-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmax sum increasing subseq..cpp
115 lines (79 loc) Β· 1.96 KB
/
max sum increasing subseq..cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/*
//////////////////////////////////////////////////////
//Question/Info
Maximum sum increasing subsequence
Medium Accuracy: 49.92% Submissions: 17398 Points: 4
Given an array arr of N positive integers, the task is to find the maximum sum increasing subsequence of the given array.
Example 1:
Input: N = 5, arr[] = {1, 101, 2, 3, 100}
Output: 106
Explanation:The maximum sum of a
increasing sequence is obtained from
{1, 2, 3, 100}
Example 2:
Input: N = 3, arr[] = {1, 2, 3}
Output: 6
Explanation:The maximum sum of a
increasing sequence is obtained from
{1, 2, 3}
Your Task:
You don't need to read input or print anything. Complete the function maxSumIS() which takes N and array arr as input parameters and returns the maximum value.
Expected Time Complexity: O(N2)
Expected Auxiliary Space: O(N)
Constraints:
1 β€ N β€ 103
1 β€ arr[i] β€ 105
Company Tags
Amazon Morgan Stanley Microsoft
author: srj_v
//////////////////////////////////////////////////////
*/
#include <bits/stdc++.h>
using namespace std;
#define _IOS ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
typedef long double ld;
typedef long long int lli;
#pragma GCC optimize("Ofast")
void c_p_c()
{
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
}
//////////////////////////////////////////////////////
int32_t main() {
///////////
// c_p_c();
///////////
_IOS
//////////
// code
/*
int t ; cin >> t; while(t--){}
*/
class Solution {
public:
int maxSumIS(int arr[], int n)
{
// Your code goes here
int dp[n];
for (int i = 0 ; i < n ; i++) {
dp[i] = arr[i];
}
for (int i = 1 ; i < n ; i ++) {
for (int j = 0 ; j < i ; j++) {
if (arr[i] > arr[j])
{
dp[i] = max(dp[i], dp[j] + arr[i]);
}
}
}
int ans;
return (ans = *max_element(dp, dp + n));
}
};
// cerr << "time: " << clock() << " ms" << '\n';
return 0;
}
//////////////////////////////////////////////////////