
D
R
A
F
T

PENTEST REPORT

Demo-Design-1 Report

Security Maximale GmbH

Example Street 47

4711 Example

FN 12345 v | D.C. Example

GotBreached Ltd.

Attn. Maxima Doe

Banksy Street 1

1337 Miami Breach

Example City, April 25, 2022

Report Version: 1.0

CONFIDENTIAL 1

Table of Contents

1 Document Control ... 4

1.1 Team .. 4

1.2 List of Changes ... 4

2 Executive Summary .. 5

2.1 Overview ... 5

2.2 Identified Vulnerabilities .. 5

Vulnerability Overview .. 5

3 Methodology .. 7

3.1 Objective ... 7

3.2 Scope ... 7

3.3 User Accounts and Permissions ... 8

4 Findings .. 9

C1: SQL Injection (SQLi) .. 9

H1: XML External Entity Injection (XXE) ... 11

H2: Stored Cross-Site Scripting (XSS) .. 13

M1: Cross-Site Request Forgery (CSRF) ... 15

M2: Insecure HTTP cookies .. 17

M3: Disclosure of sensitive data in URL parameters .. 19

M4: Incorrectly configured HTTP security headers .. 20

M5: User Enumeration ... 22

M6: Untrusted TLS certificates .. 24

L1: Session management weaknesses ... 26

5 Disclaimer .. 27

A Appendix .. 28

A.1 Tool Output .. 28

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 2

List of Figures

Figure 1 - Distribution of identified vulnerabilities ... 6

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 3

1 Document Control

1.1 Team

Contact Details Role

Collegius Doe
Mobile: +43 660 123 456 78

E-Mail: c.doe@securitymaximale.com
Reviewer

1.2 List of Changes

Version Description Date

0.1 Draft Apr 22, 2022

1.0 Final Report Apr 25, 2022

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 4

2 Executive Summary

2.1 Overview

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut

labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores

et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut

labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores

et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut

labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores

et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum

dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent

luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet,

consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna

aliquam erat volutpat.

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip

ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse

2.2 Identified Vulnerabilities

CVSS Description Page

C1 10.0 SQL Injection (SQLi) 9

H1 7.5 XML External Entity Injection (XXE) 11

H2 7.2 Stored Cross-Site Scripting (XSS) 13

M1 6.5 Cross-Site Request Forgery (CSRF) 15

M2 6.5 Insecure HTTP cookies 17

M3 5.9 Disclosure of sensitive data in URL parameters 19

M4 5.4 Incorrectly configured HTTP security headers 20

M5 5.3 User Enumeration 22

M6 4.8 Untrusted TLS certificates 24

L1 3.6 Session management weaknesses 26

Vulnerability Overview

In the course of this penetration test 1 Critical , 2 High , 6 Medium und 1 Low vulnerabilities were

identified:

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 5

Figure 1 - Distribution of identified vulnerabilities

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 6

3 Methodology

This is a static text built into the design template. If this text changes from report to report, you can

easily make it dynamic by adding a new report field and replacing the text by the used variable, e.g.:

{{ report.methodology }}

3.1 Objective

This is also a static text.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut

labore et dolore magna aliquyam erat, sed diam voluptua.

Lorem ipsum dolor sit amet

consetetur sadipscing elitr

sed diam nonumy eirmod tempor

Stet clita kasd gubergren

dolore magna aliquyam erat

3.2 Scope

Here comes a static text with dynamic components:

Lorem ipsum dolor sit amet, consetetur, from Apr 18, 2022 to Apr 22, 2022 no sea takimata sanctus

est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sea takimata

sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur, 5 person days

consetetur sadipscing elitr, sea takimata sanctus est Lorem ipsum dolor sit amet.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum

dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent

luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet,

consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna

aliquam erat volutpat.

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut

aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate

velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan

et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait

nulla facilisi.

Nam liber tempor cum soluta nobis eleifend option congue nihil imperdiet doming id quod

mazim placerat facer possim assum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit,

sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut

wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut

aliquip ex ea commodo consequat.

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum

dolore eu feugiat nulla facilisis.

D
R
A
F
T

•

•

•

•

•

•

•

•

CONFIDENTIAL Demo-Design-1 Report 7

At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata

sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed

diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At

vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata

sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, At

accusam aliquyam diam diam dolore dolores duo eirmod eos erat, et nonumy sed tempor et et

invidunt justo labore Stet clita ea et gubergren, kasd magna no rebum. sanctus sea sed takimata ut

vero voluptua. est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur

System Description

10.0.0.1 System1

10.0.0.2 System2

10.0.0.3 System3

10.0.0.4 System3

3.3 User Accounts and Permissions

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum

dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent

luptatum zzril delenit augue duis dolore te feugait nulla facilisi. Lorem ipsum dolor sit amet,

consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna

aliquam erat volutpat.

Admin: admin@example.com

User: user1@example.com

User: user2@example.com

D
R
A
F
T

•

•

•

CONFIDENTIAL Demo-Design-1 Report 8

4 Findings

C1: SQL Injection (SQLi)

Score 10.0 (Critical)

Vectorstring CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H

Target example.com

References https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Overview

The web application processed user input in an insecure manner and was thus vulnerable to SQL

injection. In an SQL injection attack, special input values in the web application are used to influence

the application's SQL statements to its database. Depending on the database used and the design of

the application, this may make it possible to read and modify the data stored in the database, perform

administrative actions (e.g., shut down the DBMS), or in some cases even gain code execution and the

accompanying complete control over the vulnerable server.

Details

We identified a SQL injection vulnerability in the web application and were able to access stored data

in the database as a result.

SQL Injection is a common server-side vulnerability in web applications. It occurs when software

developers create dynamic database queries that contain user input. In an attack, user input is crafted

in such a way that the originally intended action of an SQL statement is changed. SQL injection

vulnerabilities result from an application's failure to dynamically create database queries insecurely

and to properly validate user input. They are based on the fact that the SQL language basically does

not distinguish between control characters and data characters. In order to use a control character in

the data part of an SQL statement, it must be encoded or escaped appropriately beforehand.

An SQL injection attack is therefore essentially carried out by inserting a control character such as '

(single apostrophe) into the user input to place new commands that were not present in the original

SQL statement. A simple example will demonstrate this process. The following SELECT statement

contains a variable userId. The purpose of this statement is to get data of a user with a specific user id

from the Users table.

sqlStmnt = 'SELECT * FROM Users WHERE UserId = ' + userId;

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 9

An attacker could now use special user input to change the original intent of the SQL statement. For

example, he could use the string ' or 1=1 as user input. In this case, the application would construct

the following SQL statement:

sqlStmnt = 'SELECT * FROM Users WHERE UserId = ' + ' or 1=1;

Instead of the data of a user with a specific user ID, the data of all users in the table is now returned to

the attacker after executing the statement. This gives an attacker the ability to control the SQL

statement in his own favor.

There are a number of variants of SQL injection vulnerabilities, attacks and techniques that occur in

different situations and depending on the database system used. However, what they all have in

common is that, as in the example above, user input is always used to dynamically construct SQL

statements. Successful SQL injection attacks can have far-reaching consequences. One would be the

loss of confidentiality and integrity of the stored data. Attackers could gain read and possibly write

access to sensitive data in the database. SQL injection could also compromise the authentication and

authorization of the web application, allowing attackers to bypass existing access controls. In some

cases, SQL injection can also be used to gain code execution, allowing an attacker to gain complete

control over the vulnerable server.

Recommendation

Use prepared statements throughout the application to effectively avoid SQL injection

vulnerabilities. Prepared statements are parameterized statements and ensure that even if

input values are manipulated, an attacker is unable to change the original intent of an SQL

statement.

Use existing stored procedures by default where possible. Typically, stored procedures are

implemented as secure parameterized queries and thus protect against SQL injections.

Always validate all user input. Ensure that only input that is expected and valid for the

application is accepted. You should not sanitize potentially malicious input.

To reduce the potential damage of a successful SQL Injection attack, you should minimize the

assigned privileges of the database user used according to the principle of least privilege.

For detailed information and assistance on how to prevent SQL Injection vulnerabilities, see

OWASP's linked SQL Injection Prevention Cheat Sheet.D
R
A
F
T

•

•

•

•

•

CONFIDENTIAL Demo-Design-1 Report 10

H1: XML External Entity Injection (XXE)

Score 7.5 (High)

Vectorstring CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

Target example.com

References
https://cheatsheetseries.owasp.org/cheatsheets/

XML_External_Entity_Prevention_Cheat_Sheet.html

Overview

The web application processed XML documents in an insecure manner, which made it vulnerable to

XML External Entity (XXE) Injection attacks. XXE Injection is a vulnerability in web applications that

allows an attacker to interfere with the processing of XML documents by an XML parser. This attack

can lead to disclosure of confidential data, denial of service, server-side request forgery, and other

severe impact on the underlying system or other backend systems.

Details

We identified an XXE injection vulnerability in the web application. The XML parser allowed the

definition of XXEs, which could create a malicious XML document. The XXE contained a URL that

referenced an external domain. After the XXE was dereferenced by the parser, the web application

interacted with this domain, which is evident from the DNS requests.

Extensible Markup Language (XML) is a standardized markup language and file format for storing,

transmitting, and reconstructing arbitrary data. The language encodes data in a format that is

readable by both humans and machines. The structure of an XML document is defined in the XML

standard. The standard provides for a concept called an entity. Entities provide the ability to reference

content that is provided remotely by a server or resides locally on the server. When the XML parser

evaluates the XML document, the entity it contains is replaced with the referenced value. Entities are

defined in so-called Document Type Definitions (DTDs).

DTDs define the structure and composition of an XML document. They can either be completely

contained in the XML document itself, so-called internal DTDs, or they can be loaded from another

location, so-called external DTDs. A combination of both variants is also possible. XML External Entities

(XXE) are a special form of XML entities whose contents are loaded from outside the DTD in which they

are declared.

An XXE is declared in the DTD with the SYSTEM keyword and a URI from where the content should be

loaded. For example:

<!DOCTYPE dtd [<!ENTITY xxe SYSTEM "http://syslifters.com" >]>

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 11

The URI can also use the file:// protocol scheme. Content can be loaded from local files as a result.

For example:

<!DOCTYPE dtd [<!ENTITY xxe SYSTEM "file:///path/to/local/file" >]>

When evaluating XML documents, the XML parser replaces occurring XXEs with the contents by

dereferencing the defined URIs. If the URI contains manipulated data, this could have serious

consequences. An attacker can exploit this to perform server-side request forgery (SSRF) attacks and

compromise the underlying server or other backend infrastructure. XXE injection vulnerabilities can

also be exploited to cause service/application downtime (denial of service) or expose sensitive data

such as local system files.

Recommendation

The XML parser should be configured to use a local static DTD and not allow external DTDs

declared in the XML document.

We recommend limiting the functions of the XML parsing library to the minimum needed (see

the documentation of the library used).

User input should be validated before parsing if possible.

Detailed information and help on preventing XXE injections can be found in the linked XML

External Entity Prevention Cheat Sheet from OWASP.

D
R
A
F
T

•

•

•

•

CONFIDENTIAL Demo-Design-1 Report 12

H2: Stored Cross-Site Scripting (XSS)

Score 7.2 (High)

Vectorstring CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:L/A:N

Target example.com

References
https://cheatsheetseries.owasp.org/cheatsheets/

Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Overview

At the time of testing, the web application stored user input unchecked and later included it in HTTP

responses in an insecure manner. It was thus vulnerable to stored cross-site scripting (XSS) attacks.

Exploitation of Stored XSS vulnerabilities does not require user interaction, making them more

dangerous than Reflected XSS vulnerabilities.

Details

We were able to identify a stored XSS vulnerability in the web application during testing. Due to

incorrect validation and encoding of data, we were able to inject malicious scripts into the web

application and store them persistently.

Cross-site scripting (XSS) is a common web security vulnerability where malicious scripts can be

injected into web applications due to insufficient validation or encoding of data. In XSS attacks,

attackers embed JavaScript code in the content delivered by the vulnerable web application.

The goal in stored XSS attacks is to place script code on pages visited by other users. Simply visiting

the affected subpage is enough for the script code to be executed in the victim's web browser.

For an attack, malicious scripts are injected into the web application by the attacker and stored and

included in subsequent HTTP responses of the application. The malicious script is ultimately executed

in the victim's web browser and can potentially access cookies, session tokens or other sensitive

information.

If the attack is successful, an attacker gains control over web application functions and data in the

victim's context. If the affected user has privileged access, an attacker may be able to gain complete

control over the web application.

Recommendation

Ensure that all processed data is filtered as rigorously as possible. Filtering and validation

should be done based on expected and valid inputs.

D
R
A
F
T

•

CONFIDENTIAL Demo-Design-1 Report 13

Data should be encoded before the web application includes it in HTTP responses. Encoding

should be done contextually, that is, depending on where the web application inserts data in the

HTML document, the appropriate encoding syntax must be considered.

The HTTP headers Content-Type (e.g. text/plain) and X-Content-Type-Options:

nosniff can be set for HTTP responses that do not contain HTML and JavaScript.

We recommend to additionally use a Content Security Policy (CSP) to control which client-side

scripts are allowed and which are forbidden.

Detailed information and help on preventing XSS can be found in the linked Cross-Site Scripting

Prevention Cheat Sheet from OWASP.

D
R
A
F
T

•

•

•

•

CONFIDENTIAL Demo-Design-1 Report 14

M1: Cross-Site Request Forgery (CSRF)

Score 6.5 (Medium)

Vectorstring CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N

Target example.com

References
https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html

Overview

The web application was vulnerable to Cross-Site Request Forgery (CSRF). CSRF is an attack that causes

users to unknowingly send an HTTP request to a web application to which they are currently

authenticated. Attackers can thereby partially bypass a web browser's same-origin policy and perform

state-changing actions in the context of an affected user. Depending on the nature of the action, the

attacker can gain complete control over the user's account. If the user account is administrative, CSRF

may also be able to compromise the entire web application.

Details

We identified a CSRF vulnerability in the web application, allowing them to perform actions in the

context of another user.

Cross-site request forgery (CSRF) is a web security vulnerability in which an attacker can trick an

authenticated user into unknowingly sending a state-changing HTTP request to the vulnerable web

application. In CSRF, an attacker assumes the victim's identity and access privileges to perform

unwanted actions (e.g., change email address) on their behalf. Without appropriate CSRF protection,

the web application has no way to distinguish between a request prepared by the attacker and a

legitimate request from the victim.

Several prerequisites must be in place for a CSRF attack to take place. First, there must be an action in

the web application that is relevant to an attacker and makes sense to exploit. For example, this could

be a privileged action, such as changing a user's access permissions or changing a password. Another

requirement is that there is no other mechanism besides cookie-based authentication to distinguish

HTTP requests from different users. If the user is authenticated and thus has a valid session cookie,

the web application thus has no way to distinguish between a malicious, subverted request from the

attacker and a legitimate request from the victim. Last, it must be ensured that actions do not require

specific parameters whose values an attacker cannot determine or predict. For example, if a user is

asked to change his password, the function is not vulnerable if an attacker needs to know the value of

the existing password.

A common way to exploit CSRF vulnerabilities is through phishing emails. An attacker does this by

preparing malicious links with the intention of foisting a state-changing request on the victim. The

attacker then distributes the malicious links to victims via email. When a user opens the link in a web

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 15

browser and is authenticated to it, the request is sent to the vulnerable web application. If successful,

the attack causes an action with the victim's identity and privilege level.

Recommendation

Check if the framework has built-in CSRF protection and use it. If not, ensure that all state-

changing requests contain a randomly generated CSRF token with high entropy. Also ensure

that CSRF tokens are properly validated on the backend.

Consider various additional security measures:

For example, set the SameSite attribute for session cookies. Web browsers decide

whether to include cookies in cross-site requests based on this attribute.

Use Custom Request Headers. By default, the browser's same-origin policy restricts

JavaScript from submitting cross-site requests with custom request headers.

For highly sensitive actions, user interactions such as CAPTCHAs, one-time tokens, re-

authentication, etc. can also be considered as additional CSRF protection.

Detailed information and assistance on how to prevent CSRF vulnerabilities can be found in the

linked Cross-Site Request Forgery Cheat Sheet from OWASP.

D
R
A
F
T

•

•

◦

◦

◦

•

CONFIDENTIAL Demo-Design-1 Report 16

M2: Insecure HTTP cookies

Score 6.5 (Medium)

Vectorstring CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N

Target example.com

References -

Overview

The issued HTTP cookies of the web application did not have the HttpOnly and/or the Secure cookie

attribute set. If the HttpOnly attribute is not set, the affected cookie can be read or modified client-side

using JavaScript. If the Secure attribute is not set, browsers also send the cookie over unencrypted

HTTP connections. Insecurely configured cookies such as session cookies expand the potential attack

surface of a web application. They make it easier for an attacker to exploit client-side vulnerabilities

such as cross-site scripting (XSS) or compromise sessions by trivially intercepting cookies.

Details

HTTP is a stateless protocol, which means that it cannot distinguish requests from different users

without an additional mechanism. To address this problem, it requires a session mechanism. The most

commonly used mechanism for managing HTTP sessions in browsers is cookie storage. An HTTP

cookie is a small record that a server sends to a user's web browser. The browser can store the cookie

and send it back to the same server for subsequent requests. This can be used to implement sessions

for the stateless HTTP protocol. An HTTP cookie can be used to distinguish requests from different

users and to keep users logged in.

Cookies thus represent a frequent target for attackers. A web application should therefore harden the

configuration of all sensitive cookies. This can be achieved by setting the Secure and HttpOnly cookie

attributes. A cookie with the Secure attribute will only be sent to the server over HTTPS connections

and never over an unsecured HTTP connection. A cookie with the HttpOnly attribute set is inaccessible

to JavaScript and thus helps mitigate cross-site scripting (XSS) attacks. If an attacker is able to tap

sensitive cookies such as session cookies, the attacker could take over user accounts and perform

actions in the context of affected users. An attacker may also be able to gain complete control over all

web application functions and data if they take over a user account with privileged access.

We reviewed the set attributes of sensitive HTTP cookies of the web application. The following table

provides an overview of the set attributes:

Cookie Secure HttpOnly

PHPSESSID - -

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 17

Recommendation

Set the Secure attribute for sensitive cookies. This attribute instructs a browser to send the

cookie only over an encrypted HTTPS connection to prevent session ID disclosure through man-

in-the-middle attacks.

If possible, also set the HttpOnly attribute for sensitive cookies. This attribute prevents the

cookie from being accessed client-side via JavaScript. This can make session hijacking by XSS

attacks more difficult.

D
R
A
F
T

•

•

CONFIDENTIAL Demo-Design-1 Report 18

M3: Disclosure of sensitive data in URL parameters

Score 5.9 (Medium)

Vectorstring CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N

Target example.com

References -

Overview

The web application sent sensitive data as URL parameters in HTTP requests. Data sent as URL

parameters is stored in the browser cache and can potentially appear in various other places such as

web server logs, referer headers or shared systems. Third parties could thus gain access to this

sensitive data.

Details

The application sent sensitive data in the URL parameter ''motiondata".

This could expose the data in the following places:

Referer Header

Web Logs

Shared Systems

Browser History

Browser Cache

Shoulder Surfing

Recommendation

The application should send all sensitive data in the body of an HTTP message, e.g. in the body

of a POST request.

Furthermore, the transmission should be secured via encrypted communication via HTTPS.

D
R
A
F
T

•

•

•

•

•

•

•

•

CONFIDENTIAL Demo-Design-1 Report 19

M4: Incorrectly configured HTTP security headers

Score 5.4 (Medium)

Vectorstring CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:N

Target example.com

References https://infosec.mozilla.org/guidelines/web_security#content-security-policy

Overview

The web application did not have important HTTP security headers set or they were configured

insecurely. HTTP security headers are a good way to increase the security of a web application. They

can help make vulnerabilities such as cross-site scripting, clickjacking, information disclosure, and

others more difficult or even prevent them altogether. Without proper HTTP security headers, the

potential attack surface of a web application is larger and makes it easier for an attacker to exploit

client-side vulnerabilities.

Details

We checked the HTTP security headers of the examined web application. The following table provides

an overview of which headers were set correctly and which were not:

Host

Content-

Security

Policy

(CSP)

Referrer-

Policy

HTTP-

Strict-

Transport-

Security

HSTS)

X-

Content-

Type-

Options

X-

Frame-

Options

Permissions-

Policy

X-XSS-

Protection

example.com - - x - - -

Modern browsers support several HTTP security headers that can increase the security of web

applications against client-side vulnerabilities such as clickjacking, cross-site scripting, and other

common attacks. HTTP Security headers are response headers that specify whether and which security

measures should be enabled or disabled in the web browser. These HTTP headers are exchanged

between a browser and a server and specify the security-related details of HTTP communication.

Below is a brief description and overview of the most important current HTTP security headers:

Content Security Policy. The Content Security Policy (CSP) HTTP header allows fine-grained

control over what resources a browser is allowed to obtain resources from. The CSP header is a

very effective measure to prevent the exploitation of cross-site scripting (XSS) vulnerabilities.

Referrer Policy. The Referrer-Policy header determines how and when browsers transmit

the HTTP Referer (sic) header. In the Referer header, a browser informs a target page about the

D
R
A
F
T

•

•

CONFIDENTIAL Demo-Design-1 Report 20

origin of an HTTP request, for example, when a user navigates to a specific page via a link or

loads an external resource.

HTTP Strict Transport Security (HSTS). With the HSTS header, a web page instructs the browser

to connect only over HTTPS. All unencrypted HTTP requests are transparently redirected in the

process. TLS and certificate-related errors are also handled more strictly by preventing users

from bypassing the error page.

X-Content-Type-Options. The X-Content-Type-Options header specifies that browsers will

only load scripts and stylesheets if the server specifies the correct MIME type. Without this

header, there is a risk of MIME sniffing. This means that browsers will misrecognize files as

scripts and stylesheets, which could lead to XSS attacks.

X-Frame-Options X-Frame-Options are used to determine if and in which form the web page

can be embedded in an iframe. Clickjacking is a viable attack that can exploit such embedding in

an iframe. In such an attack, an attacker overlays the rendering of a legitimate page to then

cause users to perform seemingly innocuous interactions (e.g., mouse clicks and/or keystrokes).

Permissions policy Permissions policy allows web developers to selectively enable, disable, and

modify the behavior of certain features and APIs in the browser. Permissions-Policy is

similar to Content Security Policy, but controls specific functions of the browser rather than

security behavior.

X-XSS-Protection X-XSS-Protection is a feature that prevents pages from loading when a

browser detects Reflected Cross-Site Scripting (XSS) attacks. This header is obsolete when using

modern browsers, provided that a secure content security policy has been defined.

Recommendation

Do not allow the web page to be included in a frame. Set X-Frame-Options: DENY for this.

Alternatively you can restrict this setting to the same-origin with X-Frame-Options:

SAMEORIGIN.

Set the header X-XSS-Protection explicitly with X-XSS-Protection: 1; mode=block.

Prevent the browser from guessing the MIME type based on the content of the resource. Sets

the X-Content-Type-Options header with the nosniff option.

Restrict the referrer policy to prevent potentially sensitive information from being exposed

to third party sites. You should define the header as follows: Referrer-Policy: strict-

origin-when-cross-origin.

Configure the Strict-Transport-Security header so that your web application can only be

accessed over a secured HTTPS connection. You should set the header like this: Strict-

Transport-Security: max-age=63072000; includeSubDomains; preload.

If possible, define a Content Security Policy (CSP) for your web application CSP is an additional

security measure that can make it much more difficult to exploit client-side vulnerabilities.

Details on how to configure it securely can be found in the resources.

Restrict the use of sensitive browser features such as the camera, microphone or speaker using

'Permissions Policy' headers.

D
R
A
F
T

•

•

•

•

•

•

•

•

•

•

•

•

CONFIDENTIAL Demo-Design-1 Report 21

M5: User Enumeration

Score 5.3 (Medium)

Vectorstring CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Target example.com

References -

Overview

The web application was vulnerable to a user enumeration vulnerability. User enumeration is a

common vulnerability in web applications that occurs when an attacker can use brute force techniques

to determine valid user accounts in a system. Although user enumeration is a low risk in itself, it still

provides an attacker with valuable information for follow-up attacks such as in brute force and

credential stuffing attacks or in social engineering campaigns.

Details

We were able to identify a user enumeration vulnerability in the web application, allowing us to

determine valid user accounts using brute force techniques.

Often, as a result of a faulty configuration or design decision, web applications indicate when a user

already exists in the system. Two of the most common areas where this occurs are the login page or

the "forgot password" feature of a web application. One example is when a user enters incorrect

credentials, they receive information that the password they entered was incorrect. The information

obtained can now be used by an attacker to determine whether or not a particular username already

exists. By trial and error, an attacker can use it to determine a list of valid usernames.

Once an attacker has such a list, they can address these user accounts in new attacks to obtain valid

credentials. In its simplest form, an attacker could perform a brute force attack. In this, an attacker

tries to guess a user account's credentials by automatically trying through passwords. Often very large

word lists containing frequently used passwords are used for this purpose. An attacker could also use

determined usernames to search past data leaks for passwords. Credentials from data leaks,

consisting of pairs of usernames and passwords, can be reused by an attacker in an automated attack.

This particular form of brute force attack, is also known as credential stuffing. Alternatively, an attacker

can use usernames in the course of social engineering campaigns to contact users directly.

Recommendation

Ensure that the web application always returns generic error messages when invalid

usernames, passwords, or other credentials are entered. Identifies all relevant attack surfaces of

the application for this purpose.

D
R
A
F
T

•

CONFIDENTIAL Demo-Design-1 Report 22

If the application defines usernames itself, user enumeration can be effectively prevented. The

prerequisite for this is that user names are randomly generated so that they cannot be guessed.

The application can also use email addresses as usernames. If the username is not yet

registered, an email message will contain a unique URL that can be used to complete the

registration process. If the username exists, the user receives an email message with a URL to

reset the password. In either case, an attacker cannot infer valid user accounts.

As an additional security measure, you could delete default system accounts as well as test

accounts or rename them before releasing the system to production.

D
R
A
F
T

•

•

•

CONFIDENTIAL Demo-Design-1 Report 23

M6: Untrusted TLS certificates

Score 4.8 (Medium)

Vectorstring CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N

Target example.com

References
https://cheatsheetseries.owasp.org/cheatsheets/

Transport_Layer_Protection_Cheat_Sheet.html

Overview

Communication with the application at the transport layer level was not sufficiently protected due to

untrusted TLS certificates. TLS is used by many protocols to ensure the confidentiality and integrity of

communication between two endpoints. If web browsers do not trust an application's TLS certificate,

the application may be vulnerable to man-in-the-middle attacks and thus susceptible to eavesdropping

or tampering with traffic. Insufficient protection at the transport layer may allow communications

between two parties to be compromised by an untrusted third party. An attacker could thus obtain

sensitive data (e.g., credentials) if necessary. In the event of a successful attack, an attacker could gain

complete control over all functions and data of the application by compromising a privileged user

account.

Details

Transport Layer Security (TLS) is the successor to the now obsolete as well as insecure Secure Sockets

Layer (SSL) protocol. TLS is a cryptographic protocol developed for secure, encrypted communication

between two or more parties. The protocol is used in a wide variety of areas, including e-mail, instant

messaging, and voice-over-IP. The best known use of TLS is on the Web, where it ensures secure

communication over HTTPS. Primarily, TLS aims to ensure confidentiality, integrity, but also

authenticity through the use of certificates, between two or more parties.

With TLS, the establishment of a secure connection takes place in several steps. Client and server

agree on the use of TLS in the first step. This is done either by selecting a specific port (e.g. 443 for

HTTP) or by making a protocol-specific request to the server (e.g. STARTTLS for SMTP). A handshake

procedure then begins, in which the client and server negotiate various parameters for the security of

the communication link. The handshake begins with the client and server agreeing on a respective

supported cipher suite, consisting of the symmetric cipher and hash function. The server then issues a

digital certificate. The certificate contains, among other things, the server name, the issuing certificate

authority (CA), and the server's data asymmetric key. Once the client has verified the validity of the

certificate, it generates a symmetric session key for the secure connection. This is done either by the

client deriving a key from a random number. The client encrypts the random number with the server's

data key and sends the result to the server. The server can use the private key to read the result and

also derive the session key. However, the client and server could also use the Diffie-Hellman algorithm

to securely agree on a random session key. Diffie-Hellman also offers the advantage of perfect forward

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 24

secrecy (PFS). PFS prevents subsequent decryption once the server's private key is known. Session keys

are not exchanged and thus cannot be reconstructed.

The security of TLS-secured communication is based primarily on the trustworthiness of the digital

certificate. If the trustworthiness is not given, for example because the certificate has expired, it

contains an incorrect host name or it is a self-signed certificate, no secure key exchange between two

endpoints can be guaranteed from the outset. In some circumstances, the communication between

two parties could be compromised by an untrusted third party in the course of a man-in-the-middle

attack. For example, an attacker could gain access to sensitive data or inject malicious data into the

encrypted data stream to compromise either the client or the server.

We reviewed the TLS certificates of the applications in scope and found untrusted certificates for the

following applications:

host expired

expiring

soon

incorrect host

name

incomplete

certificate chain

self-signed

certificate

example.com:

443
X - - -

Recommendation

Acquire new certificates for services that do not have trusted TLS certificates.

Generate sufficiently strong asymmetric keys with at least 2048 bits for certificates and protect

the private key.

Use only modern cryptographic hash algorithms such as SHA-256.'

Make sure that the certificate contains the fully qualified name of the server. The following

should also be considered when creating the certificate:

Consider whether the "www" subdomain should also be included.

Do not include unqualified host names in the certificate.

Do not include IP addresses.

Do not include internal domain names.

Create and use wildcard certificates only when there is a real need. Do not use wildcard

certificates for convenience.

Choose an appropriate certificate authority that is trusted by all major browsers. For internal

applications, an internal CA can be used. However, ensure that all users have imported the

internal CA certificate and thus trust certificates issued by that CA.

Check the TLS configuration, including certificates, at regular intervals and adjust as necessary.

There are a number of online tools (such as SSLabs, sslyze, etc) that you can use to quickly

perform the check.

For more information and help on TLS certificates, see the linked Transport Layer Protection

Cheat Sheet from OWASP.

D
R
A
F
T

•

•

•

•

◦

◦

◦

◦

•

•

•

•

CONFIDENTIAL Demo-Design-1 Report 25

L1: Session management weaknesses

Score 3.6 (Low)

Vectorstring CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:N

Target example.com

References -

Overview

We were able to identify weaknesses in the web application's session management. The users'

sessions were usable without time restrictions and therefore did not require re-authentication at any

time. People with access to a computer system could exploit this situation if another user had not

explicitly logged out of the application beforehand.

Details

We could determine that user sessions were usable without time restrictions. This could allow

attackers to take over user sessions that were not explicitly logged out beforehand.

This could be possible, for example, by allowing a third person to operate a user's computer in which a

session is still active. In addition, it could be possible for attackers to reuse session tokens when they

become known (e.g. via log files; locally or on proxy servers, etc.).

Recommendation

User sessions in web applications should time out automatically after a certain period of

inactivity.

Depending on the criticality of the user authorization and the application, the timeout could be

approximately between one hour and one day.

D
R
A
F
T

•

•

CONFIDENTIAL Demo-Design-1 Report 26

5 Disclaimer

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut

labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores

et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 27

A Appendix

A.1 Tool Output

Here could be your fancy tool output.

D
R
A
F
T

CONFIDENTIAL Demo-Design-1 Report 28

	PENTEST REPORT
	Demo-Design-1 Report

	Table of Contents
	List of Figures
	Document Control
	Team
	List of Changes

	Executive Summary
	Overview
	Identified Vulnerabilities

	Vulnerability Overview
	Methodology
	Objective
	Scope
	User Accounts and Permissions

	Findings
	C1: SQL Injection (SQLi)
	Overview
	Details
	Recommendation

	H1: XML External Entity Injection (XXE)
	Overview
	Details
	Recommendation

	H2: Stored Cross-Site Scripting (XSS)
	Overview
	Details
	Recommendation

	M1: Cross-Site Request Forgery (CSRF)
	Overview
	Details
	Recommendation

	M2: Insecure HTTP cookies
	Overview
	Details
	Recommendation

	M3: Disclosure of sensitive data in URL parameters
	Overview
	Details
	Recommendation

	M4: Incorrectly configured HTTP security headers
	Overview
	Details
	Recommendation

	M5: User Enumeration
	Overview
	Details
	Recommendation

	M6: Untrusted TLS certificates
	Overview
	Details
	Recommendation

	L1: Session management weaknesses
	Overview
	Details
	Recommendation

	Disclaimer
	Appendix
	Tool Output

