-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetric.py
84 lines (75 loc) · 3.8 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from sklearn.metrics import v_measure_score, adjusted_rand_score, accuracy_score
from sklearn.cluster import KMeans
from scipy.optimize import linear_sum_assignment
from torch.utils.data import DataLoader
import numpy as np
import torch
def cluster_acc(y_true, y_pred):
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
u = linear_sum_assignment(w.max() - w)
ind = np.concatenate([u[0].reshape(u[0].shape[0], 1), u[1].reshape([u[0].shape[0], 1])], axis=1)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
def purity(y_true, y_pred):
y_voted_labels = np.zeros(y_true.shape)
labels = np.unique(y_true)
ordered_labels = np.arange(labels.shape[0])
for k in range(labels.shape[0]):
y_true[y_true == labels[k]] = ordered_labels[k]
labels = np.unique(y_true)
bins = np.concatenate((labels, [np.max(labels)+1]), axis=0)
for cluster in np.unique(y_pred):
hist, _ = np.histogram(y_true[y_pred == cluster], bins=bins)
winner = np.argmax(hist)
y_voted_labels[y_pred == cluster] = winner
return accuracy_score(y_true, y_voted_labels)
def evaluate(label, pred):
nmi = v_measure_score(label, pred)
ari = adjusted_rand_score(label, pred)
acc = cluster_acc(label, pred)
pur = purity(label, pred)
return nmi, ari, acc, pur
def valid(model, device, dataset, view, data_size, class_num, eval_h=False, epoch=None):
test_loader = DataLoader(
dataset,
batch_size=data_size,
shuffle=False,
)
for batch_idx, (xs, y, _) in enumerate(test_loader):
for v in range(view):
xs[v] = xs[v].to(device)
labels = y.cpu().detach().data.numpy().squeeze()
# inference
with torch.no_grad():
xrs, zs, rs, H = model(xs)
if eval_h:
print("Clustering results on low-level features of each view:")
for v in range(view):
kmeans = KMeans(n_clusters=class_num, n_init=100)
y_pred = kmeans.fit_predict(zs[v].cpu().data.numpy())
nmi, ari, acc, pur = evaluate(labels, y_pred)
print('ACC{} = {:.4f} NMI{} = {:.4f} ARI{} = {:.4f} PUR{}={:.4f}'.format(v + 1, acc,
v + 1, nmi,
v + 1, ari,
v + 1, pur))
print("Clustering results on view-consensus features of each view:")
for v in range(view):
y_pred = kmeans.fit_predict(rs[v].cpu().data.numpy())
nmi, ari, acc, pur = evaluate(labels, y_pred)
print('ACC{} = {:.4f} NMI{} = {:.4f} ARI{} = {:.4f} PUR{}={:.4f}'.format(v + 1, acc,
v + 1, nmi,
v + 1, ari,
v + 1, pur))
# Clustering results on global features
kmeans = KMeans(n_clusters=class_num, n_init=100)
y_pred = kmeans.fit_predict(H.cpu().data.numpy())
nmi, ari, acc, pur = evaluate(labels, y_pred)
if epoch is not None:
print('Epoch {}'.format(epoch),'The clustering performace: ACC = {:.4f} NMI = {:.4f} ARI = {:.4f} PUR={:.4f}'.format(acc, nmi, ari, pur))
else:
print('The clustering performace: ACC = {:.4f} NMI = {:.4f} ARI = {:.4f} PUR={:.4f}'.format(acc, nmi, ari, pur))
return acc, nmi, pur