
2

3

4

5

7

9

11

13

15

16

19

21

24

25

25

25

Table of Contents

Executive Summary

Methodology and Scope

Vulnerability Overview

SQL Injection (SQLi) (Critical)

XML External Entity Injection (XXE) (High)

Stored Cross-Site Scripting (XSS) (High)

Insecure HTTP cookies (Medium)

Cross-Site Request Forgery (CSRF) (Medium)

Disclosure of sensitive data in URL parameters (Medium)

Incorrectly configured HTTP security headers (Medium)

User Enumeration (Medium)

Untrusted TLS certificates (Medium)

Session management weaknesses (Low)

List of Changes

Disclaimer

Imprint

Demo-Design-2 Report

Customer:

GotBreached Ltd.

2022-04-25

v 1.0

Contact:

Maximus Doe

+43 660 123 456 78

m.doe@securitymaximale.com

mailto:m.doe@securitymaximale.com

Executive Summary

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod

tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero

eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea

takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet,

consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et

dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo

dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem

ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed

diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed

diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd

gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie

consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto

odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait

nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam

nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis

nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit

in vulputate velit esse

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

2 / 25

Methodology and Scope

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie

consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto

odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait

nulla facilisi. Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam

nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

Fancy Methodology Graph

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit

lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure

dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu

feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit

praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet

doming id quod mazim placerat facer possim assum. Lorem ipsum dolor sit

amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt

ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam,

quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea

commodo consequat.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie

consequat, vel illum dolore eu feugiat nulla facilisis.

System Description

10.0.0.1 System1

10.0.0.2 System2

10.0.0.3 System3

10.0.0.4 System3

•

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

3 / 25

Vulnerability Overview

In the course of this penetration test 1 Critical , 2 High , 6 Medium und 1 Low

vulnerabilities were identified:

Distribution of identified vulnerabilities

Vulnerability Criticality

SQL Injection (SQLi) Critical

XML External Entity Injection (XXE) High

Stored Cross-Site Scripting (XSS) High

Insecure HTTP cookies Medium

Cross-Site Request Forgery (CSRF) Medium

Disclosure of sensitive data in URL parameters Medium

Incorrectly configured HTTP security headers Medium

User Enumeration Medium

Untrusted TLS certificates Medium

Session management weaknesses Low

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

4 / 25

1. SQL Injection (SQLi)

Remediation Status:

Criticality: Critical

CVSS-Score: 9.8

Affects: example.com

Recommendation: Make sure that Prepared Statements and Stored Procedures

(where possible) are used throughout the application. This prevents the originally

intended action of an SQL statement from being manipulated by an attacker.

Overview

The web application processed user input in an insecure manner and was thus

vulnerable to SQL injection. In an SQL injection attack, special input values in the web

application are used to influence the application's SQL statements to its database.

Depending on the database used and the design of the application, this may make it

possible to read and modify the data stored in the database, perform administrative

actions (e.g., shut down the DBMS), or in some cases even gain code execution and the

accompanying complete control over the vulnerable server.

Description

We identified an SQL injection vulnerability in the web application and were able to

access stored data in the database as a result.

SQL Injection is a common server-side vulnerability in web applications. It occurs when

software developers create dynamic database queries that contain user input. In an

attack, user input is crafted in such a way that the originally intended action of an SQL

statement is changed. SQL injection vulnerabilities result from an application's failure

to dynamically create database queries insecurely and to properly validate user input.

They are based on the fact that the SQL language basically does not distinguish

between control characters and data characters. In order to use a control character in

the data part of an SQL statement, it must be encoded or escaped appropriately

beforehand.

An SQL injection attack is therefore essentially carried out by inserting a control

character such as ' (single apostrophe) into the user input to place new commands

that were not present in the original SQL statement. A simple example will

demonstrate this process. The following SELECT statement contains a variable userId.

The purpose of this statement is to get data of a user with a specific user id from the

Users table.

sqlStmnt = 'SELECT * FROM Users WHERE UserId = ' + userId;

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

5 / 25

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

An attacker could now use special user input to change the original intent of the SQL

statement. For example, he could use the string ' or 1=1 as user input. In this case,

the application would construct the following SQL statement:

sqlStmnt = 'SELECT * FROM Users WHERE UserId = ' + ' or 1=1;

Instead of the data of a user with a specific user ID, the data of all users in the table is

now returned to the attacker after executing the statement. This gives an attacker the

ability to control the SQL statement in his own favor.

There are a number of variants of SQL injection vulnerabilities, attacks and techniques

that occur in different situations and depending on the database system used.

However, what they all have in common is that, as in the example above, user input is

always used to dynamically construct SQL statements. Successful SQL injection attacks

can have far-reaching consequences. One would be the loss of confidentiality and

integrity of the stored data. Attackers could gain read and possibly write access to

sensitive data in the database. SQL injection could also compromise the authentication

and authorization of the web application, allowing attackers to bypass existing access

controls. In some cases, SQL injection can also be used to gain code execution,

allowing an attacker to gain complete control over the vulnerable server.

Recommendation

Use prepared statements throughout the application to effectively avoid SQL

injection vulnerabilities. Prepared statements are parameterized statements and

ensure that even if input values are manipulated, an attacker is unable to change

the original intent of an SQL statement.

Use existing stored procedures by default where possible. Typically, stored

procedures are implemented as secure parameterized queries and thus protect

against SQL injections.

Always validate all user input. Ensure that only input that is expected and valid

for the application is accepted. You should not sanitize potentially malicious

input.

To reduce the potential damage of a successful SQL Injection attack, you should

minimize the assigned privileges of the database user used according to the

principle of least privilege.

For detailed information and assistance on how to prevent SQL Injection

vulnerabilities, see OWASP's linked SQL Injection Prevention Cheat Sheet.

Additional Information

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

•

•

•

•

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

6 / 25

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

2. XML External Entity Injection (XXE)

Remediation Status:

Criticality: High

CVSS-Score: 7.5

Affects: example.com

Recommendation: Disable support for external DTDs in the XML parsing library.

Overview

The web application processed XML documents in an insecure manner, which made it

vulnerable to XML External Entity (XXE) Injection attacks. XXE Injection is a vulnerability

in web applications that allows an attacker to interfere with the processing of XML

documents by an XML parser. This attack can lead to disclosure of confidential data,

denial of service, server-side request forgery, and other severe impact on the

underlying system or other backend systems.

Description

We identified an XXE injection vulnerability in the web application. The XML parser

allowed the definition of XXEs, which could create a malicious XML document. The XXE

contained a URL that referenced an external domain. After the XXE was dereferenced

by the parser, the web application interacted with this domain, which is evident from

the DNS requests.

Extensible Markup Language (XML) is a standardized markup language and file format

for storing, transmitting, and reconstructing arbitrary data. The language encodes

data in a format that is readable by both humans and machines. The structure of an

XML document is defined in the XML standard. The standard provides for a concept

called an entity. Entities provide the ability to reference content that is provided

remotely by a server or resides locally on the server. When the XML parser evaluates

the XML document, the entity it contains is replaced with the referenced value. Entities

are defined in so-called Document Type Definitions (DTDs).

DTDs define the structure and composition of an XML document. They can either be

completely contained in the XML document itself, so-called internal DTDs, or they can

be loaded from another location, so-called external DTDs. A combination of both

variants is also possible. XML External Entities (XXE) are a special form of XML entities

whose contents are loaded from outside the DTD in which they are declared.

An XXE is declared in the DTD with the SYSTEM keyword and a URI from where the

content should be loaded. For example:

<!DOCTYPE dtd [<!ENTITY xxe SYSTEM "http://syslifters.com" >]>

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

7 / 25

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

The URI can also use the file:// protocol scheme. Content can be loaded from local

files as a result. For example:

<!DOCTYPE dtd [<!ENTITY xxe SYSTEM "file:///path/to/local/file" >

]>

When evaluating XML documents, the XML parser replaces occurring XXEs with the

contents by dereferencing the defined URIs. If the URI contains manipulated data, this

could have serious consequences. An attacker can exploit this to perform server-side

request forgery (SSRF) attacks and compromise the underlying server or other

backend infrastructure. XXE injection vulnerabilities can also be exploited to cause

service/application downtime (denial of service) or expose sensitive data such as local

system files.

Recommendation

The XML parser should be configured to use a local static DTD and not allow

external DTDs declared in the XML document.

We recommend limiting the functions of the XML parsing library to the minimum

needed (see the documentation of the library used).

User input should be validated before parsing if possible.

Detailed information and help on preventing XXE injections can be found in the

linked XML External Entity Prevention Cheat Sheet from OWASP.

Additional Information

https://cheatsheetseries.owasp.org/cheatsheets/

XML_External_Entity_Prevention_Cheat_Sheet.html

•

•

•

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

8 / 25

https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html

3. Stored Cross-Site Scripting (XSS)

Remediation Status:

Criticality: High

CVSS-Score: 7.2

Affects: example.com

Recommendation: User input should be validated and filtered based on expected or

valid input. It should be ensured that data is properly encoded contextually before it is

included in HTTP responses.

Overview

At the time of testing, the web application stored user input unchecked and later

included it in HTTP responses in an insecure manner. It was thus vulnerable to stored

cross-site scripting (XSS) attacks.

Exploitation of Stored XSS vulnerabilities does not require user interaction, making

them more dangerous than Reflected XSS vulnerabilities.

Description

We were able to identify a stored XSS vulnerability in the web application during

testing. Due to incorrect validation and encoding of data, we were able to inject

malicious scripts into the web application and store them persistently.

Cross-site scripting (XSS) is a common web security vulnerability where malicious

scripts can be injected into web applications due to insufficient validation or encoding

of data. In XSS attacks, attackers embed JavaScript code in the content delivered by the

vulnerable web application.

The goal in stored XSS attacks is to place script code on pages visited by other users.

Simply visiting the affected subpage is enough for the script code to be executed in

the victim's web browser.

For an attack, malicious scripts are injected into the web application by the attacker

and stored and included in subsequent HTTP responses of the application. The

malicious script is ultimately executed in the victim's web browser and can potentially

access cookies, session tokens or other sensitive information.

If the attack is successful, an attacker gains control over web application functions and

data in the victim's context. If the affected user has privileged access, an attacker may

be able to gain complete control over the web application.

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

9 / 25

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:L/A:N

Recommendation

Ensure that all processed data is filtered as rigorously as possible. Filtering and

validation should be done based on expected and valid inputs.

Data should be encoded before the web application includes it in HTTP

responses. Encoding should be done contextually, that is, depending on where

the web application inserts data in the HTML document, the appropriate

encoding syntax must be considered.

The HTTP headers Content-Type (e.g. text/plain) and X-Content-Type-

Options: nosniff can be set for HTTP responses that do not contain HTML

and JavaScript.

We recommend to additionally use a Content Security Policy (CSP) to control

which client-side scripts are allowed and which are forbidden.

Detailed information and help on preventing XSS can be found in the linked

Cross-Site Scripting Prevention Cheat Sheet from OWASP.

Additional Information

https://cheatsheetseries.owasp.org/cheatsheets/

Cross_Site_Scripting_Prevention_Cheat_Sheet.html

•

•

•

•

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

10 / 25

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

4. Insecure HTTP cookies

Remediation Status:

Criticality: Medium

CVSS-Score: 6.5

Affects: example.com

Recommendation: Make sure that the configuration of all sensitive cookies is

hardened and thus important cookie attributes like HttpOnly or Secure are set.

Overview

The issued HTTP cookies of the web application did not have the HttpOnly and/or the

Secure cookie attribute set. If the HttpOnly attribute is not set, the affected cookie can

be read or modified client-side using JavaScript. If the Secure attribute is not set,

browsers also send the cookie over unencrypted HTTP connections. Insecurely

configured cookies such as session cookies expand the potential attack surface of a

web application. They make it easier for an attacker to exploit client-side vulnerabilities

such as cross-site scripting (XSS) or compromise sessions by trivially intercepting

cookies.

Description

HTTP is a stateless protocol, which means that it cannot distinguish requests from

different users without an additional mechanism. To address this problem, it requires

a session mechanism. The most commonly used mechanism for managing HTTP

sessions in browsers is cookie storage. An HTTP cookie is a small record that a server

sends to a user's web browser. The browser can store the cookie and send it back to

the same server for subsequent requests. This can be used to implement sessions for

the stateless HTTP protocol. An HTTP cookie can be used to distinguish requests from

different users and to keep users logged in.

Cookies thus represent a frequent target for attackers. A web application should

therefore harden the configuration of all sensitive cookies. This can be achieved by

setting the Secure and HttpOnly cookie attributes. A cookie with the Secure attribute will

only be sent to the server over HTTPS connections and never over an unsecured HTTP

connection. A cookie with the HttpOnly attribute set is inaccessible to JavaScript and

thus helps mitigate cross-site scripting (XSS) attacks. If an attacker is able to tap

sensitive cookies such as session cookies, the attacker could take over user accounts

and perform actions in the context of affected users. An attacker may also be able to

gain complete control over all web application functions and data if they take over a

user account with privileged access.

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

11 / 25

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N

Auditors reviewed the set attributes of sensitive HTTP cookies of the web application.

The following table provides an overview of the set attributes:

Cookie Secure HttpOnly

PHPSESSID - -

Recommendation

Set the Secure attribute for sensitive cookies. This attribute instructs a browser to

send the cookie only over an encrypted HTTPS connection to prevent session ID

disclosure through man-in-the-middle attacks.

If possible, also set the HttpOnly attribute for sensitive cookies. This attribute

prevents the cookie from being accessed client-side via JavaScript. This can make

session hijacking by XSS attacks more difficult.

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

12 / 25

5. Cross-Site Request Forgery (CSRF)

Remediation Status:

Criticality: Medium

CVSS-Score: 6.5

Affects: example.com

Recommendation: Make sure that randomly generated CSRF tokens with high

entropy are included in all state-changing HTTP requests and validated in the backend.

Overview

The web application was vulnerable to Cross-Site Request Forgery (CSRF). CSRF is an

attack that causes users to unknowingly send an HTTP request to a web application to

which they are currently authenticated. Attackers can thereby partially bypass a web

browser's same-origin policy and perform state-changing actions in the context of an

affected user. Depending on the nature of the action, the attacker can gain complete

control over the user's account. If the user account is administrative, CSRF may also be

able to compromise the entire web application.

Description

We identified a CSRF vulnerability in the web application, allowing them to perform

actions in the context of another user.

Cross-site request forgery (CSRF) is a web security vulnerability in which an attacker

can trick an authenticated user into unknowingly sending a state-changing HTTP

request to the vulnerable web application. In CSRF, an attacker assumes the victim's

identity and access privileges to perform unwanted actions (e.g., change email

address) on their behalf. Without appropriate CSRF protection, the web application has

no way to distinguish between a request prepared by the attacker and a legitimate

request from the victim.

Several prerequisites must be in place for a CSRF attack to take place. First, there must

be an action in the web application that is relevant to an attacker and makes sense to

exploit. For example, this could be a privileged action, such as changing a user's

access permissions or changing a password. Another requirement is that there is no

other mechanism besides cookie-based authentication to distinguish HTTP requests

from different users. If the user is authenticated and thus has a valid session cookie,

the web application thus has no way to distinguish between a malicious, subverted

request from the attacker and a legitimate request from the victim. Last, it must be

ensured that actions do not require specific parameters whose values an attacker

cannot determine or predict. For example, if a user is asked to change his password,

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

13 / 25

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N

the function is not vulnerable if an attacker needs to know the value of the existing

password.

A common way to exploit CSRF vulnerabilities is through phishing emails. An attacker

does this by preparing malicious links with the intention of foisting a state-changing

request on the victim. The attacker then distributes the malicious links to victims via

email. When a user opens the link in a web browser and is authenticated to it, the

request is sent to the vulnerable web application. If successful, the attack causes an

action with the victim's identity and privilege level.

Recommendation

Check if the framework has built-in CSRF protection and use it. If not, ensure that

all state-changing requests contain a randomly generated CSRF token with high

entropy. Also ensure that CSRF tokens are properly validated on the backend.

Consider various additional security measures:

For example, set the SameSite attribute for session cookies. Web browsers

decide whether to include cookies in cross-site requests based on this

attribute.

Use Custom Request Headers. By default, the browser's same-origin policy

restricts JavaScript from submitting cross-site requests with custom

request headers.

For highly sensitive actions, user interactions such as CAPTCHAs, one-time

tokens, re-authentication, etc. can also be considered as additional CSRF

protection.

Detailed information and assistance on how to prevent CSRF vulnerabilities can

be found in the linked Cross-Site Request Forgery Cheat Sheet from OWASP.

Additional Information

https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html

•

•

◦

◦

◦

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

14 / 25

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

6. Disclosure of sensitive data in URL parameters

Remediation Status:

Criticality: Medium

CVSS-Score: 5.9

Affects: example.com

Recommendation: To protect sensitive data from access by third parties, it should be

sent in the body of an HTTP message, e.g. via POST request.

Overview

The web application sent sensitive data as URL parameters in HTTP requests. Data

sent as URL parameters is stored in the browser cache and can potentially appear in

various other places such as web server logs, referer headers or shared systems. Third

parties could thus gain access to this sensitive data.

Description

The application sent sensitive data in the URL parameter "motiondata": This could

expose the data in the following places:

Referer Header

Web Logs

Shared Systems

Browser History

Browser Cache

Shoulder Surfing

Recommendation

The application should send all sensitive data in the body of an HTTP message,

e.g. in the body of a POST request.

Furthermore, the transmission should be secured via encrypted communication

via HTTPS.

•

•

•

•

•

•

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

15 / 25

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N

7. Incorrectly configured HTTP security headers

Remediation Status:

Criticality: Medium

CVSS-Score: 5.4

Affects: example.com

Recommendation: Follow best practices recommendations for configuring HTTP

security headers and implement them for your web application if possible.

Overview

The web application did not have important HTTP security headers set or they were

configured insecurely. HTTP security headers are a good way to increase the security

of a web application. They can help make vulnerabilities such as cross-site scripting,

clickjacking, information disclosure, and others more difficult or even prevent them

altogether. Without proper HTTP security headers, the potential attack surface of a

web application is larger and makes it easier for an attacker to exploit client-side

vulnerabilities.

Description

We checked the HTTP security headers of the examined web application. The following

table provides an overview of which headers were set correctly and which were not:

Host

Content-

Security

Policy

(CSP)

Referrer-

Policy

HTTP-

Strict-

Transport-

Security

HSTS)

X-

Content-

Type-

Options

X-

Frame-

Options

Permissions-

Policy

X-XSS-

Protection

example.com - - X - - -

Modern browsers support several HTTP security headers that can increase the security

of web applications against client-side vulnerabilities such as clickjacking, cross-site

scripting, and other common attacks. HTTP Security headers are response headers

that specify whether and which security measures should be enabled or disabled in

the web browser. These HTTP headers are exchanged between a browser and a server

and specify the security-related details of HTTP communication. Below is a brief

description and overview of the most important current HTTP security headers:

Content Security Policy. The Content Security Policy (CSP) HTTP header allows

fine-grained control over what resources a browser is allowed to obtain

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

16 / 25

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:N

resources from. The CSP header is a very effective measure to prevent the

exploitation of cross-site scripting (XSS) vulnerabilities.

Referrer Policy. The Referrer-Policy header determines how and when

browsers transmit the HTTP Referer (sic) header. In the Referer header, a browser

informs a target page about the origin of an HTTP request, for example, when a

user navigates to a specific page via a link or loads an external resource.

HTTP Strict Transport Security (HSTS). With the HSTS header, a web page

instructs the browser to connect only over HTTPS. All unencrypted HTTP

requests are transparently redirected in the process. TLS and certificate-related

errors are also handled more strictly by preventing users from bypassing the

error page.

X-Content-Type-Options. The X-Content-Type-Options header specifies

that browsers will only load scripts and stylesheets if the server specifies the

correct MIME type. Without this header, there is a risk of MIME sniffing. This

means that browsers will misrecognize files as scripts and stylesheets, which

could lead to XSS attacks.

X-Frame-Options X-Frame-Options are used to determine if and in which

form the web page can be embedded in an iframe. Clickjacking is a viable attack

that can exploit such embedding in an iframe . In such an attack, an attacker

overlays the rendering of a legitimate page to then cause users to perform

seemingly innocuous interactions (e.g., mouse clicks and/or keystrokes).

Permissions policy Permissions policy allows web developers to selectively

enable, disable, and modify the behavior of certain features and APIs in the

browser. Permissions-Policy is similar to Content Security Policy, but

controls specific functions of the browser rather than security behavior.

X-XSS-Protection X-XSS-Protection is a feature that prevents pages from

loading when a browser detects Reflected Cross-Site Scripting (XSS) attacks. This

header is obsolete when using modern browsers, provided that a secure content

security policy has been defined.

Recommendation

Do not allow the web page to be included in a frame. Set X-Frame-Options:

DENY for this. Alternatively you can restrict this setting to the same-origin with

X-Frame-Options: SAMEORIGIN .

Set the header X-XSS-Protection explicitly with X-XSS-Protection: 1;

mode=block .

Prevent the browser from guessing the MIME type based on the content of the

resource. Sets the X-Content-Type-Options header with the nosniff

option.

•

•

•

•

•

•

•

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

17 / 25

Restrict the referrer policy to prevent potentially sensitive information

from being exposed to third party sites. You should define the header as follows:

Referrer-Policy: strict-origin-when-cross-origin .

Configure the Strict-Transport-Security header so that your web

application can only be accessed over a secured HTTPS connection. You should

set the header like this: Strict-Transport-Security: max-age=63072000;

includeSubDomains; preload .

If possible, define a Content Security Policy (CSP) for your web application CSP is

an additional security measure that can make it much more difficult to exploit

client-side vulnerabilities. Details on how to configure it securely can be found in

the resources.

Restrict the use of sensitive browser features such as the camera, microphone or

speaker using 'Permissions Policy' headers.

Additional Information

https://infosec.mozilla.org/guidelines/web_security#content-security-policy

•

•

•

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

18 / 25

https://infosec.mozilla.org/guidelines/web_security#content-security-policy

8. User Enumeration

Remediation Status:

Criticality: Medium

CVSS-Score: 5.3

Affects: example.com

Recommendation: Identify all application attack surfaces relevant to User

Enumeration and ensures that the web application always returns generic error

messages when invalid credentials are entered.

Overview

The web application was vulnerable to a user enumeration vulnerability. User

enumeration is a common vulnerability in web applications that occurs when an

attacker can use brute force techniques to determine valid user accounts in a system.

Although user enumeration is a low risk in itself, it still provides an attacker with

valuable information for follow-up attacks such as in brute force and credential

stuffing attacks or in social engineering campaigns.

Description

We were able to identify a user enumeration vulnerability in the web application,

allowing us to determine valid user accounts using brute force techniques.

Often, as a result of a faulty configuration or design decision, web applications

indicate when a user already exists in the system. Two of the most common areas

where this occurs are the login page or the "forgot password" feature of a web

application. One example is when a user enters incorrect credentials, they receive

information that the password they entered was incorrect. The information obtained

can now be used by an attacker to determine whether or not a particular username

already exists. By trial and error, an attacker can use it to determine a list of valid

usernames.

Once an attacker has such a list, they can address these user accounts in new attacks

to obtain valid credentials. In its simplest form, an attacker could perform a brute

force attack. In this, an attacker tries to guess a user account's credentials by

automatically trying through passwords. Often very large word lists containing

frequently used passwords are used for this purpose. An attacker could also use

determined usernames to search past data leaks for passwords. Credentials from data

leaks, consisting of pairs of usernames and passwords, can be reused by an attacker in

an automated attack. This particular form of brute force attack, is also known as

credential stuffing. Alternatively, an attacker can use usernames in the course of social

engineering campaigns to contact users directly.

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

19 / 25

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Recommendation

Ensure that the web application always returns generic error messages when

invalid usernames, passwords, or other credentials are entered. Identifies all

relevant attack surfaces of the application for this purpose.

If the application defines usernames itself, user enumeration can be effectively

prevented. The prerequisite for this is that user names are randomly generated

so that they cannot be guessed.

The application can also use email addresses as usernames. If the username is

not yet registered, an email message will contain a unique URL that can be used

to complete the registration process. If the username exists, the user receives an

email message with a URL to reset the password. In either case, an attacker

cannot infer valid user accounts.

As an additional security measure, you could delete default system accounts as

well as test accounts or rename them before releasing the system to production.

•

•

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

20 / 25

9. Untrusted TLS certificates

Remediation Status:

Criticality: Medium

CVSS-Score: 4.8

Affects: example.com

Recommendation: Ensure that TLS certificates used are universally valid and trusted.

Acquire new certificates for the affected services, if necessary. Also, follow best

practices recommendations for secure TLS server configuration.

Overview

Communication with the application at the transport layer level was not sufficiently

protected due to untrusted TLS certificates. TLS is used by many protocols to ensure

the confidentiality and integrity of communication between two endpoints. If web

browsers do not trust an application's TLS certificate, the application may be

vulnerable to man-in-the-middle attacks and thus susceptible to eavesdropping or

tampering with traffic. Insufficient protection at the transport layer may allow

communications between two parties to be compromised by an untrusted third party.

An attacker could thus obtain sensitive data (e.g., credentials) if necessary. In the event

of a successful attack, an attacker could gain complete control over all functions and

data of the application by compromising a privileged user account.

Description

Transport Layer Security (TLS) is the successor to the now obsolete as well as insecure

Secure Sockets Layer (SSL) protocol. TLS is a cryptographic protocol developed for

secure, encrypted communication between two or more parties. The protocol is used

in a wide variety of areas, including e-mail, instant messaging, and voice-over-IP. The

best known use of TLS is on the Web, where it ensures secure communication over

HTTPS. Primarily, TLS aims to ensure confidentiality, integrity, but also authenticity

through the use of certificates, between two or more parties.

With TLS, the establishment of a secure connection takes place in several steps. Client

and server agree on the use of TLS in the first step. This is done either by selecting a

specific port (e.g. 443 for HTTP) or by making a protocol-specific request to the server

(e.g. STARTTLS for SMTP). A handshake procedure then begins, in which the client and

server negotiate various parameters for the security of the communication link. The

handshake begins with the client and server agreeing on a respective supported

cipher suite, consisting of the symmetric cipher and hash function. The server then

issues a digital certificate. The certificate contains, among other things, the server

name, the issuing certificate authority (CA), and the server's data asymmetric key.

Once the client has verified the validity of the certificate, it generates a symmetric

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

21 / 25

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N

session key for the secure connection. This is done either by the client deriving a key

from a random number. The client encrypts the random number with the server's data

key and sends the result to the server. The server can use the private key to read the

result and also derive the session key. However, the client and server could also use

the Diffie-Hellman algorithm to securely agree on a random session key. Diffie-

Hellman also offers the advantage of perfect forward secrecy (PFS). PFS prevents

subsequent decryption once the server's private key is known. Session keys are not

exchanged and thus cannot be reconstructed.

The security of TLS-secured communication is based primarily on the trustworthiness

of the digital certificate. If the trustworthiness is not given, for example because the

certificate has expired, it contains an incorrect host name or it is a self-signed

certificate, no secure key exchange between two endpoints can be guaranteed from

the outset. In some circumstances, the communication between two parties could be

compromised by an untrusted third party in the course of a man-in-the-middle attack.

For example, an attacker could gain access to sensitive data or inject malicious data

into the encrypted data stream to compromise either the client or the server.

We reviewed the TLS certificates of the applications in scope and found untrusted

certificates for the following applications:

host expired
expiring

soon

incorrect

host name

incomplete

certificate

chain

self-signed

certificate

example.com:

443
X - - -

Recommendation

Acquire new certificates for services that do not have trusted TLS certificates.

Generate sufficiently strong asymmetric keys with at least 2048 bits for

certificates and protect the private key.

Use only modern cryptographic hash algorithms such as SHA-256.'

Make sure that the certificate contains the fully qualified name of the server. The

following should also be considered when creating the certificate:

Consider whether the "www" subdomain should also be included.

Do not include unqualified host names in the certificate.

Do not include IP addresses.

Do not include internal domain names.

Create and use wildcard certificates only when there is a real need. Do not use

wildcard certificates for convenience.

Choose an appropriate certificate authority that is trusted by all major browsers.

For internal applications, an internal CA can be used. However, ensure that all

•

•

•

•

◦

◦

◦

◦

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

22 / 25

users have imported the internal CA certificate and thus trust certificates issued

by that CA.

Check the TLS configuration, including certificates, at regular intervals and adjust

as necessary. There are a number of online tools (such as SSLabs, sslyze, etc)

that you can use to quickly perform the check.

For more information and help on TLS certificates, see the linked Transport Layer

Protection Cheat Sheet from OWASP.

Additional Information

https://cheatsheetseries.owasp.org/cheatsheets/

Transport_Layer_Protection_Cheat_Sheet.html

•

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

23 / 25

https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html

10. Session management weaknesses

Remediation Status:

Criticality: Low

CVSS-Score: 3.6

Affects: example.com

Recommendation: Users should be logged out automatically after a certain period of

inactivity.

Overview

We were able to identify weaknesses in the web application's session management.

The users' sessions were usable without time restrictions and therefore did not require

re-authentication at any time. People with access to a computer system could exploit

this situation if another user had not explicitly logged out of the application

beforehand.

Description

We could determine that user sessions were usable without time restrictions. This

could allow attackers to take over user sessions that were not explicitly logged out

beforehand.

This could be possible, for example, by allowing a third person to operate a user's

computer in which a session is still active. In addition, it could be possible for attackers

to reuse session tokens when they become known (e.g. via log files; locally or on proxy

servers, etc.).

Recommendation

User sessions in web applications should time out automatically after a certain

period of inactivity.

Depending on the criticality of the user authorization and the application, the

timeout could be approximately between one hour and one day.

•

•

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

24 / 25

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:N

List of Changes

Version Date Description Author

0.1 2022-04-22 Draft M. Doe

0.9 2022-04-22 Review C. Doe

1.0 2022-04-25 Final Report M. Doe

Disclaimer

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod

tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero

eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea

takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet,

consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et

dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo

dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem

ipsum dolor sit amet.

Imprint

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

Security Maximale

Security Maximale GmbH

Example Street 47 | 4711 Example

FN 12345 v | District Court Example

25 / 25

	Demo-Design-2 Report
	Table of Contents
	Executive Summary
	Methodology and Scope
	Vulnerability Overview
	1. SQL Injection (SQLi)
	Overview
	Description
	Recommendation
	Additional Information

	2. XML External Entity Injection (XXE)
	Overview
	Description
	Recommendation
	Additional Information

	3. Stored Cross-Site Scripting (XSS)
	Overview
	Description
	Recommendation
	Additional Information

	4. Insecure HTTP cookies
	Overview
	Description
	Recommendation

	5. Cross-Site Request Forgery (CSRF)
	Overview
	Description
	Recommendation
	Additional Information

	6. Disclosure of sensitive data in URL parameters
	Overview
	Description
	Recommendation

	7. Incorrectly configured HTTP security headers
	Overview
	Description
	Recommendation
	Additional Information

	8. User Enumeration
	Overview
	Description
	Recommendation

	9. Untrusted TLS certificates
	Overview
	Description
	Recommendation
	Additional Information

	10. Session management weaknesses
	Overview
	Description
	Recommendation

	List of Changes
	Disclaimer
	Imprint

