-
Notifications
You must be signed in to change notification settings - Fork 4
/
vehicle_dynamics.jl
390 lines (346 loc) · 15.8 KB
/
vehicle_dynamics.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
@maintain_type struct BicycleControl{T} <: FieldVector{3,T} # common to all models below
δ::T # steering angle
Fxf::T # front tire longitudinal force (tire frame)
Fxr::T # rear tire longidutinal force (tire frame)
end
struct BicycleModelParams{T}
# Dimensions
L::T # wheelbase
a::T # distance from front axle to CG
b::T # distance from rear axle to CG
h::T # CG height
# Mass and yaw moment of inertia
G::T # gravitational acceleration
m::T # vehicle mass
Izz::T # yaw moment of inertia
# Tire model parameters
μ::T # coefficient of friction
Cαf::T # front tire (pair) cornering stiffness
Cαr::T # rear tire (pair) cornering stiffness
# Longitudinal Drag Force Parameters (FxDrag = Cd0 + Cd1*Ux + Cd2*Ux^2)
Cd0::T # rolling resistance
Cd1::T # linear drag coefficint
Cd2::T # quadratic "aero" drag coefficint
end
BicycleModelParams(vehicle::Dict) = BicycleModelParams((vehicle[n] for n in fieldnames(BicycleModelParams))...)
abstract type AbstractBicycleModel{T} <: DifferentialDynamics end
Base.getproperty(B::AbstractBicycleModel, name::Symbol) = getproperty(getfield(B, :params), name) # potentially not a great idea...
# Coupled Tire Forces - Simplified Model
@inline function fialatiremodel(α, Cα, μ, Fx, Fz)
F_max = μ*Fz
abs(Fx) >= F_max ? zero(F_max) : _fialatiremodel(tan(α), Cα, sqrt(F_max*F_max - Fx*Fx))
end
@inline function _fialatiremodel(tanα, Cα, Fy_max)
tanα_slide = 3*Fy_max/Cα
ratio = abs(tanα/tanα_slide)
if ratio <= 1
-Cα*tanα*(1 - ratio + ratio*ratio/3)
else
-Fy_max*sign(tanα)
end
end
@inline function invfialatiremodel(Fy, Cα, μ, Fx, Fz)
F_max = μ*Fz
Fy_max = sqrt(F_max*F_max - Fx*Fx)
atan(_invfialatiremodel(Fy, Cα, Fy_max))
end
@inline function _invfialatiremodel(Fy, Cα, Fy_max) # returns tanα
if abs(Fy) >= Fy_max
-(3*Fy_max/Cα)*sign(Fy)
else
-(1 + cbrt(abs(Fy)/Fy_max - 1))*sign(Fy)
end
end
@inline function lateral_tire_forces(B::AbstractBicycleModel, αf, αr, Fxf, Fxr, sδ, cδ, num_iters=3)
L, a, b, h, m, μ, Cαf, Cαr, G = B.L, B.a, B.b, B.h, B.m, B.μ, B.Cαf, B.Cαr, B.G
Fyf = zero(Fxf)
Fx = Fxf*cδ - Fyf*sδ + Fxr
for i in 1:num_iters
Fzf = (m*G*b - h*Fx)/L
Fyf = fialatiremodel(αf, Cαf, μ, Fxf, Fzf)
Fx = Fxf*cδ - Fyf*sδ + Fxr
end
Fzr = (m*G*a + h*Fx)/L
Fyr = fialatiremodel(αr, Cαr, μ, Fxr, Fzr)
Fyf, Fyr
end
@inline function lateral_tire_forces(B::AbstractBicycleModel, q::StaticVector{6}, u::StaticVector{3}, num_iters=3)
Ux, Uy, r = q[4], q[5], q[6]
δ, Fxf, Fxr = u[1], u[2], u[3]
a, b = B.a, B.b
sδ, cδ = sincos(δ)
αf = atan(Uy + a*r, Ux) - δ
αr = atan(Uy - b*r, Ux)
lateral_tire_forces(B, αf, αr, Fxf, Fxr, sδ, cδ, num_iters)
end
# Bicycle Model
struct BicycleModel{T} <: AbstractBicycleModel{T}
params::BicycleModelParams{T}
end
BicycleModel(vehicle::Dict) = BicycleModel(BicycleModelParams(vehicle))
@maintain_type struct BicycleState{T} <: FieldVector{6,T}
E::T # world frame "x" position of CM
N::T # world frame "y" position of CM
ψ::T # world frame heading of vehicle
Ux::T # body frame longitudinal speed
Uy::T # body frame lateral speed
r::T # yaw rate (dψ/dt)
end
@maintain_type struct LocalRoadGeometry{T} <: FieldVector{4,T}
ψ::T # nominal trajectory heading
κ::T # nominal trajectory (local) curvature
θ::T # nominal trajectory (local) pitch grade
ϕ::T # nominal trajectory (local) roll grade
end
function (B::BicycleModel{T})((E, N, ψ, Ux, Uy, r)::StaticVector{6},
(δ, Fxf, Fxr)::StaticVector{3},
(ψᵣ, κ, θ, ϕ)::StaticVector{4}=zeros(LocalRoadGeometry{T})) where {T}
a, b, m, Izz, Cd0, Cd1, Cd2 = B.a, B.b, B.m, B.Izz, B.Cd0, B.Cd1, B.Cd2
sψ, cψ = sincos(ψ)
sδ, cδ = sincos(δ)
αf = atan(Uy + a*r, Ux) - δ
αr = atan(Uy - b*r, Ux)
Fyf, Fyr = lateral_tire_forces(B, αf, αr, Fxf, Fxr, sδ, cδ)
Fx_drag = -Cd0 - Ux*(Cd1 + Cd2*Ux)
Fx_grade = 0 # TODO: figure out how roll/pitch are ordered
Fy_grade = 0
F̃xf = Fxf*cδ - Fyf*sδ
F̃yf = Fyf*cδ + Fxf*sδ
SVector(
-Ux*sψ - Uy*cψ, # Ux*cψ - Uy*sψ, # (ψ measured from N)
Ux*cψ - Uy*sψ, # Ux*sψ + Uy*cψ,
r,
(F̃xf + Fxr + Fx_drag + Fx_grade)/m + r*Uy,
(F̃yf + Fyr + Fy_grade)/m - r*Ux,
(a*F̃yf - b*Fyr)/Izz
)
end
(B::BicycleModel{T})(q::StaticVector{6}, ur::StaticVector{7}) where {T} = B(q, ur[SUnitRange(1,3)], ur[SUnitRange(4,7)])
# Tracking Bicycle Model
struct TrackingBicycleModel{T} <: AbstractBicycleModel{T}
params::BicycleModelParams{T}
end
TrackingBicycleModel(vehicle::Dict) = TrackingBicycleModel(BicycleModelParams(vehicle))
@maintain_type struct TrackingBicycleState{T} <: FieldVector{6,T}
Δs::T # longitudinal error (w.r.t. nominal trajectory)
Ux::T # body frame longitudinal speed
Uy::T # body frame lateral speed
r::T # yaw rate
Δψ::T # heading error (w.r.t. nominal trajectory)
e::T # lateral error (w.r.t. nominal trajectory)
end
@maintain_type struct TrackingBicycleParams{T} <: FieldVector{4,T}
V::T # nominal trajectory speed
κ::T # nominal trajectory (local) curvature
θ::T # nominal trajectory (local) pitch grade
ϕ::T # nominal trajectory (local) roll grade
end
function (B::TrackingBicycleModel{T})((Δs, Ux, Uy, r, Δψ, e)::StaticVector{6},
(δ, Fxf, Fxr)::StaticVector{3},
(V, κ, θ, ϕ)::StaticVector{4}=zeros(TrackingBicycleParams{T})) where {T}
a, b, m, Izz, Cd0, Cd1, Cd2 = B.a, B.b, B.m, B.Izz, B.Cd0, B.Cd1, B.Cd2
sΔψ, cΔψ = sincos(Δψ)
sδ, cδ = sincos(δ)
αf = atan(Uy + a*r, Ux) - δ
αr = atan(Uy - b*r, Ux)
Fyf, Fyr = lateral_tire_forces(B, αf, αr, Fxf, Fxr, sδ, cδ)
Fx_drag = -Cd0 - Ux*(Cd1 + Cd2*Ux)
Fx_grade = 0 # TODO: figure out how roll/pitch are ordered
Fy_grade = 0
F̃xf = Fxf*cδ - Fyf*sδ
F̃yf = Fyf*cδ + Fxf*sδ
SVector(
Ux*cΔψ - Uy*sΔψ - V,
(F̃xf + Fxr + Fx_drag + Fx_grade)/m + r*Uy,
(F̃yf + Fyr + Fy_grade)/m - r*Ux,
(a*F̃yf - b*Fyr)/Izz,
r - (Ux*cΔψ - Uy*sΔψ)*κ,
Ux*sΔψ + Uy*cΔψ
)
end
(B::TrackingBicycleModel{T})(q::StaticVector{6}, ur::StaticVector{7}) where {T} = B(q, ur[SUnitRange(1,3)], ur[SUnitRange(4,7)])
# Lateral Tracking Bicycle Model
struct LateralTrackingBicycleModel{T} <: AbstractBicycleModel{T}
params::BicycleModelParams{T}
end
LateralTrackingBicycleModel(vehicle::Dict) = LateralTrackingBicycleModel(BicycleModelParams(vehicle))
@maintain_type struct LateralTrackingBicycleState{T} <: FieldVector{4,T}
Uy::T # body frame lateral speed
r::T # yaw rate
Δψ::T # heading error (w.r.t. nominal trajectory)
e::T # lateral error (w.r.t. nominal trajectory)
end
@maintain_type struct LateralTrackingBicycleParams{T} <: FieldVector{4,T}
Ux::T # body frame longitudinal speed
κ::T # nominal trajectory (local) curvature
θ::T # nominal trajectory (local) pitch grade
ϕ::T # nominal trajectory (local) roll grade
end
function (B::LateralTrackingBicycleModel{T})((Uy, r, Δψ, e)::StaticVector{4},
(δ, Fxf, Fxr)::StaticVector{3},
(Ux, κ, θ, ϕ)::StaticVector{4}=zeros(LateralTrackingBicycleParams{T})) where {T}
a, b, m, Izz = B.a, B.b, B.m, B.Izz
sΔψ, cΔψ = sincos(Δψ)
sδ, cδ = sincos(δ)
αf = atan(Uy + a*r, Ux) - δ
αr = atan(Uy - b*r, Ux)
Fyf, Fyr = lateral_tire_forces(B, αf, αr, Fxf, Fxr, sδ, cδ)
Fy_grade = 0
F̃yf = Fyf*cδ + Fxf*sδ
SVector(
(F̃yf + Fyr + Fy_grade)/m - r*Ux,
(a*F̃yf - b*Fyr)/Izz,
r - Ux*κ,
Ux*sΔψ + Uy*cΔψ
)
end
(B::LateralTrackingBicycleModel{T})(q::StaticVector{4}, up::StaticVector{7}) where {T} = B(q, up[SUnitRange(1,3)], up[SUnitRange(4,7)])
# Uy/r Stability Envelope
@inline function stable_limits(B::AbstractBicycleModel, Ux, Fxf, Fxr)
L, a, b, h, m, μ, Cαf, Cαr, G = B.L, B.a, B.b, B.h, B.m, B.μ, B.Cαf, B.Cαr, B.G
Fx = Fxf + Fxr
Fy_grade = 0
Fzf = (m*G*b - h*Fx)/L
Fzr = (m*G*a + h*Fx)/L
Ff_max = μ*Fzf
Fr_max = μ*Fzr
Fyf_max = abs(Fxf) > Ff_max ? zero(Ff_max) : sqrt(Ff_max*Ff_max - Fxf*Fxf)
Fyr_max = abs(Fxr) > Fr_max ? zero(Fr_max) : sqrt(Fr_max*Fr_max - Fxr*Fxr)
tanαf_slide = 3*Fyf_max/Cαf
tanαr_slide = 3*Fyr_max/Cαr
αf_slide = atan(tanαf_slide)
αr_slide = atan(tanαr_slide)
# https://ddl.stanford.edu/sites/default/files/publications/2012_Thesis_Bobier_A_Phase_Portrait_Approach_to_Vehicle_Stabilization_and_Envelope_Control.pdf
δ_max = atan(L*( μ*G + Fy_grade/m)/(Ux*Ux) - tanαr_slide) + αf_slide # corresponds to U̇y = 0; αr < 0; αf < 0; δ > 0; r > 0
δ_min = atan(L*(-μ*G + Fy_grade/m)/(Ux*Ux) + tanαr_slide) - αf_slide # corresponds to U̇y = 0; αr > 0; αf > 0; δ < 0; r < 0
rC = ( μ*G + Fy_grade/m)/Ux
UyC = -Ux*tanαr_slide + b*rC
rD = Ux/L*(tan( αf_slide + δ_max) - tanαr_slide) # αr > 0; αf > 0; δ > 0;
UyD = Ux*tanαr_slide + b*rD
mCD = (rD - rC)/(UyD - UyC)
rE = Ux/L*(tan(-αf_slide + δ_min) + tanαr_slide) # αr < 0; αf < 0; δ < 0;
UyE = -Ux*tanαr_slide + b*rE
rF = (-μ*G + Fy_grade/m)/Ux
UyF = Ux*tanαr_slide + b*rF
mEF = (rF - rE)/(UyF - UyE)
H_veh = @SMatrix [ 1/Ux -b/Ux; # β max (≈Uy/Ux)
-1/Ux b/Ux; # β min (≈Uy/Ux)
-mCD 1; # r max
mEF -1] # r min
G_veh = SVector(αr_slide, αr_slide, rC - UyC*mCD, -rF + UyF*mEF)
δ_min, δ_max, H_veh, G_veh
end
# Bicycle Model with Combined Longitudinal Force Input (Fx = Fxf + Fxr)
@maintain_type struct BicycleControl2{T} <: FieldVector{2,T}
δ::T # steering angle
Fx::T # combined front/rear tire longitudinal force (sum of each in respective tire frames; approximately, total is applied longitudinally in body frame)
end
BicycleControl2((δ, Fxf, Fxr)::StaticVector{3}) = BicycleControl2(δ, Fxf + Fxr)
struct LongitudinalActuationParams{T}
fwd_frac::T
rwd_frac::T
fwb_frac::T
rwb_frac::T
end
LongitudinalActuationParams(vehicle::Dict) = LongitudinalActuationParams((vehicle[n] for n in fieldnames(LongitudinalActuationParams))...)
function longitudinal_tire_forces(LP::LongitudinalActuationParams, Fx)
Fx > 0 ? (Fx*LP.fwd_frac, Fx*LP.rwd_frac) :
(Fx*LP.fwb_frac, Fx*LP.rwb_frac)
end
BicycleControl(LP::LongitudinalActuationParams, (δ, Fx)::StaticVector{2}) = BicycleControl(δ, longitudinal_tire_forces(LP, Fx)...)
struct ControlLimits{T}
Fx_max::T
Fx_min::T
Px_max::T
δ_max::T
κ_max::T
end
ControlLimits(vehicle::Dict) = ControlLimits((vehicle[n] for n in fieldnames(ControlLimits))...)
function apply_control_limits(CL::ControlLimits, (δ, Fx)::StaticVector{2}, Ux)
Fx_max, Fx_min, Px_max, δ_max = CL.Fx_max, CL.Fx_min, CL.Px_max, CL.δ_max
Ux = ForwardDiff.value(Ux) # important for ForwardDiff/linearization, since Ux is technically a state variable
BicycleControl2(clamp(δ, -δ_max, δ_max),
max(min(Fx, Fx_max, Px_max/Ux), Fx_min))
end
struct VehicleModel{T,B<:AbstractBicycleModel{T}} <: DifferentialDynamics
bicycle_model::B
longitudinal_params::LongitudinalActuationParams{T}
control_limits::ControlLimits{T}
end
VehicleModel(vehicle::Dict, B=BicycleModel(vehicle)) = VehicleModel(B, LongitudinalActuationParams(vehicle), ControlLimits(vehicle))
get_Ux(B::BicycleModel, q, u, p) = q[4]
get_Ux(B::TrackingBicycleModel, q, u, p) = q[2]
get_Ux(B::LateralTrackingBicycleModel, q, u, p) = p[1]
function (X::VehicleModel{T})(q, u, p=zeros(SVector{4,T})) where {T} # TODO: not necessarily always the right-sized p
Ux = get_Ux(X.bicycle_model, q, u, p)
X.bicycle_model(q, BicycleControl(X.longitudinal_params, apply_control_limits(X.control_limits, u, Ux)), p)
end
(X::VehicleModel{T,BicycleModel{T}})(q::StaticVector{6}, ur::StaticVector{6}) where {T} = X(q, ur[SUnitRange(1,2)], ur[SUnitRange(3,6)])
(X::VehicleModel{T,TrackingBicycleModel{T}})(q::StaticVector{6}, ur::StaticVector{6}) where {T} = X(q, ur[SUnitRange(1,2)], ur[SUnitRange(3,6)])
(X::VehicleModel{T,LateralTrackingBicycleModel{T}})(q::StaticVector{4}, ur::StaticVector{6}) where {T} = X(q, ur[SUnitRange(1,2)], ur[SUnitRange(3,6)])
# Estimates for Longitudinal Dynamics
function steady_state_estimates(X::VehicleModel{T}, V, A_tan, κ;
num_iters=4, r=V*κ, β0=T(0), δ0=T(0), Fyf0=T(0)) where {T}
# assuming vehicle CM tracks nominal trajectory exactly; constant sideslip w.r.t. nominal trajectory
B, LP, CL = X.bicycle_model, X.longitudinal_params, X.control_limits
L, a, b, h, m, Izz, μ, G = B.L, B.a, B.b, B.h, B.m, B.Izz, B.μ, B.G
Cαf, Cαr, Cd0, Cd1, Cd2 = B.Cαf, B.Cαr, B.Cd0, B.Cd1, B.Cd2
fwd_frac, rwd_frac, fwb_frac, rwb_frac = LP.fwd_frac, LP.rwd_frac, LP.fwb_frac, LP.rwb_frac
Fx_max, Px_max = CL.Fx_max, CL.Px_max
A_rad = V*V*κ
A_mag = hypot(A_tan, A_rad)
A_max = μ*G
if A_mag > A_max # nominal trajectory total acceleration exceeds friction limit
if abs(A_rad) > A_max # nominal trajectory lateral acceleration exceeds friction limit
A_rad = A_max*sign(A_rad)
A_tan = zero(A_rad)
# error("TODO: case when nominal trajectory lateral acceleration exceeds friction limit")
else # prioritize radial acceleration for path tracking; reduce intended acceleration along path to compensate
A_tan = sqrt(A_max*A_max - A_rad*A_rad)*sign(A_tan)
end
end
ṙ = A_tan*κ
i = 1
β, δ, Fyf = β0, δ0, Fyf0
local Ux, Uy, Fxr, Fxf
while true
sβ, cβ = sincos(β)
sδ, cδ = sincos(δ)
Ux, Uy = V*cβ, V*sβ
Fx_drag = -Cd0 - Ux*(Cd1 + Cd2*Ux)
Fx_grade = 0 # TODO: figure out how roll/pitch are ordered
Fy_grade = 0
Ax = A_tan*cβ - A_rad*sβ # Ax = U̇x - r*Uy
Ay = A_tan*sβ + A_rad*cβ # Ay = U̇y + r*Ux
Fx = Ax*m - Fx_drag - Fx_grade # Fx = F̃xf + Fxr = Fxf*cδ - Fyf*sδ + Fxr
Fx = min(Fx, min(Fx_max, Px_max/Ux)*(rwd_frac + fwd_frac*cδ) - Fyf*sδ) # braking force saturated by friction, not engine, limits
Fzr, Fzf = (m*G*a + h*Fx)/L, (m*G*b - h*Fx)/L
Fr_max, Ff_max = μ*Fzr, μ*Fzf
Fxr = clamp((Fx + Fyf*sδ)*ifelse(Fx > 0, rwd_frac/(rwd_frac + fwd_frac*cδ),
rwb_frac/(rwb_frac + fwb_frac*cδ)),
-Fr_max, Fr_max)
Fyr_max = sqrt(Fr_max*Fr_max - Fxr*Fxr)
Fyr = (Ay*m - Fy_grade - ṙ*Izz/a)/(1 + b/a)
Fyr = clamp(Fyr, -Fyr_max, Fyr_max) # TODO: maybe reduce A_tan in the case that Fyr exceeds Fyr_max
tanαr = _invfialatiremodel(Fyr, Cαr, Fyr_max)
F̃xf = clamp(Fx - Fxr, -Ff_max, Ff_max)
F̃yfmax = sqrt(Ff_max*Ff_max - F̃xf*F̃xf)
F̃yf = clamp((b*Fyr + ṙ*Izz)/a, -F̃yfmax, F̃yfmax)
Fxf = F̃xf*cδ + F̃yf*sδ
Fyf = F̃yf*cδ - F̃xf*sδ
Fyf_max = sqrt(Ff_max*Ff_max - Fxf*Fxf)
αf = atan(_invfialatiremodel(Fyf, Cαf, Fyf_max))
δ = atan(Uy + a*r, Ux) - αf
if i == num_iters
Ax = (Fxf*cδ - Fyf*sδ + Fxr + Fx_drag + Fx_grade)/m
Ay = (Fyf*cδ + Fxf*sδ + Fyr + Fy_grade)/m
A_tan = Ax*cβ + Ay*sβ
break
end
i = i + 1
β = atan(tanαr + b*r/Ux)
end
sβ, cβ = sincos(β)
Ux, Uy = V*cβ, V*sβ
(β=β, Ux=Ux, Uy=Uy, r=r, A=A_tan, δ=δ, Fxf=Fxf, Fxr=Fxr)
end