-
Notifications
You must be signed in to change notification settings - Fork 7
/
p3former_8xb2_3x_semantickitti_trainval.py
73 lines (62 loc) · 2.05 KB
/
p3former_8xb2_3x_semantickitti_trainval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
_base_ = [
'../_base_/datasets/semantickitti_panoptic_lpmix.py', '../_base_/models/p3former.py',
'../_base_/default_runtime.py'
]
# optimizer
# This schedule is mainly used by models on nuScenes dataset
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=40, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
model = dict(
voxel_encoder=dict(
feat_channels=[64, 128, 256, 256],
in_channels=6,
with_voxel_center=True,
feat_compression=16,
return_point_feats=False),
backbone=dict(
input_channels=16,
base_channels=32,
more_conv=True,
out_channels=256),
decode_head=dict(
num_decoder_layers=6,
num_queries=128,
embed_dims=256,
cls_channels=(256, 256, 20),
mask_channels=(256, 256, 256, 256, 256),
thing_class=[0,1,2,3,4,5,6,7],
stuff_class=[8,9,10,11,12,13,14,15,16,17,18],
ignore_index=19
))
lr = 0.0008
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=lr, weight_decay=0.01))
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=36, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=36,
by_epoch=True,
milestones=[24, 32],
gamma=0.2)
]
train_dataloader = dict(batch_size=2, dataset=dict(dataset=dict(ann_file='semantickitti_infos_trainval.pkl')))
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5))
custom_imports = dict(
imports=[
'p3former.backbones.cylinder3d',
'p3former.data_preprocessors.data_preprocessor',
'p3former.decode_heads.p3former_head',
'p3former.segmentors.p3former',
'p3former.task_modules.samplers.mask_pseduo_sampler',
'evaluation.metrics.panoptic_seg_metric',
'datasets.semantickitti_dataset',
'datasets.transforms.loading',
'datasets.transforms.transforms_3d',
],
allow_failed_imports=False)