-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathENV.py
38 lines (32 loc) · 1.3 KB
/
ENV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
SAMPLE_RATE = 16000
REPRESENTATION = "mert" # raw, mel, mfcc, melody, lyrics, raw+lyrics, mert
NEPTUNE_SWITCH = 1
Evaluate_Frequency = 1
### No need to change this part
### unless you want to change the dataset name or for other custom purpose
# the original dataset name
# Root_PATH = "/nfs/guille/eecs_research/soundbendor/shengxuan/opera2324/opera-singing-dataset/"
Root_PATH = ""
Data_PATH = Root_PATH + "operadataset2023/"
Unified_PATH = Root_PATH + 'unified/'
Trimmed_PATH = Root_PATH + 'trimmed'
### hyperparameters related to Machine Learning
### keep them consistent during EVERY workflow steps (from data preprocessing to evaluation)
target_second = 30
segment_method = "Padding-S" # "Padding-S(ilence)" or "Padding-C(ircular)" or "Dropping"
target_class = "emotion_binary"
fold_count = 5
target_class_dictionary = {
"emotion_binary": "Emo",
"bio_gender": "Gen",
"level": "Lev",
"role": "Rol",
"acappella": "Aca",
"jingju": "Jin",
}
target_class_short = target_class_dictionary[target_class]
### !!! MUST NOT Change this part !!!
Trimmed_PATH = Trimmed_PATH + "_" + str(target_second) + "_" +segment_method
### !!! MUST NOT Change this part !!!
## melody extraction part
pretrained_models = "/nfs/guille/eecs_research/soundbendor/models/Melody-extraction-with-melodic-segnet/pretrain_model/"