forked from jamm1985/seismo-performer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseismo_performer.py
329 lines (286 loc) · 10.4 KB
/
seismo_performer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
File: seismo_performer.py
Author: Andrey Stepnov
Email: [email protected]
Github: https://github.com/jamm1985
Description: model layers, model itself and auxiliary functions
"""
import math
import six
import h5py
from sklearn.model_selection import train_test_split
import itertools
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from einops.layers.tensorflow import Rearrange
from fast_attention import fast_attention
from kapre import STFT, Magnitude, MagnitudeToDecibel
from kapre.composed import get_melspectrogram_layer, get_log_frequency_spectrogram_layer
import numpy as np
def load_hdf5_to_numpy(filename):
"""
Read hdf5 data file,
load waveforms and labels to numpy array
Parameters
:filename: HDF5 file name
:returns: tuple (X, Y) numpy arrays with samples and labels
"""
f = h5py.File(filename, 'r')
X = f['X']
Y = f['Y']
X_numpy = X[()]
Y_numpy = Y[()]
f.close()
return X_numpy, Y_numpy
def load_test_train_data(hdf5_file, proportion, random_state=1):
"""
Load data to numpy arrray from HDF5
and split to train and test sets with shuffle
Parameters:
:hdf5_file: string, path to HDF5 file
:proportion: size of test set
:random_state: fix state for testing purposes
:returns: train and test sets with labels (numpy arrays)
"""
# load data
X, Y = load_hdf5_to_numpy(hdf5_file)
# split dataset for train (75%), test (25%)
print('Total samples {}'.format(X.shape[0]))
count_y_values = np.unique(Y, return_counts=True)
print('P {}, S {}, Noise {}'.format(
count_y_values[1][0],
count_y_values[1][1],
count_y_values[1][2]))
X_train, X_test, y_train, y_test\
= train_test_split(
X,
Y,
test_size=proportion,
random_state=random_state,
shuffle=True)
# check for imbalance
print(
"test P, S and noise labels is {}%".format(
np.unique(y_test,
return_counts=True)[1]/y_test.shape[0]))
print(
"train P, S and noise labels is {}%".format(
np.unique(y_train,
return_counts=True)[1]/y_train.shape[0]))
return X_train, X_test, y_train, y_test
"""
Learnable classification token
"""
class ClsToken(keras.layers.Layer):
def __init__(self, embed_dim=20):
super(ClsToken, self).__init__()
self.embed_dim = embed_dim
self.w = self.add_weight(
shape=(1, 1, self.embed_dim),
initializer=tf.keras.initializers.RandomNormal(),
dtype=tf.float32,
trainable=True,
name='ClsTokenW'
)
def call(self, inputs):
self.batch_size = tf.shape(inputs)[0]
self.x = tf.broadcast_to(
self.w, [self.batch_size, 1, self.embed_dim]
)
return tf.keras.layers.concatenate([self.x, inputs], axis=1)
"""
Learnable position embedding
"""
class PosEmbeding(keras.layers.Layer):
def __init__(self, num_patches=20, embed_dim=20):
super(PosEmbeding, self).__init__()
self.w = self.add_weight(
shape=(num_patches, embed_dim),
initializer=tf.keras.initializers.RandomNormal(),
dtype=tf.float32,
trainable=True,
name='PosEmbedingW'
)
def call(self, inputs):
return inputs + self.w
class PosEmbeding2(layers.Layer):
def __init__(self, num_patches, projection_dim):
super(PosEmbeding2, self).__init__()
self.num_patches = num_patches
self.position_embedding = layers.Embedding(
input_dim=num_patches, output_dim=projection_dim
)
def call(self, inputs):
positions = tf.range(start=0, limit=self.num_patches, delta=1)
encoded = inputs + self.position_embedding(positions)
return encoded
"""
Rearrange 3 channels with patches to 1 channel
"""
class RearrangeCh(keras.layers.Layer):
def __init__(self, num_patches=20, embed_dim=20):
super(RearrangeCh, self).__init__()
self.rearrange = Rearrange('b c n w -> b n (c w)')
def call(self, inputs):
return self.rearrange(inputs)
"""
Rearrange 3d channels
"""
class Rearrange3d(keras.layers.Layer):
def __init__(self, p1, p2):
super(Rearrange3d, self).__init__()
self.rearrange = Rearrange('b (h p1) (w p2) c -> b (h w) (p1 p2 c)',
p1 = p1, p2 = p2)
def call(self, inputs):
return self.rearrange(inputs)
"""
Rescale to [0,1]
"""
class MMScaler(keras.layers.Layer):
def __init__(self):
super(MMScaler, self).__init__()
def call(self, inputs):
return (inputs - tf.reduce_min(inputs)) / (tf.reduce_max(inputs) - tf.reduce_min(inputs))
"""
Rescale to [-1,1]
"""
class MaxABSScaler(keras.layers.Layer):
def __init__(self):
super(MaxABSScaler, self).__init__()
def call(self, inputs):
min_abs_val = tf.abs(tf.reduce_min(inputs))
max_abs_val = tf.abs(tf.reduce_max(inputs))
max_abs = tf.maximum(min_abs_val, max_abs_val)
return inputs / max_abs
"""
Implement a Performer block as a layer
"""
class PerformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super(PerformerBlock, self).__init__()
self.att = fast_attention.Attention(
num_heads=num_heads, hidden_size=embed_dim, attention_dropout=0.1)
self.ffn1 = layers.Dense(ff_dim, activation='gelu')
self.ffn2 = layers.Dense(embed_dim, activation='gelu')
self.add1 = layers.Add()
self.add2 = layers.Add()
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
def call(self, inputs, training):
ln_1 = self.layernorm1(inputs)
attn_output = self.att(ln_1, ln_1, bias=None)
add_1 = self.add1([attn_output, inputs])
ln_2 = self.layernorm1(add_1)
mlp_1 = self.ffn1(ln_2)
dropout_1 = self.dropout1(mlp_1)
mlp_2 = self.ffn2(dropout_1)
dropout2 = self.dropout2(mlp_2)
return self.add2([dropout2, add_1])
def seismo_performer_with_spec(
maxlen=400,
nfft=64,
hop_length=16,
patch_size_1=22,
patch_size_2=3,
num_channels=3,
num_patches=11,
d_model=48,
num_heads=2,
ff_dim_factor=2,
layers_depth=2,
num_classes=3,
drop_out_rate=0.1):
"""
The model for P/S/N waves classification using ViT approach
with converted raw signal to spectrogram and the treat it as input to PERFORMER
Parameters:
:maxlen: maximum samples of waveforms
:nfft: number of FFTs in short-time Fourier transform
:hop_length: Hop length in sample between analysis windows
:patch_size_1: patch size for first dimention (depends on nfft/hop_length)
:patch_size_2: patch size for second dimention (depends on nfft/hop_length)
:num_channels: number of channels (usually it's equal to 3)
:num_patches: resulting number of patches (FIX manual setup!)
:d_model: Embedding size for each token
:num_heads: Number of attention heads
:ff_dim_factor: Hidden layer size in feed forward network inside transformer
ff_dim = d_model * ff_dim_factor
:layers_depth: The number of transformer blocks
:num_classes: The number of classes to predict
:returns: Keras model object
"""
num_patches = num_patches
ff_dim = d_model * ff_dim_factor
inputs = layers.Input(shape=(maxlen, num_channels))
# do transform
x = STFT(n_fft=nfft,
window_name=None,
pad_end=False,
hop_length=hop_length,
input_data_format='channels_last',
output_data_format='channels_last',)(inputs)
x = Magnitude()(x)
x = MagnitudeToDecibel()(x)
# custom normalization
x = MaxABSScaler()(x)
# patch the input channel
x = Rearrange3d(p1=patch_size_1,p2=patch_size_2)(x)
# embedding
x = tf.keras.layers.Dense(d_model)(x)
# add cls token
x = ClsToken(d_model)(x)
# positional embeddings
x = PosEmbeding2(num_patches=num_patches + 1, projection_dim=d_model)(x)
# encoder block
for i in range(layers_depth):
x = PerformerBlock(d_model, num_heads, ff_dim, rate=drop_out_rate)(x)
# to MLP head
x = tf.keras.layers.Lambda(lambda x: x[:, 0])(x)
x = tf.keras.layers.LayerNormalization(epsilon=1e-6)(x)
# MLP-head
x = layers.Dropout(drop_out_rate)(x)
x = tf.keras.layers.Dense(d_model*ff_dim_factor, activation='gelu')(x)
x = layers.Dropout(drop_out_rate)(x)
x = tf.keras.layers.Dense(d_model, activation='gelu')(x)
x = layers.Dropout(drop_out_rate)(x)
outputs = layers.Dense(num_classes, activation='softmax')(x)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
def model_cnn_spec(timewindow, nfft, hop_length=4):
"""build very base CNN model on top of spectrogram.
:returns: keras model object
"""
# std_dev_input = 0.001
inputs = keras.Input(shape=(timewindow, 3))
x = STFT(n_fft=nfft,
window_name=None,
pad_end=False,
hop_length=hop_length,
input_data_format='channels_last',
output_data_format='channels_last',)(inputs)
x = Magnitude()(x)
x = MagnitudeToDecibel()(x)
x = MaxABSScaler()(x)
#x = tf.keras.layers.Lambda(lambda image: tf.image.resize(image, (60,60)))(x)
x = tf.keras.layers.Conv2D(filters=32, kernel_size=(3,3), padding="same")(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.activations.relu(x)
x = tf.keras.layers.MaxPooling2D(pool_size=(2,2))(x)
x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding="same")(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.activations.relu(x)
x = tf.keras.layers.MaxPooling2D(pool_size=(2,2))(x)
x = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), padding="same")(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.activations.relu(x)
x = tf.keras.layers.MaxPooling2D(pool_size=(2,2))(x)
x = tf.keras.layers.Flatten()(x)
x = layers.Dropout(0.5)(x)
x = tf.keras.layers.Dense(80, activation="relu")(x)
x = layers.Dropout(0.5)(x)
outputs = tf.keras.layers.Dense(3, activation="softmax")(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model