-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_adaptor.py
144 lines (110 loc) · 4.75 KB
/
train_adaptor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.utils.data
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
import os
import copy
from tqdm import tqdm
import matplotlib.pyplot as plt
import argparse
from dataloader import sceneflow_loader as sf
import networks.Aggregator as Agg
import networks.U_net as un
import networks.feature_extraction as FE
import loss_functions as lf
parser = argparse.ArgumentParser(description='GraftNet')
parser.add_argument('--no_cuda', action='store_true', default=False)
parser.add_argument('--gpu_id', type=str, default='0, 1')
parser.add_argument('--seed', type=str, default=0)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--epoch', type=int, default=1)
parser.add_argument('--data_path', type=str, default='/media/data/dataset/SceneFlow/')
parser.add_argument('--save_path', type=str, default='trained_models/')
parser.add_argument('--load_path', type=str, default='trained_models/checkpoint_baseline_8epoch.tar')
parser.add_argument('--max_disp', type=int, default=192)
parser.add_argument('--color_transform', action='store_true', default=False)
args = parser.parse_args()
if not args.no_cuda:
os.environ['CUDA_DEVICE_ORDER'] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
cuda = torch.cuda.is_available()
torch.manual_seed(args.seed)
if cuda:
torch.cuda.manual_seed(args.seed)
all_limg, all_rimg, all_ldisp, all_rdisp, test_limg, test_rimg, test_ldisp, test_rdisp = sf.sf_loader(args.data_path)
trainLoader = torch.utils.data.DataLoader(
sf.myDataset(all_limg, all_rimg, all_ldisp, all_rdisp, training=True, color_transform=args.color_transform),
batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=False)
fe_model = FE.VGG_Feature(fixed_param=True).eval()
model = un.U_Net_v4(img_ch=256, output_ch=64).train()
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
agg_model = Agg.PSMAggregator(args.max_disp, udc=True).eval()
if cuda:
fe_model = nn.DataParallel(fe_model.cuda())
model = nn.DataParallel(model.cuda())
agg_model = nn.DataParallel(agg_model.cuda())
agg_model.load_state_dict(torch.load(args.load_path)['net'])
for p in agg_model.parameters():
p.requires_grad = False
optimizer = optim.Adam(model.parameters(), lr=1e-3, betas=(0.9, 0.999))
def train(imgL, imgR, gt_left, gt_right):
imgL = torch.FloatTensor(imgL)
imgR = torch.FloatTensor(imgR)
gt_left = torch.FloatTensor(gt_left)
gt_right = torch.FloatTensor(gt_right)
if cuda:
imgL, imgR, gt_left, gt_right = imgL.cuda(), imgR.cuda(), gt_left.cuda(), gt_right.cuda()
optimizer.zero_grad()
with torch.no_grad():
left_fea = fe_model(imgL)
right_fea = fe_model(imgR)
agg_left_fea = model(left_fea)
agg_right_fea = model(right_fea)
loss1, loss2 = agg_model(agg_left_fea, agg_right_fea, gt_left, training=True)
loss1 = torch.mean(loss1)
loss2 = torch.mean(loss2)
loss = 0.1 * loss1 + loss2
# loss = loss1
loss.backward()
optimizer.step()
return loss1.item(), loss2.item()
def adjust_learning_rate(optimizer, epoch):
if epoch <= 10:
lr = 0.001
else:
lr = 0.0001
# print(lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
# start_total_time = time.time()
start_epoch = 1
# checkpoint = torch.load('trained_ft_CA_8.12/checkpoint_3_DA.tar')
# agg_model.load_state_dict(checkpoint['net'])
# optimizer.load_state_dict(checkpoint['optimizer'])
# start_epoch = checkpoint['epoch'] + 1
for epoch in range(start_epoch, args.epoch + start_epoch):
print('This is %d-th epoch' % (epoch))
total_train_loss1 = 0
total_train_loss2 = 0
adjust_learning_rate(optimizer, epoch)
for batch_id, (imgL, imgR, disp_L, disp_R) in enumerate(tqdm(trainLoader)):
train_loss1, train_loss2 = train(imgL, imgR, disp_L, disp_R)
total_train_loss1 += train_loss1
total_train_loss2 += train_loss2
avg_train_loss1 = total_train_loss1 / len(trainLoader)
avg_train_loss2 = total_train_loss2 / len(trainLoader)
print('Epoch %d average training loss1 = %.3f, average training loss2 = %.3f' %
(epoch, avg_train_loss1, avg_train_loss2))
state = {'fa_net': model.state_dict(),
'net': agg_model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch}
if not os.path.exists(args.save_path):
os.mkdir(args.save_path)
save_model_path = args.save_path + 'checkpoint_adaptor_{}epoch.tar'.format(epoch)
torch.save(state, save_model_path)
torch.cuda.empty_cache()
if __name__ == '__main__':
main()