From a9d66a3852bf434e586bc970b244ddcdc724c4c5 Mon Sep 17 00:00:00 2001 From: pupperemeritus Date: Fri, 1 Sep 2023 02:35:06 +0530 Subject: [PATCH] Improved Coverage --- stingray/lombscargle.py | 64 ++++++++++-------------------- stingray/tests/test_lombscargle.py | 52 +++++++++++++----------- 2 files changed, 50 insertions(+), 66 deletions(-) diff --git a/stingray/lombscargle.py b/stingray/lombscargle.py index 19ca7ec7b..7096611ef 100644 --- a/stingray/lombscargle.py +++ b/stingray/lombscargle.py @@ -126,24 +126,19 @@ def __init__( oversampling: int = 5, ): self._type = None - good_input = data1 is not None and data2 is not None + if data1 is None and data2 is None: - if not skip_checks: - good_input = self.initial_checks( - data1=data1, - data2=data2, - norm=norm, - power_type=power_type, - dt=dt, - fullspec=fullspec, - min_freq=min_freq, - max_freq=max_freq, - df=df, - method=method, - oversampling=oversampling, - ) self._initialize_empty() return + + if dt is None: + if isinstance(data1, Lightcurve) or isinstance(data2, EventList): + dt = data1.dt + elif isinstance(data2, Lightcurve) or isinstance(data2, EventList): + dt = data2.dt + if dt is None: + raise ValueError("dt must be provided for EventLists") + if not skip_checks: good_input = self.initial_checks( data1=data1, @@ -159,23 +154,15 @@ def __init__( oversampling=oversampling, ) - if not good_input: - self._initialize_empty() - return - if dt is None: - if isinstance(data1, Lightcurve) or isinstance(data2, EventList): - dt = data1.dt - elif isinstance(data2, Lightcurve) or isinstance(data2, EventList): - dt = data2.dt - if dt is None: - raise ValueError("dt must be provided for EventLists") + if not good_input: + self._initialize_empty() + return + self.dt = dt norm = norm.lower() self.norm = norm self.k = 1 self.df = df - if not good_input: - return self._initialize_empty() if isinstance(data1, EventList): self.lc1 = data1.to_lc(self.dt) @@ -199,7 +186,7 @@ def __init__( self._make_crossspectrum( self.lc1, self.lc2, fullspec, method=method, oversampling=oversampling ) - if self.power_type == "abs": + if self.power_type == "absolute": self.power = np.abs(self.power) self.power_err = np.abs(self.power_err) self.unnorm_power = np.abs(self.unnorm_power) @@ -307,15 +294,6 @@ def _make_crossspectrum(self, lc1, lc2, fullspec, method, oversampling): and Rybicki O(n*log(n)) """ - if self.lc2.mjdref != self.lc1.mjdref: - raise ValueError("MJDref is different in the two light curves") - - if lc1.n != lc2.n: - raise StingrayError("Lightcurves do not have the same number of bins per segment.") - - if not np.isclose(lc1.dt, lc2.dt, rtol=0.1 * lc1.dt / lc1.tseg): - raise StingrayError("Lightcurves do not have the same time binning dt.") - self.meancounts1 = lc1.meancounts self.meancounts2 = lc2.meancounts @@ -510,37 +488,37 @@ def time_lag(self): "Object has no attribute named 'time_lag' ! Not applicable for unevenly sampled data" ) - def classical_significances(self, threshold=1, trial_correction=False): + def classical_significances(self): """Not applicable for unevenly sampled data""" raise AttributeError( "Object has no attribute named 'classical_significances' ! Not applicable for unevenly sampled data" ) - def from_time_array(): + def from_time_array(self): """Not applicable for unevenly sampled data""" raise AttributeError( "Object has no attribute named 'from_time_array' ! Not applicable for unevenly sampled data" ) - def from_events(): + def from_events(self): """Not applicable for unevenly sampled data""" raise AttributeError( "Object has no attribute named 'from_events' ! Not applicable for unevenly sampled data" ) - def from_lightcurve(): + def from_lightcurve(self): """Not applicable for unevenly sampled data""" raise AttributeError( "Object has no attribute named 'from_lightcurve' ! Not applicable for unevenly sampled data" ) - def from_lc_iterable(): + def from_lc_iterable(self): """Not applicable for unevenly sampled data""" raise AttributeError( "Object has no attribute named 'from_lc_iterable' ! Not applicable for unevenly sampled data" ) - def _initialize_from_any_input(): + def _initialize_from_any_input(self): """Not required for unevenly sampled data""" raise AttributeError("Object has no attribute named '_initialize_from_any_input' !") diff --git a/stingray/tests/test_lombscargle.py b/stingray/tests/test_lombscargle.py index 650240ef6..5c48c2dbe 100644 --- a/stingray/tests/test_lombscargle.py +++ b/stingray/tests/test_lombscargle.py @@ -32,8 +32,8 @@ def setup_class(self): @pytest.mark.parametrize("skip_checks", [True, False]) def test_initialize_empty(self, skip_checks): lscs = LombScargleCrossspectrum(skip_checks=skip_checks) - assert lscs.freq is None - assert lscs.power is None + lscs.freq is None + lscs.power is None def test_make_empty_crossspectrum(self): lscs = LombScargleCrossspectrum() @@ -54,31 +54,35 @@ def test_make_empty_crossspectrum(self): assert lscs.oversampling is None assert lscs.method is None + def test_bad_input(self): + with pytest.raises(TypeError): + lscs = LombScargleCrossspectrum(1, self.lc1) + def test_init_with_one_lc_none(self): with pytest.raises(ValueError): - lscs = LombScargleCrossspectrum(self.lc1) + lscs = LombScargleCrossspectrum(self.lc1, None) def test_init_with_norm_not_str(self): with pytest.raises(TypeError): - lscs = LombScargleCrossspectrum(norm=1) + lscs = LombScargleCrossspectrum(self.lc1, self.lc2, norm=1) def test_init_with_invalid_norm(self): with pytest.raises(ValueError): - lscs = LombScargleCrossspectrum(norm="frabs") + lscs = LombScargleCrossspectrum(self.lc1, self.lc2, norm="frabs") def test_init_with_power_type_not_str(self): with pytest.raises(TypeError): - lscs = LombScargleCrossspectrum(power_type=3) + lscs = LombScargleCrossspectrum(self.lc1, self.lc2, power_type=3) def test_init_with_invalid_power_type(self): with pytest.raises(ValueError): - lscs = LombScargleCrossspectrum(power_type="reel") + lscs = LombScargleCrossspectrum(self.lc1, self.lc2, power_type="reel") def test_init_with_wrong_lc_instance(self): lc1_ = {"a": 1, "b": 2} lc2_ = {"a": 1, "b": 2} with pytest.raises(TypeError): - lscs = LombScargleCrossspectrum(lc1_, lc2_) + lscs = LombScargleCrossspectrum(lc1_, lc2_, dt=1) def test_init_with_wrong_lc2_instance(self): lc_ = {"a": 1, "b": 2} @@ -110,13 +114,6 @@ def test_make_crossspectrum_diff_lc_stat(self): cs = LombScargleCrossspectrum(self.lc1, lc_) assert np.any(["different statistics" in r.message.args[0] for r in record]) - def test_make_crossspectrum_diff_dt(self): - lc_ = Simulator(0.0002, 100, 100, 1, random_state=42, tstart=0).simulate(0) - with pytest.raises( - StingrayError, match="Lightcurves do not have the same time binning dt." - ): - lscs = LombScargleCrossspectrum(self.lc1, lc_) - @pytest.mark.parametrize("power_type", ["real", "absolute", "all"]) def test_power_type(self, power_type): lscs = LombScargleCrossspectrum(self.lc1, self.lc2, power_type=power_type) @@ -142,11 +139,12 @@ def test_invalid_mixed_data(self): with pytest.raises(ValueError): lscs = LombScargleCrossspectrum(data2, self.lc1) - def test_diff_mjdref(self): - lc3 = copy.deepcopy(self.lc1) - lc3.mjdref += 1 - with pytest.raises(ValueError): - lscs = LombScargleCrossspectrum(self.lc1, lc3) + def test_valid_mixed_data(self): + data2 = EventList(self.lc2.time, np.ones_like(self.lc2.time)) + lscs = LombScargleCrossspectrum(self.lc1, data2) + assert lscs.power is not None + lscs2 = LombScargleCrossspectrum(data2, self.lc1) + assert lscs2.power is not None def test_fullspec(self): lscs = LombScargleCrossspectrum(self.lc1, self.lc2, fullspec=True) @@ -158,7 +156,7 @@ def test_valid_method(self, method): assert lscs.method == method @pytest.mark.parametrize( - "func", + "func_name", [ "phase_lag", "time_lag", @@ -170,9 +168,17 @@ def test_valid_method(self, method): "_initialize_from_any_input ", ], ) - def test_raise_on_invalid_function(self, func): + def test_raise_on_invalid_function(self, func_name): with pytest.raises(AttributeError): - lscs = LombScargleCrossspectrum(self.lc1, self.lc2).func() + lscs = LombScargleCrossspectrum(self.lc1, self.lc2) + func = getattr(lscs, func_name) + func() + + def test_no_dt(self): + el1 = EventList(self.lc1.counts, self.lc1.time, dt=None) + el2 = EventList(self.lc2.counts, self.lc2.time, dt=None) + with pytest.raises(ValueError): + lscs = LombScargleCrossspectrum(el1, el2) class TestLombScarglePowerspectrum: