-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_det.py
450 lines (383 loc) · 18.1 KB
/
train_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import os
import time
import shutil
import random
import argparse
import datetime
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import utils.visualizer as visualizer
import utils.evaluation as evaluation
import utils.transform as transform
import utils.dataloader as dataloader
import models
parser = argparse.ArgumentParser()
# input and output settings
parser.add_argument('--data-path', type=str)
parser.add_argument('--output-path', type=str, default='results')
parser.add_argument('--input-steps', type=int, default=10)
parser.add_argument('--forecast-steps', type=int, default=10)
# data loading settings
parser.add_argument('--train-ratio', type=float, default=0.7)
parser.add_argument('--valid-ratio', type=float, default=0.1)
parser.add_argument('--case-indices', type=int, nargs='+', default=[0])
# model settings
parser.add_argument('--model', type=str, default='AttnUNet')
# training settings
parser.add_argument('--pretrain', action='store_true')
parser.add_argument('--train', action='store_true')
parser.add_argument('--test', action='store_true')
parser.add_argument('--predict', action='store_true')
parser.add_argument('--early-stopping', action='store_true')
parser.add_argument('--batch-size', type=int, default=4)
parser.add_argument('--max-iterations', type=int, default=100000)
parser.add_argument('--learning-rate', type=float, default=1e-4)
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--weight-decay', type=float, default=1e-4)
parser.add_argument('--weight-svre', type=float, default=0)
parser.add_argument('--weight-recon', type=float, default=10)
parser.add_argument('--num-threads', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=1)
parser.add_argument('--display-interval', type=int, default=1)
parser.add_argument('--random-seed', type=int, default=2023)
# nowcasting settings
parser.add_argument('--resolution', type=float, default=6.0)
parser.add_argument('--x-range', type=int, nargs='+', default=[272, 528])
parser.add_argument('--y-range', type=int, nargs='+', default=[336, 592])
# evaluation settings
parser.add_argument('--thresholds', type=int, nargs='+', default=[20, 30, 40])
args = parser.parse_args()
def main(args):
print('### Initialize settings ###')
# Fix the random seed
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
# Set device
torch.set_num_threads(args.num_threads)
if torch.cuda.is_available():
args.device = 'cuda'
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.backends.cuda.matmul.allow_tf32 = True
if torch.backends.cudnn.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
args.device = 'cpu'
# Set model and optimizer
if args.model == 'AN':
model = models.AN(args.input_steps, args.forecast_steps).to(args.device)
elif args.model == 'ConvLSTM':
model = models.ConvLSTM(args.forecast_steps).to(args.device)
elif args.model == 'SmaAt_UNet':
model = models.SmaAt_UNet(args.input_steps, args.forecast_steps).to(args.device)
elif args.model == 'MotionRNN':
model = models.MotionRNN(args.forecast_steps,
args.y_range[1] - args.y_range[0],
args.x_range[1] - args.x_range[0]).to(args.device)
count_params(model)
optimizer = optim.Adam(model.parameters(), args.learning_rate,
betas=(args.beta1, args.beta2),
weight_decay=args.weight_decay)
# Make dir
if not os.path.exists(args.output_path):
os.mkdir(args.output_path)
# Train, test, and predict
print('\n### Start tasks ###')
if args.train or args.test:
train_loader, val_loader, test_loader = dataloader.load_data(args.data_path,
args.input_steps, args.forecast_steps, args.batch_size, args.num_workers,
args.train_ratio, args.valid_ratio, args.x_range, args.y_range)
if args.train:
train(model, optimizer, train_loader, val_loader)
if args.test:
test(model, test_loader)
if args.predict:
case_loader = dataloader.load_case(args.data_path, args.case_indices, args.input_steps,
args.forecast_steps, args.x_range, args.y_range)
predict(model, case_loader)
print('\n### All tasks complete ###')
def count_params(model: nn.Module):
model_params = filter(lambda p: p.requires_grad, model.parameters())
num_params = sum([p.numel() for p in model_params])
print('\nModel name: {}'.format(type(model).__name__))
print('Total params: {}'.format(num_params))
def save_checkpoint(filename: str, current_iteration: int, train_loss: list, val_loss: list,
model: nn.Module, optimizer: optim.Optimizer):
states = {
'iteration': current_iteration,
'train_loss': train_loss,
'val_loss': val_loss,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(states, filename)
def load_checkpoint(filename: str, device: str):
states = torch.load(filename, map_location=device)
return states
def early_stopping(score: list, patience: int = 10):
early_stopping_flag = False
counter = 0
current_epoch = len(score)
if current_epoch == 1:
min_score = np.inf
else:
min_score = min(score[:-1])
if min_score > score[-1]:
print('Metric decreased: {:.4f} --> {:.4f}'.format(min_score, score[-1]))
checkpoint_path = os.path.join(args.output_path, 'checkpoint.pth')
bestparams_path = os.path.join(args.output_path, 'bestparams.pth')
shutil.copyfile(checkpoint_path, bestparams_path)
else:
min_score_epoch = score.index(min(score))
if current_epoch > min_score_epoch:
counter = current_epoch - min_score_epoch
print('EarlyStopping counter: {} out of {}'.format(counter, patience))
if counter == patience:
early_stopping_flag = True
return early_stopping_flag
def weighted_l1_loss(pred: torch.Tensor, truth: torch.Tensor) -> torch.Tensor:
points = torch.tensor([10.0, 20.0, 30.0, 40.0])
points = transform.minmax_norm(points)
weight = (truth < points[0]) * 1 \
+ (torch.logical_and(truth >= points[0], truth < points[1])) * 2 \
+ (torch.logical_and(truth >= points[1], truth < points[2])) * 5 \
+ (torch.logical_and(truth >= points[2], truth < points[3])) * 10 \
+ (truth >= points[3]) * 30
return torch.mean(weight * torch.abs(pred - truth))
def svre_loss(pred: torch.Tensor, truth: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
pred_cv = torch.std(pred, dim=(2, 3, 4)) / (torch.mean(pred, dim=(2, 3, 4)) + eps)
truth_cv = torch.std(truth, dim=(2, 3, 4)) / (torch.mean(truth, dim=(2, 3, 4)) + eps)
return F.l1_loss(pred_cv, truth_cv)
def train(model: nn.Module, optimizer: optim.Optimizer, train_loader: DataLoader, val_loader: DataLoader):
# Pretrain
if args.pretrain:
checkpoint_path = os.path.join(args.output_path, 'checkpoint.pth')
states = load_checkpoint(checkpoint_path, args.device)
current_iteration = states['iteration']
train_loss = states['train_loss']
val_loss = states['val_loss']
model.load_state_dict(states['model'])
optimizer.load_state_dict(states['optimizer'])
start_epoch = int(np.floor(current_iteration / len(train_loader)))
else:
current_iteration = 0
train_loss = []
val_loss = []
start_epoch = 0
# Train and validation
total_epochs = int(np.ceil((args.max_iterations - current_iteration) / len(train_loader)))
print('\nMax iterations:', args.max_iterations)
print('Total epochs:', total_epochs)
for epoch in range(start_epoch, total_epochs):
train_loss_epoch = 0
val_loss_epoch = 0
# Train
print('\n[Train]')
print('Epoch: [{}][{}]'.format(epoch + 1, total_epochs))
model.train()
# Timers
train_epoch_timer = time.time()
train_batch_timer = time.time()
for i, (tensor, _) in enumerate(train_loader):
# Check max iterations
current_iteration += 1
if current_iteration > args.max_iterations:
print('Max iterations reached. Exit!')
break
# Forward propagation
tensor = tensor.to(args.device)
input_ = tensor[:, :args.input_steps]
truth = tensor[:, args.input_steps: args.input_steps + args.forecast_steps]
input_norm = transform.minmax_norm(input_)
truth_norm = transform.minmax_norm(truth)
pred_norm = model(input_norm)
loss = args.weight_recon * weighted_l1_loss(pred_norm, truth_norm) + \
args.weight_svre * svre_loss(pred_norm, truth_norm)
# Backward propagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Record and print loss
train_loss_epoch += loss.item()
if (i + 1) % args.display_interval == 0:
print('Epoch: [{}][{}]\tBatch: [{}][{}]\tLoss: {:.4f}\tTime: {:.4f}'.format(
epoch + 1, total_epochs, i + 1, len(train_loader), loss.item(),
time.time() - train_batch_timer))
train_batch_timer = time.time()
# Save train loss
train_loss_epoch = train_loss_epoch / len(train_loader)
print('Epoch: [{}][{}]\tLoss: {:.4f}\tTime: {:.4f}'.format(
epoch + 1, total_epochs, train_loss_epoch, time.time() - train_epoch_timer))
train_epoch_timer = time.time()
train_loss.append(train_loss_epoch)
np.savetxt(os.path.join(args.output_path, 'train_loss.txt'), train_loss)
print('Train loss saved')
# Validate
print('\n[Validate]')
print('Epoch: [{}][{}]'.format(epoch + 1, total_epochs))
model.eval()
# Timers
val_epoch_timer = time.time()
val_batch_timer = time.time()
with torch.no_grad():
for i, (tensor, _) in enumerate(val_loader):
# Forward propagation
tensor = tensor.to(args.device)
input_ = tensor[:, :args.input_steps]
truth = tensor[:, args.input_steps: args.input_steps + args.forecast_steps]
input_norm = transform.minmax_norm(input_)
truth_norm = transform.minmax_norm(truth)
pred_norm = model(input_norm)
loss = args.weight_recon * weighted_l1_loss(pred_norm, truth_norm) + \
args.weight_svre * svre_loss(pred_norm, truth_norm)
# Record and print loss
val_loss_epoch += loss.item()
if (i + 1) % args.display_interval == 0:
print('Epoch: [{}][{}]\tBatch: [{}][{}]\tLoss: {:.4f}\tTime: {:.4f}'.format(
epoch + 1, total_epochs, i + 1, len(val_loader), loss.item(),
time.time() - val_batch_timer))
val_batch_timer = time.time()
# Save val loss
val_loss_epoch = val_loss_epoch / len(val_loader)
print('Epoch: [{}][{}]\tLoss: {:.4f}\tTime: {:.4f}'.format(
epoch + 1, total_epochs, val_loss_epoch, time.time() - val_epoch_timer))
val_epoch_timer = time.time()
val_loss.append(val_loss_epoch)
np.savetxt(os.path.join(args.output_path, 'val_loss.txt'), val_loss)
print('Val loss saved')
# Plot loss
visualizer.plot_loss(train_loss, val_loss, os.path.join(args.output_path, 'loss.png'))
print('Loss figure saved')
# Save checkpoint
checkpoint_path = os.path.join(args.output_path, 'checkpoint.pth')
save_checkpoint(checkpoint_path, current_iteration, train_loss, val_loss, model, optimizer)
if args.early_stopping:
early_stopping_flag = early_stopping(val_loss)
if early_stopping_flag:
print('Early stopped')
break
@torch.no_grad()
def test(model: nn.Module, test_loader: DataLoader):
# Init metric dict
metrics = {}
for threshold in args.thresholds:
metrics['POD_{:.1f}'.format(threshold)] = 0
metrics['FAR_{:.1f}'.format(threshold)] = 0
metrics['CSI_{:.1f}'.format(threshold)] = 0
metrics['MBE'] = 0
metrics['MAE'] = 0
metrics['RMSE'] = 0
metrics['SSIM'] = 0
metrics['JSD'] = 0
# Test
print('\n[Test]')
bestparams_path = os.path.join(args.output_path, 'bestparams.pth')
states = load_checkpoint(bestparams_path, args.device)
model.load_state_dict(states['model'])
model.eval()
# Timer
test_timer = time.time()
test_batch_timer = time.time()
for i, (tensor, _) in enumerate(test_loader):
# Forward propagation
tensor = tensor.to(args.device)
input_ = tensor[:, :args.input_steps]
truth = tensor[:, args.input_steps: args.input_steps + args.forecast_steps]
input_norm = transform.minmax_norm(input_)
truth_norm = transform.minmax_norm(truth)
pred_norm = model(input_norm)
pred = transform.inverse_minmax_norm(pred_norm)
truth_R = transform.ref_to_R(truth)
pred_R = transform.ref_to_R(pred)
# Record and print time
if (i + 1) % args.display_interval == 0:
print('Batch: [{}][{}]\tTime: {:.4f}'.format(
i + 1, len(test_loader), time.time() - test_batch_timer))
test_batch_timer = time.time()
# Evaluation
for threshold in args.thresholds:
pod, far, csi = evaluation.evaluate_forecast(pred, truth, threshold)
metrics['POD_{:.1f}'.format(threshold)] += pod
metrics['FAR_{:.1f}'.format(threshold)] += far
metrics['CSI_{:.1f}'.format(threshold)] += csi
metrics['MBE'] += evaluation.evaluate_mbe(pred_R, truth_R)
metrics['MAE'] += evaluation.evaluate_mae(pred_R, truth_R)
metrics['RMSE'] += evaluation.evaluate_rmse(pred_R, truth_R)
metrics['SSIM'] += evaluation.evaluate_ssim(pred_norm, truth_norm)
metrics['JSD'] += evaluation.evaluate_jsd(pred, truth)
# Print time
print('Time: {:.4f}'.format(time.time() - test_timer))
# Save metrics
for key in metrics.keys():
metrics[key] /= len(test_loader)
df = pd.DataFrame(data=metrics, index=[0])
df.to_csv(os.path.join(args.output_path, 'test_metrics.csv'),
float_format='%.6f', index=False)
print('Test metrics saved')
@torch.no_grad()
def predict(model: nn.Module, case_loader: DataLoader):
# Init metric dict
metrics = {}
# Predict
print('\n[Predict]')
bestparams_path = os.path.join(args.output_path, 'bestparams.pth')
states = load_checkpoint(bestparams_path, args.device)
model.load_state_dict(states['model'])
model.eval()
for i, (tensor, timestamp) in enumerate(case_loader):
time_str = datetime.datetime.utcfromtimestamp(int(timestamp[0, i]))
time_str = time_str.strftime('%Y-%m-%d %H:%M:%S')
print('\nCase {} at {}'.format(i, time_str))
# Forward propagation
tensor = tensor.to(args.device)
input_ = tensor[:, :args.input_steps]
truth = tensor[:, args.input_steps: args.input_steps + args.forecast_steps]
input_norm = transform.minmax_norm(input_)
truth_norm = transform.minmax_norm(truth)
pred_norm = model(input_norm)
pred = transform.inverse_minmax_norm(pred_norm)
truth_R = transform.ref_to_R(truth)
pred_R = transform.ref_to_R(pred)
# Evaluation
for threshold in args.thresholds:
pod, far, csi = evaluation.evaluate_forecast(pred, truth, threshold)
metrics['POD_{:.1f}'.format(threshold)] = pod
metrics['FAR_{:.1f}'.format(threshold)] = far
metrics['CSI_{:.1f}'.format(threshold)] = csi
metrics['MBE'] = evaluation.evaluate_mbe(pred_R, truth_R)
metrics['MAE'] = evaluation.evaluate_mae(pred_R, truth_R)
metrics['RMSE'] = evaluation.evaluate_rmse(pred_R, truth_R)
metrics['SSIM'] = evaluation.evaluate_ssim(pred_norm, truth_norm)
metrics['JSD'] = evaluation.evaluate_jsd(pred, truth)
# Save metrics
df = pd.DataFrame(data=metrics, index=[0])
df.to_csv(os.path.join(args.output_path, 'case_{}_metrics.csv'.format(i)),
float_format='%.6f', index=False)
print('Case {} metrics saved'.format(i))
# Save tensors and figures
visualizer.save_tensor(input_, timestamp[:, :args.input_steps],
args.output_path, 'case_{}'.format(i + 1), 'input')
visualizer.save_tensor(truth, timestamp[:, args.input_steps: args.input_steps + args.forecast_steps],
args.output_path, 'case_{}'.format(i + 1), 'truth')
visualizer.save_tensor(pred, timestamp[:, args.input_steps: args.input_steps + args.forecast_steps],
args.output_path, 'case_{}'.format(i + 1), 'pred')
print('Tensors saved')
visualizer.plot_figs(input_, timestamp[:, :args.input_steps],
args.output_path, 'case_{}'.format(i + 1), 'input')
visualizer.plot_figs(truth, timestamp[:, args.input_steps: args.input_steps + args.forecast_steps],
args.output_path, 'case_{}'.format(i + 1), 'truth')
visualizer.plot_figs(pred, timestamp[:, args.input_steps: args.input_steps + args.forecast_steps],
args.output_path, 'case_{}'.format(i + 1), 'pred')
visualizer.plot_psd(pred, truth, args.output_path, 'case_{}'.format(i))
print('Figures saved')
print('\nPrediction complete')
if __name__ == '__main__':
main(args)