-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
217 lines (163 loc) · 8.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from dataset import BilingualDataset, casual_mask
from model import build_transformer
from config import get_config, get_weights_file_path
from datasets import load_dataset
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
from torch.utils.tensorboard import SummaryWriter
import warnings
from tqdm import tqdm
from pathlib import Path
def greedy_output(model, source, source_mask, tokenizer_src, tokenizer_tgt, max_len, device):
sos_idx = tokenizer_tgt.token_to_id('[SOS]')
eos_idx = tokenizer_tgt.token_to_id('[EOS]')
# Precompute the encoder output and reuse it for every query we get from the decoder
encoder_output = model.encode(source, source_mask)
# Initialize the decoder input with the sos token
decoder_input = torch.empty(1,1).fill_(sos_idx).type_as(source).to(device)
while True:
if decoder_input.size(1) == max_len:
break
# Build mask fot the target (decoder input)
decoder_mask = casual_mask(decoder_input.size(1)).type_as(source_mask).to(device)
# Calculate the output of the decoder
out = model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
# Get the next token
prob = model.project(out[:, -1])
# Select the token with the max probability (because it is a greedy search)
_, next_word = torch.max(prob, dim=1)
decoder_input = torch.cat([decoder_input, torch.empty(1,1).type_as(source).fill_(next_word.item()).to(device)], dim=1)
if next_word == eos_idx:
break
return decoder_input.squeeze(0)
def run_validations(
model, validation_ds, tokenizer_src, tokenizer_tgt, max_len, device, print_msg, num_examples=2
):
model.eval()
count = 0
console_width = 80
with torch.no_grad():
for batch in validation_ds:
count += 1
encoder_input = batch['encoder_input'].to(device)
encoder_mask = batch['encoder_mask'].to(device)
assert encoder_input.size(0) == 1, "Batch size must be 1 for validation"
model_out = greedy_output(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, max_len, device)
source_text = batch['src_text'][0]
target_text = batch['tgt_text'][0]
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
# Print to the console
print_msg('-'*console_width)
print_msg(f'SOURCE TEXT: {source_text}')
print_msg(f'TARGET TEXT: {target_text}')
print_msg(f'PREDICTED TEXT: {model_out_text}')
if count == num_examples:
break
def get_all_sentances(ds, lang):
for item in ds:
yield item['translation'][lang]
def get_or_build_tokenizer(config, ds, lang):
# config['tokenizer_file'] = '../tokenizers/tokenizer_{0}.json'
tokenizer_path = Path(config['tokenizer_file'].format(lang))
if not tokenizer_path.exists():
tokenizer = Tokenizer(WordLevel(unk_token='[UNK]'))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2)
tokenizer.train_from_iterator(get_all_sentances(ds, lang), trainer=trainer)
tokenizer.save(str(tokenizer_path))
else:
tokenizer = Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def get_ds(config):
ds_raw = load_dataset('opus_books', f'{config["lang_src"]}-{config["lang_tgt"]}', split='train')
# build tokenizers
tokenizer_src = get_or_build_tokenizer(config, ds_raw, config['lang_src'])
tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config['lang_tgt'])
# keeping 90% of the data for training and 10% for validation
train_ds_size = int(0.9 * len(ds_raw))
val_ds_size = len(ds_raw) - train_ds_size
train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])
train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
max_len_src = 0
max_len_tgt = 0
for item in ds_raw:
src_ids = tokenizer_src.encode(item['translation'][config['lang_src']]).ids
tgt_ids = tokenizer_tgt.encode(item['translation'][config['lang_tgt']]).ids
max_len_src = max(max_len_src, len(src_ids))
max_len_tgt = max(max_len_tgt, len(tgt_ids))
print(f"Max length of source sentence: {max_len_src}")
print(f"Max length of target sentence: {max_len_tgt}")
train_loader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True)
val_loader = DataLoader(val_ds, batch_size=1, shuffle=True)
return train_loader, val_loader, tokenizer_src, tokenizer_tgt
def get_model(config, vocab_src_len, vocab_tgt_len):
model = build_transformer(
vocab_src_len, vocab_tgt_len, config['seq_len'], config['seq_len'], config['d_model']
)
return model
def train_model(config):
# Define the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
Path(config['model_folder']).mkdir(parents=True, exist_ok=True)
train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)
model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device)
# Tensorboard
writer = SummaryWriter(config['experiment_name'])
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps=1e-9)
inital_epoch = 0
global_step = 0
if config['preload']:
model_filename = get_weights_file_path(config, config['preload'])
print(f'Preloading model {model_filename}')
state = torch.load(model_filename)
model.load_state_dict(state['model_save_dict']) # TODO: Change model_save_dict --> model_state_dict
inital_epoch = state['epoch'] + 1
optimizer.load_state_dict(state['optimizer_state_dict'])
global_step = state['global_step']
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_src.token_to_id('[PAD]'), label_smoothing=0.1).to(device)
for epoch in range(inital_epoch, config['num_epochs']):
batch_iterator = tqdm(train_dataloader, desc=f'Processing epoch {epoch:02d}')
for batch in batch_iterator:
model.train()
encoder_input = batch['encoder_input'].to(device) # (B, seq_len)
decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)
# Run the tensors through the transformer
encoder_output = model.encode(encoder_input, encoder_mask) # (B, seq_len, d_model)
decoder_output = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask) # (B, seq_len, d_model)
proj_output = model.project(decoder_output) # (B, seq_len, tgt_vocab_size)
label = batch['label'].to(device) # (B, seq_len)
# (B, seq_len, tgt_vocab_size) --> (B * seq_len, tgt_vocab_size)
loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
batch_iterator.set_postfix({f"loss": f"{loss.item():6.3f}"})
# Log the loss
writer.add_scalar('train loss', loss.item(), global_step)
writer.flush()
# Backpropagate the loss
loss.backward()
# Update the weights
optimizer.step()
optimizer.zero_grad()
global_step += 1
if epoch % 10 == 0:
run_validations(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg))
# save the model at the end of every epoch
model_filename = get_weights_file_path(config, f'{epoch:02d}')
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'global_step': global_step
}, model_filename)
if __name__ == "__main__":
warnings.filterwarnings('ignore')
config = get_config()
train_model(config)