forked from kosukeimai/qss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasurement.Rmd
327 lines (256 loc) · 9.63 KB
/
measurement.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
---
title: 'Code for QSS Chapter 3: Measurement'
author: "Kosuke Imai"
date: "First Printing"
output:
pdf_document: default
---
# Section 3.1: Measuring Civilian Victimization during Wartime
```{r}
## load data
afghan <- read.csv("afghan.csv")
## summarize variables of interest
summary(afghan$age)
summary(afghan$educ.years)
summary(afghan$employed)
summary(afghan$income)
prop.table(table(ISAF = afghan$violent.exp.ISAF,
Taliban = afghan$violent.exp.taliban))
```
# Section 3.2: Handling Missing Data in R
```{r}
## print income data for first 10 respondents
head(afghan$income, n = 10)
## indicate whether respondents' income is missing
head(is.na(afghan$income), n = 10)
sum(is.na(afghan$income)) # count of missing values
mean(is.na(afghan$income)) # proportion missing
x <- c(1, 2, 3, NA)
mean(x)
mean(x, na.rm = TRUE)
prop.table(table(ISAF = afghan$violent.exp.ISAF,
Taliban = afghan$violent.exp.taliban, exclude = NULL))
afghan.sub <- na.omit(afghan) # listwise deletion
nrow(afghan.sub)
length(na.omit(afghan$income))
```
# Section 3.3: Visualizating the Univariate Distribution
## Section 3.3.1: Bar Plot
```{r}
## a vector of proportions to plot
ISAF.ptable <- prop.table(table(ISAF = afghan$violent.exp.ISAF,
exclude = NULL))
ISAF.ptable
## make barplots by specifying a certain range for y-axis
barplot(ISAF.ptable,
names.arg = c("No harm", "Harm", "Nonresponse"),
main = "Civilian victimization by the ISAF",
xlab = "Response category",
ylab = "Proportion of the respondents", ylim = c(0, 0.7))
## repeat the same for the victimization by Taliban
Taliban.ptable <- prop.table(table(Taliban = afghan$violent.exp.taliban,
exclude = NULL))
barplot(Taliban.ptable,
names.arg = c("No harm", "Harm", "Nonresponse"),
main = "Civilian victimization by the Taliban",
xlab = "Response category",
ylab = "Proportion of the respondents", ylim = c(0, 0.7))
```
## Section 3.3.2: Histogram
```{r}
hist(afghan$age, freq = FALSE, ylim = c(0, 0.04), xlab = "Age",
main = "Distribution of respondent's age")
## histogram of education. use `breaks' to choose bins
hist(afghan$educ.years, freq = FALSE,
breaks = seq(from = -0.5, to = 18.5, by = 1),
xlab = "Years of education",
main = "Distribution of respondent's education")
## add a text label at (x, y) = (3, 0.5)
text(x = 3, y = 0.5, "median")
## add a vertical line representing median
abline(v = median(afghan$educ.years))
## adding a vertical line representing median
lines(x = rep(median(afghan$educ.years), 2), y = c(0, 0.5))
### Section 3.3.3: Box Plot
boxplot(educ.years ~ province, data = afghan,
main = "Education by province", ylab = "Years of education")
tapply(afghan$violent.exp.taliban, afghan$province, mean, na.rm = TRUE)
tapply(afghan$violent.exp.ISAF, afghan$province, mean, na.rm = TRUE)
```
```{r, eval = FALSE}
## Saving or Printing a Graph
pdf(file = "educ.pdf", height = 5, width = 5)
boxplot(educ.years ~ province, data = afghan,
main = "Education by Province", ylab = "Years of education")
dev.off()
pdf(file = "hist.pdf", height = 4, width = 8)
## for simplicity omit the texts and lines from the earlier example
hist(afghan$age, freq = FALSE,
xlab = "Age", ylim = c(0, 0.04),
main = "Distribution of Respondent's Age")
hist(afghan$educ.years, freq = FALSE,
breaks = seq(from = -0.5, to = 18.5, by = 1),
xlab = "Years of education", xlim = c(0, 20),
main = "Distribution of Respondent's Education")
dev.off()
```
# Section 3.4: Survey Sampling
## Section 3.4.1: The Role of Randomization
```{r}
## load village data
afghan.village <- read.csv("afghan-village.csv")
## boxplots for altitude
boxplot(altitude ~ village.surveyed, data = afghan.village,
ylab = "Altitude (meter)", names = c("Nonsampled", "Sampled"))
## boxplots for log population
boxplot(log(population) ~ village.surveyed, data = afghan.village,
ylab = "log population", names = c("Nonsampled", "Sampled"))
```
## Section 3.4.2: Nonresponse and Other Sources of Bias
```{r}
tapply(is.na(afghan$violent.exp.taliban), afghan$province, mean)
tapply(is.na(afghan$violent.exp.ISAF), afghan$province, mean)
mean(afghan$list.response[afghan$list.group == "ISAF"]) -
mean(afghan$list.response[afghan$list.group == "control"])
table(response = afghan$list.response, group = afghan$list.group)
```
# Section 3.5: Measuring Political Polarization
# Section 3.6: Summarizing Bivariate Relationships
## Section 3.6.1: Scatter Plot
```{r}
congress <- read.csv("congress.csv")
## subset the data by party
rep <- subset(congress, subset = (party == "Republican"))
dem <- congress[congress$party == "Democrat", ] # another way to subset
## 80th and 112th congress
rep80 <- subset(rep, subset = (congress == 80))
dem80 <- subset(dem, subset = (congress == 80))
rep112 <- subset(rep, subset = (congress == 112))
dem112 <- subset(dem, subset = (congress == 112))
## preparing the labels and axis limits to avoid repetition
xlab <- "Economic liberalism/conservatism"
ylab <- "Racial liberalism/conservatism"
lim <- c(-1.5, 1.5)
## scatterplot for the 80th Congress
plot(dem80$dwnom1, dem80$dwnom2, pch = 16, col = "blue",
xlim = lim, ylim = lim, xlab = xlab, ylab = ylab,
main = "80th Congress") # democrats
points(rep80$dwnom1, rep80$dwnom2, pch = 17, col = "red") # republicans
text(-0.75, 1, "Democrats")
text(1, -1, "Republicans")
## scatterplot for the 112th Congress
plot(dem112$dwnom1, dem112$dwnom2, pch = 16, col = "blue",
xlim = lim, ylim = lim, xlab = xlab, ylab = ylab,
main = "112th Congress")
points(rep112$dwnom1, rep112$dwnom2, pch = 17, col = "red")
## party median for each congress
dem.median <- tapply(dem$dwnom1, dem$congress, median)
rep.median <- tapply(rep$dwnom1, rep$congress, median)
## Democrats
plot(names(dem.median), dem.median, col = "blue", type = "l",
xlim = c(80, 115), ylim = c(-1, 1), xlab = "Congress",
ylab = "DW-NOMINATE score (1st dimension)")
## add Republicans
lines(names(rep.median), rep.median, col = "red")
text(110, -0.6, "Democratic\n Party")
text(110, 0.85, "Republican\n Party")
```
## Section 3.6.2: Correlation
```{r}
## Gini coefficient data
gini <- read.csv("USGini.csv")
## time-series plot for partisan difference
plot(seq(from = 1947.5, to = 2011.5, by = 2),
rep.median - dem.median, xlab = "Year",
ylab = "Republican median -\n Democratic median",
main = "Political polarization")
## time-series plot for Gini coefficient
plot(gini$year, gini$gini, ylim = c(0.35, 0.45), xlab = "Year",
ylab = "Gini coefficient", main = "Income inequality")
cor(gini$gini[seq(from = 2, to = nrow(gini), by = 2)],
rep.median - dem.median)
```
## Section 3.6.3: Quantile-Quantile Plot
```{r}
hist(dem112$dwnom2, freq = FALSE, main = "Democrats",
xlim = c(-1.5, 1.5), ylim = c(0, 1.75),
xlab = "Racial liberalism/conservatism dimension")
hist(rep112$dwnom2, freq = FALSE, main = "Republicans",
xlim = c(-1.5, 1.5), ylim = c(0, 1.75),
xlab = "Racial liberalism/conservatism dimension")
qqplot(dem112$dwnom2, rep112$dwnom2, xlab = "Democrats",
ylab = "Republicans", xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5),
main = "Racial liberalism/conservatism dimension")
abline(0, 1) # 45 degree line
```
# Section 3.7: Clustering
```{r}
## 3x4 matrix filled by row; first argument take actual entries
x <- matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE)
rownames(x) <- c("a", "b", "c")
colnames(x) <- c("d", "e", "f", "g")
dim(x) # dimension
x
## data frame can take different data types
y <- data.frame(y1 = as.factor(c("a", "b", "c")), y2 = c(0.1, 0.2, 0.3))
class(y$y1)
class(y$y2)
## as.matrix() converts both variables to character
z <- as.matrix(y)
z
## column sums
colSums(x)
## row means
rowMeans(x)
## column sums
apply(x, 2, sum)
## row means
apply(x, 1, mean)
## standard deviation for each row
apply(x, 1, sd)
```
## Section 3.7.2: List in R
```{r}
## create a list
x <- list(y1 = 1:10, y2 = c("hi", "hello", "hey"),
y3 = data.frame(z1 = 1:3, z2 = c("good", "bad", "ugly")))
## 3 ways of extracting elements from a list
x$y1 # first element
x[[2]] # second element
x[["y3"]] # third element
```
## Section 3.7.3: The k-Means Algorithm
```{r}
names(x) # names of all elements
length(x) # number of elements
dwnom80 <- cbind(congress$dwnom1[congress$congress == 80],
congress$dwnom2[congress$congress == 80])
dwnom112 <- cbind(congress$dwnom1[congress$congress == 112],
congress$dwnom2[congress$congress == 112])
## kmeans with 2 clusters
k80two.out <- kmeans(dwnom80, centers = 2, nstart = 5)
k112two.out <- kmeans(dwnom112, centers = 2, nstart = 5)
## elements of a list
names(k80two.out)
## final centroids
k80two.out$centers
k112two.out$centers
## number of observations for each cluster by party
table(party = congress$party[congress$congress == 80],
cluster = k80two.out$cluster)
table(party = congress$party[congress$congress == 112],
cluster = k112two.out$cluster)
## kmeans with 4 clusters
k80four.out <- kmeans(dwnom80, centers = 4, nstart = 5)
k112four.out <- kmeans(dwnom112, centers = 4, nstart = 5)
## plotting the results using the labels and limits defined earlier
plot(dwnom80, col = k80four.out$cluster + 1, xlab = xlab, ylab = ylab,
xlim = lim, ylim = lim, main = "80th Congress")
## plotting the centroids
points(k80four.out$centers, pch = 8, cex = 2)
## 112th congress
plot(dwnom112, col = k112four.out$cluster + 1, xlab = xlab, ylab = ylab,
xlim = lim, ylim = lim, main = "112th Congress")
points(k112four.out$centers, pch = 8, cex = 2)
palette()
```