Skip to content

Latest commit

 

History

History
182 lines (160 loc) · 4.58 KB

README.md

File metadata and controls

182 lines (160 loc) · 4.58 KB

Importants: topics

Quick Sort:

Pseudocode for quick sort:

    quicksort(A, p, r)
        if p < r
            q = partition(A, p, r)
            quicksort(A, p, q-1)
            quicksort(A, q+1, r)

    partition(A, p, r)
        x = A[r]
        i = p-1
        for j = p to r-1
            if A[j] <= x
                i = i+1
                exchange A[i] with A[j]
        exchange A[i+1] with A[r]
        return i+1
  • Average Case: O(nlogn)
  • Worst Case: O(n^2)

Merge Sort:

Pseudocode for merge sort:

    mergesort(A, p, r)
        if p < r
            q = (p+r)/2
            mergesort(A, p, q)
            mergesort(A, q+1, r)
            merge(A, p, q, r)

    merge(A, p, q, r)
        n1 = q-p+1
        n2 = r-q
        let L[1..n1+1] and R[1..n2+1] be new arrays
        for i = 1 to n1
            L[i] = A[p+i-1]
        for j = 1 to n2
            R[j] = A[q+j]
        L[n1+1] = ∞
        R[n2+1] = ∞
        i = 1
        j = 1
        for k = p to r
            if L[i] <= R[j]
                A[k] = L[i]
                i = i+1
            else A[k] = R[j]
                j = j+1
  • Average Case: O(nlogn)
  • Worst Case: O(nlogn)

Maximum Subarray Problem:

Pseudocode for maximum subarray:

        maxsubarray(A, low, high)
            if high == low
                return (low, high, A[low])
            else mid = (low + high)/2
                (left-low, left-high, left-sum) = maxsubarray(A, low, mid)
                (right-low, right-high, right-sum) = maxsubarray(A, mid+1, high)
                (cross-low, cross-high, cross-sum) = maxcrossing(A, low, mid, high)
                if left-sum >= right-sum and left-sum >= cross-sum
                    return (left-low, left-high, left-sum)
                else if right-sum >= left-sum and right-sum >= cross-sum
                    return (right-low, right-high, right-sum)
                else return (cross-low, cross-high, cross-sum)
    
        maxcrossing(A, low, mid, high)
            left-sum = -∞
            sum = 0
            for i = mid downto low
                sum = sum + A[i]
                if sum > left-sum
                    left-sum = sum
                    max-left = i
            right-sum = -∞
            sum = 0
            for j = mid+1 to high
                sum = sum + A[j]
                if sum > right-sum
                    right-sum = sum
                    max-right = j
            return (max-left, max-right, left-sum + right-sum)

Strassen's matrix multiplication:

Formula:

matrix1 = [[a, b], [c, d]]
matrix2 = [[e, f], [g, h]]

p1 = a(f-h) p2 = (a+b)h p3 = (c+d)e p4 = d(g-e) p5 = (a+d)(e+h) p6 = (b-d)(g+h) p7 = (a-c)(e+f)

multiplied_matrix = [[p5+p4-p2+p6, p1+p2], [p3+p4, p1+p5-p3-p7]]

Master Theorem:

Recurrence Relation:

T(n) = aT(n/b) + f(n)

Case 1:

a = b^k

Case 2:

a < b^k

Case 3:

a > b^k

Importants:

unit2

Optimization Problems:

  • Problem with an objective function and a set of constraints:
    • Maximize some profit
    • Minimize some cost

Techniques:

  • Greedy Algorithms
  • Dynamic Programming

Greedy Algorithms:

  • Divide the problem into subproblems
  • For each step take the best choice at the current moment (local optimum)
  • The hope: A locally optimal choice will lead to a globally optimal solution

Fractional Knapsack Problem:

Pseudocode:

fractional-knapsack(W, n, v, w)
    for i = 1 to n
        x[i] = 0
    for i = 1 to n
        if w[i] <= W
            x[i] = 1
            W = W - w[i]
        else x[i] = W/w[i]
            W = 0
    return x

Knapsack with dynamic programming:

if wi <= w:
    if bi + B[i-1,w-wi] > B[i-1,w]:
        B[i,w] = bi + B[i-1,w-wi]
    else:
        B[i,w] = B[i-1,w]
else:
    B[i,w] = B[i-1,w]

To select item

B[n,w] is the maximum value that can be put in a knapsack of capacity w
let i = n and k= w
if B[i,k] != B[i-1,k]:
    select item i
    k = k - wi
else:
    i = i-1

ref

For reference