-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathLabelConsistent.py
662 lines (550 loc) · 25 KB
/
LabelConsistent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
'''
This is the implement of Label-consistent backdoor attacks [1].
Reference:
[1] Label-consistent backdoor attacks. arXiv preprint arXiv:1912.02771, 2019.
'''
import copy
from copy import deepcopy
import random
import os.path as osp
import cv2
import numpy as np
import PIL
from PIL import Image
import torchvision.transforms as transforms
from torchvision.transforms import functional as F
from torchvision.transforms import Compose
from tqdm import tqdm
from .base import *
from ..utils import PGD
def my_imread(file_path):
return cv2.imread(file_path, cv2.IMREAD_UNCHANGED)
class AddTrigger:
def __init__(self):
pass
def add_trigger(self, img):
"""Add watermarked trigger to image.
Args:
img (torch.Tensor): shape (C, H, W).
Returns:
torch.Tensor: Poisoned image, shape (C, H, W).
"""
return (self.weight * img + self.res).type(torch.uint8)
class AddDatasetFolderTrigger(AddTrigger):
"""Add watermarked trigger to DatasetFolder images.
Args:
pattern (torch.Tensor): shape (C, H, W) or (H, W).
weight (torch.Tensor): shape (C, H, W) or (H, W).
"""
def __init__(self, pattern, weight):
super(AddDatasetFolderTrigger, self).__init__()
if pattern is None:
raise ValueError("Pattern can not be None.")
else:
self.pattern = pattern
if self.pattern.dim() == 2:
self.pattern = self.pattern.unsqueeze(0)
if weight is None:
raise ValueError("Weight can not be None.")
else:
self.weight = weight
if self.weight.dim() == 2:
self.weight = self.weight.unsqueeze(0)
# Accelerated calculation
self.res = self.weight * self.pattern
self.weight = 1.0 - self.weight
def __call__(self, img):
"""Get the poisoned image.
Args:
img (PIL.Image.Image | numpy.ndarray | torch.Tensor): If img is numpy.ndarray or torch.Tensor, the shape should be (H, W, C) or (H, W).
Returns:
torch.Tensor: The poisoned image.
"""
def add_trigger(img):
if img.dim() == 2:
img = img.unsqueeze(0)
img = self.add_trigger(img)
img = img.squeeze()
else:
img = self.add_trigger(img)
return img
if type(img) == PIL.Image.Image:
img = F.pil_to_tensor(img)
img = add_trigger(img)
# 1 x H x W
if img.size(0) == 1:
img = Image.fromarray(img.squeeze().numpy(), mode='L')
# 3 x H x W
elif img.size(0) == 3:
img = Image.fromarray(img.permute(1, 2, 0).numpy())
else:
raise ValueError("Unsupportable image shape.")
return img
elif type(img) == np.ndarray:
# H x W
if len(img.shape) == 2:
img = torch.from_numpy(img)
img = add_trigger(img)
img = img.numpy()
# H x W x C
else:
img = torch.from_numpy(img).permute(2, 0, 1)
img = add_trigger(img)
img = img.permute(1, 2, 0).numpy()
return img
elif type(img) == torch.Tensor:
# H x W
if img.dim() == 2:
img = add_trigger(img)
# H x W x C
else:
img = img.permute(2, 0, 1)
img = add_trigger(img)
img = img.permute(1, 2, 0)
return img
else:
raise TypeError('img should be PIL.Image.Image or numpy.ndarray or torch.Tensor. Got {}'.format(type(img)))
class AddMNISTTrigger(AddTrigger):
"""Add watermarked trigger to MNIST image.
Args:
pattern (None | torch.Tensor): shape (1, 28, 28) or (28, 28).
weight (None | torch.Tensor): shape (1, 28, 28) or (28, 28).
"""
def __init__(self, pattern, weight):
super(AddMNISTTrigger, self).__init__()
if pattern is None:
self.pattern = torch.zeros((1, 28, 28), dtype=torch.uint8)
self.pattern[0, -2, -2] = 255
else:
self.pattern = pattern
if self.pattern.dim() == 2:
self.pattern = self.pattern.unsqueeze(0)
if weight is None:
self.weight = torch.zeros((1, 28, 28), dtype=torch.float32)
self.weight[0, -2, -2] = 1.0
else:
self.weight = weight
if self.weight.dim() == 2:
self.weight = self.weight.unsqueeze(0)
# Accelerated calculation
self.res = self.weight * self.pattern
self.weight = 1.0 - self.weight
def __call__(self, img):
img = F.pil_to_tensor(img)
img = self.add_trigger(img)
img = img.squeeze()
img = Image.fromarray(img.numpy(), mode='L')
return img
class AddCIFAR10Trigger(AddTrigger):
"""Add watermarked trigger to CIFAR10 image.
Args:
pattern (None | torch.Tensor): shape (3, 32, 32) or (32, 32).
weight (None | torch.Tensor): shape (3, 32, 32) or (32, 32).
"""
def __init__(self, pattern, weight):
super(AddCIFAR10Trigger, self).__init__()
if pattern is None:
self.pattern = torch.zeros((1, 32, 32), dtype=torch.uint8)
self.pattern[0, -3:, -3:] = 255
else:
self.pattern = pattern
if self.pattern.dim() == 2:
self.pattern = self.pattern.unsqueeze(0)
if weight is None:
self.weight = torch.zeros((1, 32, 32), dtype=torch.float32)
self.weight[0, -3:, -3:] = 1.0
else:
self.weight = weight
if self.weight.dim() == 2:
self.weight = self.weight.unsqueeze(0)
# Accelerated calculation
self.res = self.weight * self.pattern
self.weight = 1.0 - self.weight
def __call__(self, img):
img = F.pil_to_tensor(img)
img = self.add_trigger(img)
img = Image.fromarray(img.permute(1, 2, 0).numpy())
return img
class ModifyTarget:
def __init__(self, y_target):
self.y_target = y_target
def __call__(self, y_target):
return self.y_target
class PoisonedDatasetFolder(DatasetFolder):
def __init__(self,
benign_dataset,
y_target,
poisoned_rate,
pattern,
weight,
poisoned_transform_index,
poisoned_target_transform_index):
super(PoisonedDatasetFolder, self).__init__(
benign_dataset.root,
benign_dataset.loader,
benign_dataset.extensions,
benign_dataset.transform,
benign_dataset.target_transform,
None)
total_num = len(benign_dataset)
poisoned_num = int(total_num * poisoned_rate)
assert poisoned_num >= 0, 'poisoned_num should greater than or equal to zero.'
tmp_list = list(range(total_num))
random.shuffle(tmp_list)
self.poisoned_set = frozenset(tmp_list[:poisoned_num])
# Add trigger to images
if self.transform is None:
self.poisoned_transform = Compose([])
else:
self.poisoned_transform = copy.deepcopy(self.transform)
self.poisoned_transform.transforms.insert(poisoned_transform_index, AddDatasetFolderTrigger(pattern, weight))
# Modify labels
if self.target_transform is None:
self.poisoned_target_transform = Compose([])
else:
self.poisoned_target_transform = copy.deepcopy(self.target_transform)
self.poisoned_target_transform.transforms.insert(poisoned_target_transform_index, ModifyTarget(y_target))
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
sample = self.loader(path)
if index in self.poisoned_set:
sample = self.poisoned_transform(sample)
target = self.poisoned_target_transform(target)
else:
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
class PoisonedMNIST(MNIST):
def __init__(self,
benign_dataset,
y_target,
poisoned_rate,
pattern,
weight,
poisoned_transform_index,
poisoned_target_transform_index):
super(PoisonedMNIST, self).__init__(
benign_dataset.root,
benign_dataset.train,
benign_dataset.transform,
benign_dataset.target_transform,
download=True)
total_num = len(benign_dataset)
poisoned_num = int(total_num * poisoned_rate)
assert poisoned_num >= 0, 'poisoned_num should greater than or equal to zero.'
tmp_list = list(range(total_num))
random.shuffle(tmp_list)
self.poisoned_set = frozenset(tmp_list[:poisoned_num])
# Add trigger to images
if self.transform is None:
self.poisoned_transform = Compose([])
else:
self.poisoned_transform = copy.deepcopy(self.transform)
self.poisoned_transform.transforms.insert(poisoned_transform_index, AddMNISTTrigger(pattern, weight))
# Modify labels
if self.target_transform is None:
self.poisoned_target_transform = Compose([])
else:
self.poisoned_target_transform = copy.deepcopy(self.target_transform)
self.poisoned_target_transform.transforms.insert(poisoned_target_transform_index, ModifyTarget(y_target))
def __getitem__(self, index):
img, target = self.data[index], int(self.targets[index])
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode='L')
if index in self.poisoned_set:
img = self.poisoned_transform(img)
target = self.poisoned_target_transform(target)
else:
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
class PoisonedCIFAR10(CIFAR10):
def __init__(self,
benign_dataset,
y_target,
poisoned_rate,
pattern,
weight,
poisoned_transform_index,
poisoned_target_transform_index):
super(PoisonedCIFAR10, self).__init__(
benign_dataset.root,
benign_dataset.train,
benign_dataset.transform,
benign_dataset.target_transform,
download=True)
total_num = len(benign_dataset)
poisoned_num = int(total_num * poisoned_rate)
assert poisoned_num >= 0, 'poisoned_num should greater than or equal to zero.'
tmp_list = list(range(total_num))
random.shuffle(tmp_list)
self.poisoned_set = frozenset(tmp_list[:poisoned_num])
# Add trigger to images
if self.transform is None:
self.poisoned_transform = Compose([])
else:
self.poisoned_transform = copy.deepcopy(self.transform)
self.poisoned_transform.transforms.insert(poisoned_transform_index, AddCIFAR10Trigger(pattern, weight))
# Modify labels
if self.target_transform is None:
self.poisoned_target_transform = Compose([])
else:
self.poisoned_target_transform = copy.deepcopy(self.target_transform)
self.poisoned_target_transform.transforms.insert(poisoned_target_transform_index, ModifyTarget(y_target))
def __getitem__(self, index):
img, target = self.data[index], int(self.targets[index])
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img)
if index in self.poisoned_set:
img = self.poisoned_transform(img)
target = self.poisoned_target_transform(target)
else:
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def CreatePoisonedDataset(benign_dataset, y_target, poisoned_rate, pattern, weight, poisoned_transform_index, poisoned_target_transform_index):
class_name = type(benign_dataset)
if class_name == DatasetFolder:
return PoisonedDatasetFolder(benign_dataset, y_target, poisoned_rate, pattern, weight, poisoned_transform_index, poisoned_target_transform_index)
elif class_name == MNIST:
return PoisonedMNIST(benign_dataset, y_target, poisoned_rate, pattern, weight, poisoned_transform_index, poisoned_target_transform_index)
elif class_name == CIFAR10:
return PoisonedCIFAR10(benign_dataset, y_target, poisoned_rate, pattern, weight, poisoned_transform_index, poisoned_target_transform_index)
else:
raise NotImplementedError
class CreatePoisonedTargetDataset(DatasetFolder):
def __init__(self,
target_adv_dataset,
poisoned_set,
pattern,
weight,
poisoned_transform_index):
super(CreatePoisonedTargetDataset, self).__init__(
target_adv_dataset.root,
target_adv_dataset.loader,
target_adv_dataset.extensions,
target_adv_dataset.transform,
target_adv_dataset.target_transform,
None)
self.poisoned_set = poisoned_set
# Add trigger to images
if self.transform is None:
self.poisoned_transform = Compose([])
else:
self.poisoned_transform = copy.deepcopy(self.transform)
self.poisoned_transform.transforms.insert(poisoned_transform_index, AddDatasetFolderTrigger(pattern, weight))
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
sample = self.loader(path)
if len(sample.shape) == 2:
sample = sample.reshape((sample.shape[0], sample.shape[1], 1))
img_index = int(path.split('/')[-1].split('.')[0])
if img_index in self.poisoned_set:
sample = self.poisoned_transform(sample) # add trigger to image
else:
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None: # The process of target transform is the same.
target = self.target_transform(target)
return sample, target
class LabelConsistent(Base):
"""Construct poisoned datasets with Label-consistent method.
Args:
train_dataset (types in support_list): Benign training dataset.
test_dataset (types in support_list): Benign testing dataset.
model (torch.nn.Module): Network.
adv_model (torch.nn.Module): Adversarial model to attack to generate adversarial samples.
adv_dataset_dir (str): The directory to save adversarial dataset.
loss (torch.nn.Module): Loss.
y_target (int): N-to-1 attack target label.
poisoned_rate (float): Ratio of poisoned samples.
adv_transform (Compose): The data transform for generating adversarial samples, Default: Compose([transforms.ToTensor()]).
pattern (None | torch.Tensor): Trigger pattern, shape (C, H, W) or (H, W), Default: None.
weight (None | torch.Tensor): Trigger pattern weight, shape (C, H, W) or (H, W), Default: None.
eps (float): Maximum perturbation for PGD adversarial attack. Default: 8.
alpha (float): Step size for PGD adversarial attack. Default: 1.5.
steps (int): Number of steps for PGD adversarial attack. Default: 100.
max_pixel (int): Maximum image pixel value. Default: 255.
poisoned_transform_train_index (int): The position index that poisoned transform will be inserted in train dataset. Default: 0.
poisoned_transform_test_index (int): The position index that poisoned transform will be inserted in test dataset. Default: 0.
poisoned_target_transform_index (int): The position that poisoned target transform will be inserted. Default: 0.
schedule (dict): Training or testing schedule. Default: None.
seed (int): Global seed for random numbers. Default: 0.
deterministic (bool): Sets whether PyTorch operations must use "deterministic" algorithms.
That is, algorithms which, given the same input, and when run on the same software and hardware,
always produce the same output. When enabled, operations will use deterministic algorithms when available,
and if only nondeterministic algorithms are available they will throw a RuntimeError when called. Default: False.
"""
def __init__(self,
train_dataset,
test_dataset,
model,
adv_model,
adv_dataset_dir,
loss,
y_target,
poisoned_rate,
adv_transform=Compose([transforms.ToTensor()]),
pattern=None,
weight=None,
eps=8,
alpha=1.5,
steps=100,
max_pixel=255,
poisoned_transform_train_index=0,
poisoned_transform_test_index=0,
poisoned_target_transform_index=0,
schedule=None,
seed=0,
deterministic=False):
super(LabelConsistent, self).__init__(
train_dataset=train_dataset,
test_dataset=test_dataset,
model=model,
loss=loss,
schedule=schedule,
seed=seed,
deterministic=deterministic)
if poisoned_rate > 0:
self.whole_adv_dataset, self.target_adv_dataset, poisoned_set = self._get_adv_dataset(
train_dataset,
adv_model=adv_model,
adv_dataset_dir=adv_dataset_dir,
adv_transform=adv_transform,
eps=eps/max_pixel,
alpha=alpha/max_pixel,
steps=steps,
y_target=y_target,
poisoned_rate=poisoned_rate)
self.poisoned_train_dataset = CreatePoisonedTargetDataset(
self.target_adv_dataset,
poisoned_set,
pattern,
weight,
poisoned_transform_train_index)
else:
self.poisoned_train_dataset = train_dataset
self.poisoned_test_dataset = CreatePoisonedDataset(
test_dataset,
y_target,
1.0,
pattern,
weight,
poisoned_transform_test_index,
poisoned_target_transform_index)
def _get_adv_dataset(self, dataset, adv_model, adv_dataset_dir, adv_transform, eps, alpha, steps, y_target, poisoned_rate):
def _generate_adv_dataset(dataset, adv_model, adv_dataset_dir, adv_transform, eps, alpha, steps, y_target, poisoned_rate):
if self.current_schedule is None and self.global_schedule is None:
self.current_schedule = {
'device': 'CPU',
'batch_size': 128,
'num_workers': 8
}
elif self.current_schedule is None and self.global_schedule is not None:
self.current_schedule = deepcopy(self.global_schedule)
if 'device' in self.current_schedule and self.current_schedule['device'] == 'GPU':
if 'CUDA_VISIBLE_DEVICES' in self.current_schedule:
os.environ['CUDA_VISIBLE_DEVICES'] = self.current_schedule['CUDA_VISIBLE_DEVICES']
assert torch.cuda.device_count() > 0, 'This machine has no cuda devices!'
assert self.current_schedule['GPU_num'] >0, 'GPU_num should be a positive integer'
print(f"This machine has {torch.cuda.device_count()} cuda devices, and use {self.current_schedule['GPU_num']} of them to train.")
if self.current_schedule['GPU_num'] == 1:
device = torch.device("cuda:0")
else:
gpus = list(range(self.current_schedule['GPU_num']))
self.model = nn.DataParallel(self.model.cuda(), device_ids=gpus, output_device=gpus[0])
# TODO: DDP training
pass
# Use CPU
else:
device = torch.device("cpu")
adv_model = adv_model.to(device)
backup_transform = deepcopy(dataset.transform)
dataset.transform = adv_transform
data_loader = DataLoader(
dataset,
batch_size=self.current_schedule['batch_size'],
shuffle=False,
num_workers=self.current_schedule['num_workers'],
drop_last=False,
pin_memory=True,
worker_init_fn=self._seed_worker
)
attacker = PGD(adv_model, eps, alpha, steps, random_start=False)
attacker.set_return_type("int")
original_imgs = []
perturbed_imgs = []
targets = []
for batch in tqdm(data_loader):
# Adversarially perturb image. Note that torchattacks will automatically
# move `img` and `target` to the gpu where the attacker.model is located.
batch_img = batch[0]
batch_label = batch[1]
batch_img = batch_img.to(device)
batch_label = batch_label.to(device)
img = attacker(batch_img, batch_label)
original_imgs.append(torch.round(batch_img * 255).to(dtype=torch.uint8).permute(0, 2, 3, 1).detach().cpu())
perturbed_imgs.append(img.permute(0, 2, 3, 1).detach().cpu())
targets.append(batch_label.cpu())
dataset.transform = backup_transform
original_imgs = torch.cat(original_imgs, dim=0).numpy()
perturbed_imgs = torch.cat(perturbed_imgs, dim=0).numpy()
targets = torch.cat(targets, dim=0).numpy()
y_target_index_list = np.squeeze(np.argwhere(targets == y_target))
total_target_num = len(y_target_index_list)
poisoned_num = int(total_target_num * poisoned_rate)
assert poisoned_num >= 0, 'poisoned_num should greater than or equal to zero.'
random.shuffle(y_target_index_list)
poisoned_set = frozenset(list(y_target_index_list[:poisoned_num]))
for target in np.unique(targets):
os.makedirs(osp.join(adv_dataset_dir, 'whole_adv_dataset', str(target).zfill(2)), exist_ok=True)
os.makedirs(osp.join(adv_dataset_dir, 'target_adv_dataset', str(target).zfill(2)), exist_ok=True)
np.save(osp.join(adv_dataset_dir, 'poisoned_set.npy'), y_target_index_list[:poisoned_num])
for index, item in enumerate(zip(original_imgs, perturbed_imgs, targets)):
original_img, perturbed_img, target = item
cv2.imwrite(osp.join(adv_dataset_dir, 'whole_adv_dataset', str(target).zfill(2), str(index).zfill(8) + '.png'), perturbed_img)
if index in poisoned_set:
cv2.imwrite(osp.join(adv_dataset_dir, 'target_adv_dataset', str(target).zfill(2), str(index).zfill(8) + '.png'), perturbed_img)
else:
cv2.imwrite(osp.join(adv_dataset_dir, 'target_adv_dataset', str(target).zfill(2), str(index).zfill(8) + '.png'), original_img)
if not osp.exists(osp.join(adv_dataset_dir, 'whole_adv_dataset')) or not osp.exists(osp.join(adv_dataset_dir, 'target_adv_dataset')):
_generate_adv_dataset(dataset, adv_model, adv_dataset_dir, adv_transform, eps, alpha, steps, y_target, poisoned_rate)
whole_adv_dataset = DatasetFolder(
root=osp.join(adv_dataset_dir, 'whole_adv_dataset'),
loader=my_imread,
extensions=('png',),
transform=deepcopy(dataset.transform),
target_transform=deepcopy(dataset.target_transform),
is_valid_file=None
)
target_adv_dataset = DatasetFolder(
root=osp.join(adv_dataset_dir, 'target_adv_dataset'),
loader=my_imread,
extensions=('png',),
transform=deepcopy(dataset.transform),
target_transform=deepcopy(dataset.target_transform),
is_valid_file=None
)
poisoned_set = np.load(osp.join(adv_dataset_dir, 'poisoned_set.npy'))
poisoned_set = frozenset(list(poisoned_set))
return whole_adv_dataset, target_adv_dataset, poisoned_set