5esoWrTpk1yd3dXhQoVVKpUKTk7O+vIkSM2w5l3EhoaKldXV61evVp9+/a9J3VLN4ZnMx8zlh+4SQAAgHxy5MgRvfjii9q3b58+++wzzZw5U0OHDlVgYKCcnJw0c+ZM/fnnn1q2bJkmTJhgs+9rr72mb775RgcPHtTu3bv13XffqVq1apKk7t27q0yZMurQoYN++eUXJSQkKDY2Vi+88IKOHTuWJ7XnxTmuXr2q5557Tnv27NHy5cv1+uuva8iQISpWrJg8PDz08ssva/jw4Zo3b54OHTqk7du3a+bMmZo3b94tj+ni4qKRI0fqlVde0SeffKJDhw5p06ZN+uijj/L0swkKCtK6det0/PhxnTp1Ktv75RY9aACAQqEgTBzbs2dPXbp0SfXr15eDg4OGDh2q/v37y2KxKCYmRq+++qpmzJihunXrasqUKWrfvr11XycnJ40ePVqHDx+Wq6urmjRpos8//1zSjQd0r1u3TiNHjlSnTp10/vx5lStXTi1atMizHrW8OEeLFi0UGhqqpk2b6sqVK+rWrZvGjh1rXT9hwgT5+Pho0qRJ+vPPP+Xt7a26devq1Vdfve1xx4wZI0dHR7322ms6ceKE/P39NXDgwDyrW7pxY8KAAQN033336cqVK9bpUe4Vi3Gvz4A8l5qaKi8vL1WbU41ncQKwURSexXn58mUlJCQoODhYLi4u9i4H2RQZGalz585p6dKl9i7lnrrd38/M398pKSl3DIcMcQIAAJgMQ5wAAOCuubu733LdDz/8kI+VFA4EtAJsU+IxeTrf+8dNAHY3NsXeFQC4g7i4uFuuK1eunJo0aZJ/xRQCBDQAAHDXQkJC7F1CocI1aAAAACZDQAMAADAZAloe+euvv/Sf//xHlSpVkrOzsypUqKB27dpp9erVWbb98ssvrc9P27hxoypVqpTf5QIAABPjGrQ8cPjwYTVq1Eje3t56++23VbNmTV27dk0rV67U4MGD9ccff9hs/+uvv6pRo0aSpF9++cX6MwAAgERAyxODBg2SxWLRli1bbB7gWqNGDfXp0yfL9hs3btSoUaMkSevXr1ebNuaf/RoAAOQfhjjv0pkzZ7RixQoNHjzYJpxl8vb2liQtXLhQ3t7e8vb21pYtW9SjRw95e3tr+fLlevnll+Xt7a2FCxfe9BxXrlxRamqqzQsAULA0b95cw4YNs3cZKCDoQbtLBw8elGEYqlq16m23a9++vcLDw/XTTz9p+vTp+u677/T7779r4MCB2rhxoySpTJkyN9130qRJGjduXJ7XDgCFylivfD6f/efni42N1bRp07RlyxalpqYqNDRUI0aMUPfu3a3bxMTEqHfv3jb7OTs76/Lly/ldbr47fPiwgoODtWPHDj3wwAP2LidH6EG7S9l9lKm7u7uCgoK0fft2dejQQUFBQdq5c6cef/xxBQUFKSgo6JazMI8ePVopKSnW19GjR/OyCQCAAmrjxo2qVauWFi9erN9//129e/dWz5499d1339ls5+npqaSkJOsrMTHRThXfcPXqVbuevyAgoN2l0NBQWSyWLDcC/NORI0fk7u4ud3d3vf/++5o6darc3d01duxYzZ8/X+7u7ho4cOAt93d2dpanp6fNCwBQ8Fy/fl1DhgyRl5eXypQpozFjxlj/oR8UFKQ33nhDPXv2lLu7uypWrKhly5bp5MmT6tChg9zd3VWrVi1t3brVerxXX31VEyZMUHh4uO677z4NHTpUrVq10pIlS2zOa7FY5OfnZ32VLVs22zUHBQVpwoQJ6tatm9zc3FSuXDnNnj3bZptz586pb9++8vHxkaenpx555BHFx8db148dO1YPPPCAPvzwQ5uHiJ87d04DBgxQ2bJl5eLiovvvv98mXK5fv15NmjSRq6urKlSooBdeeEEXLlywqW3ixInq06ePPDw8FBgYqPfff9+6Pjg4WJJUp04dWSwWNW/ePNvttjcC2l0qVaqUIiIiNHv2bJu/NJnOnTungIAAxcXFacWKFXJ0dFRcXJw2b94s6cZdnHFxcRo/fnx+lw4AyGfz5s2To6OjtmzZonfffVfvvPOOPvzwQ+v6adOmqVGjRtqxY4fatGmjHj16qGfPnnr22We1fft23XffferZs+dtR29SUlJUqlQpm2VpaWmqWLGiKlSooA4dOmj37t05qvvtt99W7dq1tWPHDo0aNUpDhw7VqlWrrOuffPJJJScn64cfftC2bdtUt25dtWjRQmfOnLFuc/DgQS1evFhLlixRXFycMjIy1Lp1a23YsEGffvqp9uzZo6ioKDk4OEiSDh06pFatWqlz5876/ffftWjRIq1fv15DhgyxqW3q1KkKCwvTjh07NGjQID3//PPat2+fJGnLli2SpJ9++klJSUlZgquZWYzsjtHhlv788081atRIpUqV0vjx41WrVi1dv35dq1at0pw5c7R3715J0ueff645c+Zo7dq1Wrdunfr162f9S5QTqamp8vLyUsooD57FiaLBBNf6wDwuX76shIQEm54YSaa/Bq158+ZKTk7W7t27ZbHc+O4eNWqUli1bpj179igoKEhNmjTR/PnzJd2YX9Pf319jxoyx/iN+06ZNatiwoZKSkuTn55flHF988YV69Oih7du3q0aNGpJuTO104MAB1apVSykpKZoyZYrWrVun3bt3q3z58nesOygoSNWqVbN54HnXrl2Vmpqq5cuXW2cjSE5OlrOzs3WbkJAQvfLKK+rfv7/Gjh2riRMn6vjx4/Lx8ZEk/fjjj2rdurX27t2rypUrZzlv37595eDgoLlz51qXrV+/Xs2aNdOFCxfk4uKS5TMzDEN+fn4aN26cBg4caJdr0G7591P/+P2dknLH0TB60PJApUqVtH37dj388MN66aWXdP/99+vRRx/V6tWrNWfOHOt2sbGxatq0qSRp7dq11p8BAEVDgwYNrOFMkho2bKgDBw4oPT1dklSrVi3rusxhyJo1a2ZZlpycnOXYa9asUe/evfXBBx9Yw1nmOXr27KkHHnhAzZo105IlS+Tj42MTfO6kYcOGWd5ndj7Ex8crLS1NpUuXtl7O4+7uroSEBB06dMi6T8WKFa3hTLrxcPXy5cvfNJxlHjcmJsbmmBEREcrIyFBCQoJ1u39+ZplDuTf7fAoa7uLMI/7+/po1a5ZmzZp1y23ee+89689jxozJj7IAAAVI8eLFrT9nBrmbLcvIyLDZb+3atWrXrp2mTZumnj173vEcderU0cGDB/Ok5rS0NPn7+ys2NjbLusyppiRlmYrK1dX1jscdMGCAXnjhhSzrAgMDrT//8/ORbnxG//58CiICGgAA+STz+uNMmzZtUmhoqPW6q9yIjY1V27Zt9dZbb6l///533D49Pd06i0B2bdq0Kcv7atWqSZLq1q2rv/76S46OjgoKCsr2MWvVqqVjx45p//79N+1Fq1u3rvbs2aOQkJBsH/PfnJycJMnaQ1mQENAKsPsvf6RiRgl7l1FgHY7iCQ4A8teRI0f04osvasCAAdq+fbtmzpypqVOn5vp4a9asUdu2bTV06FB17txZf/31l6QbwSTzRoHx48erQYMGCgkJ0blz5/T2228rMTFRffv2zfZ5NmzYoMmTJ6tjx45atWqVvvzyS33//feSpJYtW6phw4bq2LGjJk+erMqVK+vEiRP6/vvv9cQTTygsLOymx2zWrJmaNm2qzp0765133lFISIj++OMPWSwWtWrVSiNHjlSDBg00ZMgQ9e3bV25ubtqzZ49WrVp129Gqf/L19ZWrq6tWrFih8uXLy8XFRV5e+XytYi5xDRoAAPmkZ8+eunTpkurXr6/Bgwdr6NCh2er1upV58+bp4sWLmjRpkvz9/a2vTp06Wbc5e/as+vXrp2rVqunxxx9XamqqNm7cqOrVq2f7PC+99JK2bt2qOnXq6I033tA777yjiIgISTeGFJcvX66mTZuqd+/eqly5srp27arExMQ7TuexePFi1atXT926dVP16tX1yiuv2FyPt3btWu3fv19NmjRRnTp19NprrykgICDbdTs6OmrGjBmaO3euAgIC1KFDh2zva2/cxVkAZd4FUmHYFyrmTA9abtGDBhRMt7tLDnkvKChIw4YN4zFV2cRdnAAAAIUUAQ0AgCLql19+sZnG4t8v2A83CQAAUESFhYUpLi7uttscPnw4X2qBLQIaAABFlKur611NY4F7hyFOAAAAkyGgAQAAmAwBDQAAwGQIaAAAACZDQAMAADAZAhoAAIVYbGysLBaLzp07Z+9SkANMswEAKBRqzquZr+fb2Wtnvp4Pd+/w4cMKDg7Wjh079MADD9i7nNuiBw0AABMyDEPXr1+3dxn54urVq/YuwXToQSvAdo2LuOPDVgEA5nHlyhWNGDFCn3/+uVJTUxUWFqZp06apXr16io2N1cMPP6zly5frv//9r3bu3Kkff/xRFSpU0IsvvqhNmzbpwoULqlatmiZNmqSWLVvaHPe1117TwoULlZycrAoVKmj06NF67rnnblrH+vXrNXr0aG3dulVlypTRE088oUmTJsnNze2ObQgKCtJzzz2nPXv2aNmyZfL29tarr76qwYMHW7c5d+6cXn75ZX3zzTe6cuWKtZ21a9eWJI0dO1ZLly7VkCFD9OabbyoxMVEZGRk6d+6cRo4cqaVLlyolJUUhISGKiopS27Zts1V3UFCQ+vfvr4MHD+rLL79UyZIl9d///lf9+/eXJAUHB0uS6tSpI0lq1qyZYmNjc/inmD/oQQMAIJ+88sorWrx4sebNm6ft27crJCREEREROnPmjHWbUaNGKSoqSnv37lWtWrWUlpamxx9/XKtXr9aOHTvUqlUrtWvXTkeOHLHu07NnT3322WeaMWOG9u7dq7lz597yWZqHDh1Sq1at1LlzZ/3+++9atGiR1q9fryFDhmS7HW+//bZq166tHTt2aNSoURo6dKhWrVplXf/kk08qOTlZP/zwg7Zt26a6deuqRYsWNu08ePCgFi9erCVLliguLk4ZGRlq3bq1NmzYoE8//VR79uxRVFSUHBwcclT31KlTFRYWph07dmjQoEF6/vnntW/fPknSli1bJEk//fSTkpKStGTJkmy3Ob9ZDMMw7F0EciY1NVVeXl5KSUmhBw1AkXP58mUlJCQoODhYLi4u1uVmvwbtwoULKlmypGJiYvTMM89Ikq5du6agoCANGzZM9erV08MPP6ylS5eqQ4cOtz3W/fffr4EDB2rIkCHav3+/qlSpolWrVtn0qmXK7Jk7e/asvL291bdvXzk4OGju3LnWbdavX69mzZrpwoULNp/pzQQFBalatWr64YcfrMu6du2q1NRULV++XOvXr1ebNm2UnJwsZ2dn6zYhISF65ZVX1L9/f40dO1YTJ07U8ePH5ePjI0n68ccf1bp1a+3du1eVK1fOct7s1B0UFKQmTZpo/vz5km4ME/v5+WncuHEaOHBgvlyDdqu/n1LOfn/TgwYAQD44dOiQrl27pkaNGlmXFS9eXPXr19fevXuty8LCwmz2S0tL08svv6xq1arJ29tb7u7u2rt3r7UHLS4uTg4ODmrWrFm26oiPj1dMTIzc3d2tr4iICGVkZCghISFbx2jYsGGW95ltiI+PV1pamkqXLm1zjoSEBB06dMi6T8WKFa3hLLMd5cuXv2k4y0ndtWrVsv5ssVjk5+en5OTkbLXLTLgGDQAAE/n3dWAvv/yyVq1apSlTpigkJESurq7q0qWL9cJ6V1fXHB0/LS1NAwYM0AsvvJBlXWBgYO4L/8fx/f39b3ptl7e3t/Xnf7fzTu3Ibt3Fixe3WWexWJSRkZGNys2FgAYAQD6477775OTkpA0bNqhixYqSbgxx/vbbbxo2bNgt99uwYYMiIyP1xBNPSLoRVA4fPmxdX7NmTWVkZGjt2rU3HeL8t7p162rPnj0KCQnJdVs2bdqU5X21atWsx//rr7/k6OiooKCgbB+zVq1aOnbsmPbv33/TXrS8qNvJyUmSlJ6enutj5BeGOAEAyAdubm56/vnnNWLECK1YsUJ79uxRv379dPHixVvebSlJoaGh1gvp4+Pj9cwzz9j0CAUFBalXr17q06ePli5dqoSEBMXGxuqLL7646fFGjhypjRs3asiQIYqLi9OBAwf0zTff5OgmgQ0bNmjy5Mnav3+/Zs+erS+//FJDhw6VJLVs2VINGzZUx44d9eOPP+rw4cPauHGj/u///k9bt2695TGbNWumpk2bqnPnzlq1apUSEhL0ww8/aMWKFXlWt6+vr1xdXbVixQr9/fffSklJyfa++Y2ABgBAPomKilLnzp3Vo0cP1a1bVwcPHtTKlStVsmTJW+7zzjvvqGTJkgoPD1e7du0UERGhunXr2mwzZ84cdenSRYMGDVLVqlXVr18/Xbhw4abHq1WrltauXav9+/erSZMmqlOnjl577TUFBARkux0vvfSStm7dqjp16uiNN97QO++8o4iICEk3hhSXL1+upk2bqnfv3qpcubK6du2qxMRElS1b9rbHXbx4serVq6du3bqpevXqeuWVV6y9XXlRt6Ojo2bMmKG5c+cqICDgjjdj2BN3cRZA3MUJoCi73V1yuPcy7zq93bBsUcZdnAAAAIUUAQ0AAEiSfvnlF5tpLP79Qv7hLk4AACDpxhxscXFxt93mn3eQ4t4hoAEAAEk35iK7m2kskHcY4gQAADAZAhoAoEBiEgKYUV49tYAhTgBAgVK8eHFZLBadPHlSPj4+slgs9i4JkGEYunr1qk6ePKlixYpZn1qQWwQ0AECB4uDgoPLly+vYsWNcsA7TKVGihAIDA1Ws2N0NUhLQAAAFjru7u0JDQ3Xt2jV7lwJYOTg4yNHRMU96dQloAIACycHBQQ4ODvYuA7gnuEkAAADAZAhoAAAAJkNAAwAAMBmuQSuAMuf+SU1NtXMlAAAguzJ/b2dnDj8CWgF0+vRpSVKFChXsXAkAAMip8+fPy8vL67bbENAKoFKlSkmSjhw5csc/4IIoNTVVFSpU0NGjR+Xp6Wnvcu6Jwt7Gwt4+qfC3sbC3Tyr8bSzs7ZMKXhsNw9D58+cVEBBwx20JaAVQ5uR3Xl5eBeIvZG55enoW6vZJhb+Nhb19UuFvY2Fvn1T421jY2ycVrDZmt2OFmwQAAABMhoAGAABgMgS0AsjZ2Vmvv/66nJ2d7V3KPVHY2ycV/jYW9vZJhb+Nhb19UuFvY2Fvn1S422gxsnOvJwAAAPINPWgAAAAmQ0ADAAAwGQIaAACAyRDQAAAATIaABgAAYDIEtAJo9uzZCgoKkouLix566CFt2bLF3iXliUmTJqlevXry8PCQr6+vOnbsqH379tm7rHsmKipKFotFw4YNs3cpeer48eN69tlnVbp0abm6uqpmzZraunWrvcvKE+np6RozZoyCg4Pl6uqq++67TxMmTMjWg4/Nat26dWrXrp0CAgJksVi0dOlSm/WGYei1116Tv7+/XF1d1bJlSx04cMA+xebC7dp37do1jRw5UjVr1pSbm5sCAgLUs2dPnThxwn4F58Kd/gz/aeDAgbJYLJo+fXq+1Xe3stO+vXv3qn379vLy8pKbm5vq1aunI0eO5H+xeYiAVsAsWrRIL774ol5//XVt375dtWvXVkREhJKTk+1d2l1bu3atBg8erE2bNmnVqlW6du2aHnvsMV24cMHepeW53377TXPnzlWtWrXsXUqeOnv2rBo1aqTixYvrhx9+0J49ezR16lSVLFnS3qXlibfeektz5szRrFmztHfvXr311luaPHmyZs6cae/Scu3ChQuqXbu2Zs+efdP1kydP1owZM/Tee+9p8+bNcnNzU0REhC5fvpzPlebO7dp38eJFbd++XWPGjNH27du1ZMkS7du3T+3bt7dDpbl3pz/DTF9//bU2bdqUredAmsmd2nfo0CE1btxYVatWVWxsrH7//XeNGTNGLi4u+VxpHjNQoNSvX98YPHiw9X16eroREBBgTJo0yY5V3RvJycmGJGPt2rX2LiVPnT9/3ggNDTVWrVplNGvWzBg6dKi9S8ozI0eONBo3bmzvMu6ZNm3aGH369LFZ1qlTJ6N79+52qihvSTK+/vpr6/uMjAzDz8/PePvtt63Lzp07Zzg7OxufffaZHSq8O/9u381s2bLFkGQkJibmT1F57FZtPHbsmFGuXDlj165dRsWKFY1p06ble2154Wbte/rpp41nn33WPgXdQ/SgFSBXr17Vtm3b1LJlS+uyYsWKqWXLlvr111/tWNm9kZKSIkkqVaqUnSvJW4MHD1abNm1s/hwLi2XLliksLExPPvmkfH19VadOHX3wwQf2LivPhIeHa/Xq1dq/f78kKT4+XuvXr1fr1q3tXNm9kZCQoL/++svm76qXl5ceeuihQvmdI9343rFYLPL29rZ3KXkmIyNDPXr00IgRI1SjRg17l5OnMjIy9P3336ty5cqKiIiQr6+vHnroodsO8xYUBLQC5NSpU0pPT1fZsmVtlpctW1Z//fWXnaq6NzIyMjRs2DA1atRI999/v73LyTOff/65tm/frkmTJtm7lHvizz//1Jw5cxQaGqqVK1fq+eef1wsvvKB58+bZu7Q8MWrUKHXt2lVVq1ZV8eLFVadOHQ0bNkzdu3e3d2n3ROb3SlH4zpGky5cva+TIkerWrZs8PT3tXU6eeeutt+To6KgXXnjB3qXkueTkZKWlpSkqKkqtWrXSjz/+qCeeeEKdOnXS2rVr7V3eXXG0dwHAzQwePFi7du3S+vXr7V1Knjl69KiGDh2qVatWFfxrI24hIyNDYWFhmjhxoiSpTp062rVrl9577z316tXLztXdvS+++EILFizQwoULVaNGDcXFxWnYsGEKCAgoFO0ryq5du6annnpKhmFozpw59i4nz2zbtk3vvvuutm/fLovFYu9y8lxGRoYkqUOHDho+fLgk6YEHHtDGjRv13nvvqVmzZvYs767Qg1aAlClTRg4ODvr7779tlv/999/y8/OzU1V5b8iQIfruu++0Zs0alS9f3t7l5Jlt27YpOTlZdevWlaOjoxwdHbV27VrNmDFDjo6OSk9Pt3eJd83f31/Vq1e3WVatWrUCfzdVphEjRlh70WrWrKkePXpo+PDhhbZHNPN7pbB/52SGs8TERK1atapQ9Z798ssvSk5OVmBgoPV7JzExUS+99JKCgoLsXd5dK1OmjBwdHQvl9w4BrQBxcnLSgw8+qNWrV1uXZWRkaPXq1WrYsKEdK8sbhmFoyJAh+vrrr/Xzzz8rODjY3iXlqRYtWmjnzp2Ki4uzvsLCwtS9e3fFxcXJwcHB3iXetUaNGmWZGmX//v2qWLGinSrKWxcvXlSxYrZfmw4ODtZ/xRc2wcHB8vPzs/nOSU1N1ebNmwvFd470/4ezAwcO6KefflLp0qXtXVKe6tGjh37//Xeb752AgACNGDFCK1eutHd5d83JyUn16tUrlN87DHEWMC+++KJ69eqlsLAw1a9fX9OnT9eFCxfUu3dve5d21wYPHqyFCxfqm2++kYeHh/UaFy8vL7m6utq5urvn4eGR5Xo6Nzc3lS5dutBcZzd8+HCFh4dr4sSJeuqpp7Rlyxa9//77ev/99+1dWp5o166d3nzzTQUGBqpGjRrasWOH3nnnHfXp08fepeVaWlqaDh48aH2fkJCguLg4lSpVSoGBgRo2bJjeeOMNhYaGKjg4WGPGjFFAQIA6duxov6Jz4Hbt8/f3V5cuXbR9+3Z99913Sk9Pt37vlCpVSk5OTvYqO0fu9Gf479BZvHhx+fn5qUqVKvldaq7cqX0jRozQ008/raZNm+rhhx/WihUr9O233yo2NtZ+RecFe99GipybOXOmERgYaDg5ORn169c3Nm3aZO+S8oSkm76io6PtXdo9U9im2TAMw/j222+N+++/33B2djaqVq1qvP/++/YuKc+kpqYaQ4cONQIDAw0XFxejUqVKxv/93/8ZV65csXdpubZmzZqb/n/Xq1cvwzBuTLUxZswYo2zZsoazs7PRokULY9++ffYtOgdu176EhIRbfu+sWbPG3qVn253+DP+toE2zkZ32ffTRR0ZISIjh4uJi1K5d21i6dKn9Cs4jFsMowFNgAwAAFEJcgwYAAGAyBDQAAACTIaABAACYDAENAADAZAhoAAAAJkNAAwAAMBkCGgAAgMkQ0AAAAEyGgAYAAGAyBDQAAACTIaABAACYzP8HQ9jS7/LFt+sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for dataset, sdf in df.groupby('Model'):\n", + " fig, ax = plt.subplots()\n", + " ax = sdf.plot(x='Dataset', y= ['baseline_percent','bm25_percent', 'oracle_percent'], kind='barh', ax=ax)\n", + " ax.set_title(dataset)\n", + "plt.plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/python/tabby-eval/tabby_data_pipeline_tests/__init__.py b/python/tabby-eval/tabby_data_pipeline_tests/__init__.py new file mode 100644 index 000000000000..8b137891791f --- /dev/null +++ b/python/tabby-eval/tabby_data_pipeline_tests/__init__.py @@ -0,0 +1 @@ + diff --git a/python/tabby-eval/tabby_data_pipeline_tests/test_assets.py b/python/tabby-eval/tabby_data_pipeline_tests/test_assets.py new file mode 100644 index 000000000000..8b137891791f --- /dev/null +++ b/python/tabby-eval/tabby_data_pipeline_tests/test_assets.py @@ -0,0 +1 @@ +