Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OverflowError: cannot fit 'int' into an index-sized integer #7

Open
Tabz05 opened this issue Aug 2, 2024 · 0 comments
Open

OverflowError: cannot fit 'int' into an index-sized integer #7

Tabz05 opened this issue Aug 2, 2024 · 0 comments

Comments

@Tabz05
Copy link

Tabz05 commented Aug 2, 2024

This is the stacktrace of the issue:

Num processes: 1
Process index: 0
Local process index: 0
Device: cuda

Mixed precision type: fp16

{'resnet_time_scale_shift', 'dual_cross_attention', 'upcast_attention', 'class_embed_type', 'num_class_embeds', 'only_cross_attention', 'use_linear_projection'} was not found in config. Values will be initialized to default values.
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization.
The tokenizer class you load from this checkpoint is 'LEDTokenizer'.
The class this function is called from is 'CLIPTokenizer'.
{'prediction_type'} was not found in config. Values will be initialized to default values.
{'config', 'disk_store'} was not found in config. Values will be initialized to default values.
{'config', 'disk_store'} was not found in config. Values will be initialized to default values.
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/main.py:183 in │
│ │
│ 180 │ args = parser.parse_args() │
│ 181 │ │
│ 182 │ conf = OmegaConf.load(args.config) │
│ ❱ 183 │ main(**conf) │
│ 184 │
│ │
│ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/main.py:160 in main │
│ │
│ 157 │ │ │
│ 158 │ │ validation_data.pop('negative_prompt') │
│ 159 │ │ # key frame │
│ ❱ 160 │ │ key_frames, text_embedding = validation_pipeline(prompt, video_length=len(prompt │
│ 161 │ │ │ │ │ │ │ │ │ │ │ │ │ │ latents=x_T.type(weight_dtype), │
│ 162 │ │ │ │ │ │ │ │ │ │ │ │ │ │ negative_prompt=negative_prompt │
│ 163 │ │ │ │ │ │ │ │ │ │ │ │ │ │ output_dir=output_dir, │
│ │
│ /usr/local/lib/python3.10/dist-packages/torch/autograd/grad_mode.py:27 in decorate_context │
│ │
│ 24 │ │ @functools.wraps(func) │
│ 25 │ │ def decorate_context(*args, **kwargs): │
│ 26 │ │ │ with self.clone(): │
│ ❱ 27 │ │ │ │ return func(*args, **kwargs) │
│ 28 │ │ return cast(F, decorate_context) │
│ 29 │ │
│ 30 │ def _wrap_generator(self, func): │
│ │
│ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/freebloom/pipelines/pipeline_spatio_tempo │
│ ral.py:391 in call
│ │
│ 388 │ │ do_classifier_free_guidance = guidance_scale > 1.0 │
│ 389 │ │ │
│ 390 │ │ # Encode input prompt │
│ ❱ 391 │ │ text_embeddings = self._encode_prompt( │
│ 392 │ │ │ prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative │
│ 393 │ │ ) │
│ 394 │
│ │
│ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/freebloom/pipelines/pipeline_spatio_tempo │
│ ral.py:164 in _encode_prompt │
│ │
│ 161 │ def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_g │
│ 162 │ │ batch_size = len(prompt) if isinstance(prompt, list) else 1 │
│ 163 │ │ │
│ ❱ 164 │ │ text_inputs = self.tokenizer( │
│ 165 │ │ │ prompt, │
│ 166 │ │ │ padding="max_length", │
│ 167 │ │ │ max_length=self.tokenizer.model_max_length, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:2530 in call
│ │
│ 2527 │ │ │ # input mode in this case. │
│ 2528 │ │ │ if not self._in_target_context_manager: │
│ 2529 │ │ │ │ self._switch_to_input_mode() │
│ ❱ 2530 │ │ │ encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs) │
│ 2531 │ │ if text_target is not None: │
│ 2532 │ │ │ self._switch_to_target_mode() │
│ 2533 │ │ │ target_encodings = self._call_one(text=text_target, text_pair=text_pair_targ │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:2616 in │
│ _call_one │
│ │
│ 2613 │ │ │ │ │ f" {len(text_pair)}." │
│ 2614 │ │ │ │ ) │
│ 2615 │ │ │ batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not No │
│ ❱ 2616 │ │ │ return self.batch_encode_plus( │
│ 2617 │ │ │ │ batch_text_or_text_pairs=batch_text_or_text_pairs, │
│ 2618 │ │ │ │ add_special_tokens=add_special_tokens, │
│ 2619 │ │ │ │ padding=padding, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:2807 in │
│ batch_encode_plus │
│ │
│ 2804 │ │ │ **kwargs, │
│ 2805 │ │ ) │
│ 2806 │ │ │
│ ❱ 2807 │ │ return self._batch_encode_plus( │
│ 2808 │ │ │ batch_text_or_text_pairs=batch_text_or_text_pairs, │
│ 2809 │ │ │ add_special_tokens=add_special_tokens, │
│ 2810 │ │ │ padding_strategy=padding_strategy, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils.py:737 in │
│ _batch_encode_plus │
│ │
│ 734 │ │ │ second_ids = get_input_ids(pair_ids) if pair_ids is not None else None │
│ 735 │ │ │ input_ids.append((first_ids, second_ids)) │
│ 736 │ │ │
│ ❱ 737 │ │ batch_outputs = self._batch_prepare_for_model( │
│ 738 │ │ │ input_ids, │
│ 739 │ │ │ add_special_tokens=add_special_tokens, │
│ 740 │ │ │ padding_strategy=padding_strategy, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils.py:809 in │
│ _batch_prepare_for_model │
│ │
│ 806 │ │ │ │ │ batch_outputs[key] = [] │
│ 807 │ │ │ │ batch_outputs[key].append(value) │
│ 808 │ │ │
│ ❱ 809 │ │ batch_outputs = self.pad( │
│ 810 │ │ │ batch_outputs, │
│ 811 │ │ │ padding=padding_strategy.value, │
│ 812 │ │ │ max_length=max_length, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3014 in pad │
│ │
│ 3011 │ │ batch_outputs = {} │
│ 3012 │ │ for i in range(batch_size): │
│ 3013 │ │ │ inputs = {k: v[i] for k, v in encoded_inputs.items()} │
│ ❱ 3014 │ │ │ outputs = self._pad( │
│ 3015 │ │ │ │ inputs, │
│ 3016 │ │ │ │ max_length=max_length, │
│ 3017 │ │ │ │ padding_strategy=padding_strategy, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3378 in _pad │
│ │
│ 3375 │ │ │ │
│ 3376 │ │ │ if self.padding_side == "right": │
│ 3377 │ │ │ │ if return_attention_mask: │
│ ❱ 3378 │ │ │ │ │ encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] │
│ 3379 │ │ │ │ if "token_type_ids" in encoded_inputs: │
│ 3380 │ │ │ │ │ encoded_inputs["token_type_ids"] = ( │
│ 3381 │ │ │ │ │ │ encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * di │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
OverflowError: cannot fit 'int' into an index-sized integer

Kindly provide a solution.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant