-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdfs.cpp
161 lines (118 loc) Β· 2.87 KB
/
dfs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*
///////////////////////////////////////////
//Question/Info
DFS of Graph
Easy Accuracy: 49.62% Submissions: 69461 Points: 2
Given a connected undirected graph. Perform a Depth First Traversal of the graph.
Note: Use recursive approach to find the DFS traversal of the graph starting from the 0th vertex from left to right according to the graph..
Example 1:
Input:
Output: 0 1 2 4 3
Explanation:
0 is connected to 1, 2, 4.
1 is connected to 0.
2 is connected to 0.
3 is connected to 0.
4 is connected to 0, 3.
so starting from 0, it will go to 1 then 2
then 4, and then from 4 to 3.
Thus dfs will be 0 1 2 4 3.
Example 2:
Input:
Output: 0 1 2 3
Explanation:
0 is connected to 1 , 3.
1 is connected to 2.
2 is connected to 1.
3 is connected to 0.
so starting from 0, it will go to 1 then 2
then back to 0 then 0 to 3
thus dfs will be 0 1 2 3.
Your task:
You donβt need to read input or print anything. Your task is to complete the function dfsOfGraph() which takes the integer V denoting the number of vertices and adjacency list as input parameters and returns a list containing the DFS traversal of the graph starting from the 0th vertex from left to right according to the graph.
Expected Time Complexity: O(V + E)
Expected Auxiliary Space: O(V)
Constraints:
1 β€ V, E β€ 104
Company Tags
Accolite Amazon Intuit Samsung
author: srj_v
///////////////////////////////////////////
*/
#include <bits/stdc++.h>
using namespace std;
#define _IOS ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
typedef long double ld;
typedef long long int lli;
#pragma GCC optimize("Ofast")
void c_p_c()
{
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
}
int32_t main() {
///////////
c_p_c();
///////////
_IOS
//////////
// code
/*
int t ; cin >> t; while(t--){}
*/
class Solution
{
public:
void rec(vector<int> adj[], int i, vector<int>& flag, vector<int>& ans) {
for (auto m : adj[i]) {
if (flag[m] == 0) {
flag[m]++;
ans.push_back(m);
rec(adj, m, flag, ans);
}
}
return;
}
//Function to return a list containing the DFS traversal of the graph.
vector<int>dfsOfGraph(int V, vector<int> adj[])
{
// Code here
vector<int> ans;
vector<int> flag(V, 0);
ans.push_back(0);
flag[0]++;
rec(adj, 0, flag, ans);
return ans;
}
};
// { Driver Code Starts.
int main() {
int tc;
cin >> tc;
while (tc--) {
int V, E;
cin >> V >> E;
vector<int> adj[V];
for (int i = 0; i < E; i++)
{
int u, v;
cin >> u >> v;
adj[u].push_back(v);
adj[v].push_back(u);
}
// string s1;
// cin>>s1;
Solution obj;
vector<int>ans = obj.dfsOfGraph(V, adj);
for (int i = 0; i < ans.size(); i++) {
cout << ans[i] << " ";
}
cout << endl;
}
return 0;
} // } Driver Code Ends
// cerr << "time: " << clock() << " ms" << '\n';
return 0;
}