We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
This is the stacktrace of the issue:
Num processes: 1 Process index: 0 Local process index: 0 Device: cuda
Mixed precision type: fp16
{'resnet_time_scale_shift', 'dual_cross_attention', 'upcast_attention', 'class_embed_type', 'num_class_embeds', 'only_cross_attention', 'use_linear_projection'} was not found in config. Values will be initialized to default values. The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. The tokenizer class you load from this checkpoint is 'LEDTokenizer'. The class this function is called from is 'CLIPTokenizer'. {'prediction_type'} was not found in config. Values will be initialized to default values. {'config', 'disk_store'} was not found in config. Values will be initialized to default values. {'config', 'disk_store'} was not found in config. Values will be initialized to default values. ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/main.py:183 in │ │ │ │ 180 │ args = parser.parse_args() │ │ 181 │ │ │ 182 │ conf = OmegaConf.load(args.config) │ │ ❱ 183 │ main(**conf) │ │ 184 │ │ │ │ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/main.py:160 in main │ │ │ │ 157 │ │ │ │ 158 │ │ validation_data.pop('negative_prompt') │ │ 159 │ │ # key frame │ │ ❱ 160 │ │ key_frames, text_embedding = validation_pipeline(prompt, video_length=len(prompt │ │ 161 │ │ │ │ │ │ │ │ │ │ │ │ │ │ latents=x_T.type(weight_dtype), │ │ 162 │ │ │ │ │ │ │ │ │ │ │ │ │ │ negative_prompt=negative_prompt │ │ 163 │ │ │ │ │ │ │ │ │ │ │ │ │ │ output_dir=output_dir, │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/autograd/grad_mode.py:27 in decorate_context │ │ │ │ 24 │ │ @functools.wraps(func) │ │ 25 │ │ def decorate_context(*args, **kwargs): │ │ 26 │ │ │ with self.clone(): │ │ ❱ 27 │ │ │ │ return func(*args, **kwargs) │ │ 28 │ │ return cast(F, decorate_context) │ │ 29 │ │ │ 30 │ def _wrap_generator(self, func): │ │ │ │ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/freebloom/pipelines/pipeline_spatio_tempo │ │ ral.py:391 in call │ │ │ │ 388 │ │ do_classifier_free_guidance = guidance_scale > 1.0 │ │ 389 │ │ │ │ 390 │ │ # Encode input prompt │ │ ❱ 391 │ │ text_embeddings = self._encode_prompt( │ │ 392 │ │ │ prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative │ │ 393 │ │ ) │ │ 394 │ │ │ │ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/freebloom/pipelines/pipeline_spatio_tempo │ │ ral.py:164 in _encode_prompt │ │ │ │ 161 │ def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_g │ │ 162 │ │ batch_size = len(prompt) if isinstance(prompt, list) else 1 │ │ 163 │ │ │ │ ❱ 164 │ │ text_inputs = self.tokenizer( │ │ 165 │ │ │ prompt, │ │ 166 │ │ │ padding="max_length", │ │ 167 │ │ │ max_length=self.tokenizer.model_max_length, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:2530 in call │ │ │ │ 2527 │ │ │ # input mode in this case. │ │ 2528 │ │ │ if not self._in_target_context_manager: │ │ 2529 │ │ │ │ self._switch_to_input_mode() │ │ ❱ 2530 │ │ │ encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs) │ │ 2531 │ │ if text_target is not None: │ │ 2532 │ │ │ self._switch_to_target_mode() │ │ 2533 │ │ │ target_encodings = self._call_one(text=text_target, text_pair=text_pair_targ │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:2616 in │ │ _call_one │ │ │ │ 2613 │ │ │ │ │ f" {len(text_pair)}." │ │ 2614 │ │ │ │ ) │ │ 2615 │ │ │ batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not No │ │ ❱ 2616 │ │ │ return self.batch_encode_plus( │ │ 2617 │ │ │ │ batch_text_or_text_pairs=batch_text_or_text_pairs, │ │ 2618 │ │ │ │ add_special_tokens=add_special_tokens, │ │ 2619 │ │ │ │ padding=padding, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:2807 in │ │ batch_encode_plus │ │ │ │ 2804 │ │ │ **kwargs, │ │ 2805 │ │ ) │ │ 2806 │ │ │ │ ❱ 2807 │ │ return self._batch_encode_plus( │ │ 2808 │ │ │ batch_text_or_text_pairs=batch_text_or_text_pairs, │ │ 2809 │ │ │ add_special_tokens=add_special_tokens, │ │ 2810 │ │ │ padding_strategy=padding_strategy, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils.py:737 in │ │ _batch_encode_plus │ │ │ │ 734 │ │ │ second_ids = get_input_ids(pair_ids) if pair_ids is not None else None │ │ 735 │ │ │ input_ids.append((first_ids, second_ids)) │ │ 736 │ │ │ │ ❱ 737 │ │ batch_outputs = self._batch_prepare_for_model( │ │ 738 │ │ │ input_ids, │ │ 739 │ │ │ add_special_tokens=add_special_tokens, │ │ 740 │ │ │ padding_strategy=padding_strategy, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils.py:809 in │ │ _batch_prepare_for_model │ │ │ │ 806 │ │ │ │ │ batch_outputs[key] = [] │ │ 807 │ │ │ │ batch_outputs[key].append(value) │ │ 808 │ │ │ │ ❱ 809 │ │ batch_outputs = self.pad( │ │ 810 │ │ │ batch_outputs, │ │ 811 │ │ │ padding=padding_strategy.value, │ │ 812 │ │ │ max_length=max_length, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3014 in pad │ │ │ │ 3011 │ │ batch_outputs = {} │ │ 3012 │ │ for i in range(batch_size): │ │ 3013 │ │ │ inputs = {k: v[i] for k, v in encoded_inputs.items()} │ │ ❱ 3014 │ │ │ outputs = self._pad( │ │ 3015 │ │ │ │ inputs, │ │ 3016 │ │ │ │ max_length=max_length, │ │ 3017 │ │ │ │ padding_strategy=padding_strategy, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3378 in _pad │ │ │ │ 3375 │ │ │ │ │ 3376 │ │ │ if self.padding_side == "right": │ │ 3377 │ │ │ │ if return_attention_mask: │ │ ❱ 3378 │ │ │ │ │ encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] │ │ 3379 │ │ │ │ if "token_type_ids" in encoded_inputs: │ │ 3380 │ │ │ │ │ encoded_inputs["token_type_ids"] = ( │ │ 3381 │ │ │ │ │ │ encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * di │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ OverflowError: cannot fit 'int' into an index-sized integer
Kindly provide a solution.
The text was updated successfully, but these errors were encountered:
No branches or pull requests
This is the stacktrace of the issue:
Num processes: 1
Process index: 0
Local process index: 0
Device: cuda
Mixed precision type: fp16
{'resnet_time_scale_shift', 'dual_cross_attention', 'upcast_attention', 'class_embed_type', 'num_class_embeds', 'only_cross_attention', 'use_linear_projection'} was not found in config. Values will be initialized to default values.
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization.
The tokenizer class you load from this checkpoint is 'LEDTokenizer'.
The class this function is called from is 'CLIPTokenizer'.
{'prediction_type'} was not found in config. Values will be initialized to default values.
{'config', 'disk_store'} was not found in config. Values will be initialized to default values.
{'config', 'disk_store'} was not found in config. Values will be initialized to default values.
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/main.py:183 in │
│ │
│ 180 │ args = parser.parse_args() │
│ 181 │ │
│ 182 │ conf = OmegaConf.load(args.config) │
│ ❱ 183 │ main(**conf) │
│ 184 │
│ │
│ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/main.py:160 in main │
│ │
│ 157 │ │ │
│ 158 │ │ validation_data.pop('negative_prompt') │
│ 159 │ │ # key frame │
│ ❱ 160 │ │ key_frames, text_embedding = validation_pipeline(prompt, video_length=len(prompt │
│ 161 │ │ │ │ │ │ │ │ │ │ │ │ │ │ latents=x_T.type(weight_dtype), │
│ 162 │ │ │ │ │ │ │ │ │ │ │ │ │ │ negative_prompt=negative_prompt │
│ 163 │ │ │ │ │ │ │ │ │ │ │ │ │ │ output_dir=output_dir, │
│ │
│ /usr/local/lib/python3.10/dist-packages/torch/autograd/grad_mode.py:27 in decorate_context │
│ │
│ 24 │ │ @functools.wraps(func) │
│ 25 │ │ def decorate_context(*args, **kwargs): │
│ 26 │ │ │ with self.clone(): │
│ ❱ 27 │ │ │ │ return func(*args, **kwargs) │
│ 28 │ │ return cast(F, decorate_context) │
│ 29 │ │
│ 30 │ def _wrap_generator(self, func): │
│ │
│ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/freebloom/pipelines/pipeline_spatio_tempo │
│ ral.py:391 in call │
│ │
│ 388 │ │ do_classifier_free_guidance = guidance_scale > 1.0 │
│ 389 │ │ │
│ 390 │ │ # Encode input prompt │
│ ❱ 391 │ │ text_embeddings = self._encode_prompt( │
│ 392 │ │ │ prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative │
│ 393 │ │ ) │
│ 394 │
│ │
│ /content/drive/MyDrive/Free-Bloom-main/Free-Bloom-main/freebloom/pipelines/pipeline_spatio_tempo │
│ ral.py:164 in _encode_prompt │
│ │
│ 161 │ def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_g │
│ 162 │ │ batch_size = len(prompt) if isinstance(prompt, list) else 1 │
│ 163 │ │ │
│ ❱ 164 │ │ text_inputs = self.tokenizer( │
│ 165 │ │ │ prompt, │
│ 166 │ │ │ padding="max_length", │
│ 167 │ │ │ max_length=self.tokenizer.model_max_length, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:2530 in call │
│ │
│ 2527 │ │ │ # input mode in this case. │
│ 2528 │ │ │ if not self._in_target_context_manager: │
│ 2529 │ │ │ │ self._switch_to_input_mode() │
│ ❱ 2530 │ │ │ encodings = self._call_one(text=text, text_pair=text_pair, **all_kwargs) │
│ 2531 │ │ if text_target is not None: │
│ 2532 │ │ │ self._switch_to_target_mode() │
│ 2533 │ │ │ target_encodings = self._call_one(text=text_target, text_pair=text_pair_targ │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:2616 in │
│ _call_one │
│ │
│ 2613 │ │ │ │ │ f" {len(text_pair)}." │
│ 2614 │ │ │ │ ) │
│ 2615 │ │ │ batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not No │
│ ❱ 2616 │ │ │ return self.batch_encode_plus( │
│ 2617 │ │ │ │ batch_text_or_text_pairs=batch_text_or_text_pairs, │
│ 2618 │ │ │ │ add_special_tokens=add_special_tokens, │
│ 2619 │ │ │ │ padding=padding, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:2807 in │
│ batch_encode_plus │
│ │
│ 2804 │ │ │ **kwargs, │
│ 2805 │ │ ) │
│ 2806 │ │ │
│ ❱ 2807 │ │ return self._batch_encode_plus( │
│ 2808 │ │ │ batch_text_or_text_pairs=batch_text_or_text_pairs, │
│ 2809 │ │ │ add_special_tokens=add_special_tokens, │
│ 2810 │ │ │ padding_strategy=padding_strategy, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils.py:737 in │
│ _batch_encode_plus │
│ │
│ 734 │ │ │ second_ids = get_input_ids(pair_ids) if pair_ids is not None else None │
│ 735 │ │ │ input_ids.append((first_ids, second_ids)) │
│ 736 │ │ │
│ ❱ 737 │ │ batch_outputs = self._batch_prepare_for_model( │
│ 738 │ │ │ input_ids, │
│ 739 │ │ │ add_special_tokens=add_special_tokens, │
│ 740 │ │ │ padding_strategy=padding_strategy, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils.py:809 in │
│ _batch_prepare_for_model │
│ │
│ 806 │ │ │ │ │ batch_outputs[key] = [] │
│ 807 │ │ │ │ batch_outputs[key].append(value) │
│ 808 │ │ │
│ ❱ 809 │ │ batch_outputs = self.pad( │
│ 810 │ │ │ batch_outputs, │
│ 811 │ │ │ padding=padding_strategy.value, │
│ 812 │ │ │ max_length=max_length, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3014 in pad │
│ │
│ 3011 │ │ batch_outputs = {} │
│ 3012 │ │ for i in range(batch_size): │
│ 3013 │ │ │ inputs = {k: v[i] for k, v in encoded_inputs.items()} │
│ ❱ 3014 │ │ │ outputs = self._pad( │
│ 3015 │ │ │ │ inputs, │
│ 3016 │ │ │ │ max_length=max_length, │
│ 3017 │ │ │ │ padding_strategy=padding_strategy, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:3378 in _pad │
│ │
│ 3375 │ │ │ │
│ 3376 │ │ │ if self.padding_side == "right": │
│ 3377 │ │ │ │ if return_attention_mask: │
│ ❱ 3378 │ │ │ │ │ encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] │
│ 3379 │ │ │ │ if "token_type_ids" in encoded_inputs: │
│ 3380 │ │ │ │ │ encoded_inputs["token_type_ids"] = ( │
│ 3381 │ │ │ │ │ │ encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * di │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
OverflowError: cannot fit 'int' into an index-sized integer
Kindly provide a solution.
The text was updated successfully, but these errors were encountered: