-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path0-sum subarrays.cpp
107 lines (72 loc) Β· 1.9 KB
/
0-sum subarrays.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
/*
//////////////////////////////////////////////////////
//Question/Info
Zero Sum Subarrays
Medium Accuracy: 50.41% Submissions: 20111 Points: 4
You are given an array arr[] of size n. Find the total count of sub-arrays having their sum equal to 0.
Example 1:
Input:
n = 6
arr[] = {0,0,5,5,0,0}
Output: 6
Explanation: The 6 subarrays are
[0], [0], [0], [0], [0,0], and [0,0].
Example 2:
Input:
n = 10
arr[] = {6,-1,-3,4,-2,2,4,6,-12,-7}
Output: 4
Explanation: The 4 subarrays are [-1 -3 4]
[-2 2], [2 4 6 -12], and [-1 -3 4 -2 2]
Your Task:
You don't need to read input or print anything. Complete the function findSubarray() that takes the array arr and its size n as input parameters and returns the total number of sub-arrays with 0 sum.
Expected Time Complexity : O(n)
Expected Auxilliary Space : O(n)
Constraints:
1<= n <= 107
-1010 <= arri <= 1010
Company Tags
Amazon Microsoft OYO Rooms
author: srj_v
//////////////////////////////////////////////////////
*/
#include <bits/stdc++.h>
using namespace std;
#define _IOS ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
typedef long double ld;
typedef long long int lli;
#pragma GCC optimize("Ofast")
void c_p_c()
{
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
}
//////////////////////////////////////////////////////
int32_t main() {
///////////
// c_p_c();
///////////
_IOS
//////////
// code
/*
int t ; cin >> t; while(t--){}
*/
ll findSubarray(vector<ll> arr, int n ) {
//code here
unordered_map<ll, ll> mp; mp[0] = 1;
int sum = 0 ; int count = 0 ;
for (int i = 0 ; i < n ; i++)
{
sum += arr[i];
count += mp[sum]++; // post incrment.. so its count + 0 .. initally..
}
return count;
// since in a range of numbers, we can notice the pattern...
}
// cerr << "time: " << clock() << " ms" << '\n';
return 0;
}
//////////////////////////////////////////////////////