-
Notifications
You must be signed in to change notification settings - Fork 281
/
Copy pathGMM.py
154 lines (137 loc) · 6.87 KB
/
GMM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
from matplotlib import pyplot as plt
class GMM:
def __init__(self, k, independent_variance=True, max_step=2000, verbose=True):
self.k = k
self.max_step = max_step
self.epsilon = 1e-8
self.verbose = verbose
# specify whether each feature has independent variance - that is, has a diagnol covariance matrix
self.independent_variance = independent_variance
def fit(self, X):
"""
X: training data of shape [n, feature_size]
"""
n, self.feature_size = X.shape
# the parameter of each gaussian distribution
self.prior = np.ones(self.k) / self.k
self.prior /= self.prior.sum()
if self.independent_variance:
self.std = np.repeat(np.std(X, axis=0, keepdims=True), self.k, axis=0)
self.mean = np.random.normal(X.mean(axis=0), self.std, [self.k, self.feature_size])
else:
self.cov = np.repeat(np.cov(X.T)[None, ...], self.k, axis=0)
self.mean = np.random.multivariate_normal(X.mean(axis=0), self.cov[0], [self.k])
previous_log_likelihood = -np.inf
for step in range(self.max_step):
##########################################
# Expectation step
##########################################
# posterior probability of each sample in each Gaussian model
posterior = self.predict(X)
##########################################
# Maximization step
##########################################
# center of each Gaussian model
self.mean = (posterior[:, :, None] * X[None, :, :]).sum(axis=1) / \
(posterior.sum(axis=1)[:, None] + self.epsilon)
# distance from each sample to each center
dis = X[None, :, :] - self.mean[:, None, :]
if self.independent_variance:
# variance of each Gaussian model
var = (posterior[:, :, None] * dis ** 2).sum(axis=1) / \
(posterior.sum(axis=1)[:, None] + self.epsilon)
# standard deviation of each Gaussian model, in each dimension
# shape [k, feature_size]
# std[i, j] is the variance of j-th feature in the i-th Gaussian model
self.std = np.sqrt(var)
else:
# covariance of each Gaussian model
# shape [k, feature_size, feature_size]
# cov[i] is the covariance matrix of i-th Gaussian model
self.cov = (dis.transpose(0, 2, 1) @ (posterior[:, :, None] * dis)) / \
(posterior.sum(axis=1)[:, None, None] + self.epsilon)
self.prior = posterior.sum(axis=1)
self.prior /= (self.prior.sum() + self.epsilon)
# early stopping
log_likelihood = self.log_likelihood(X)
if self.verbose:
print('After step', step, ', likelihood of model parameters is', np.exp(log_likelihood))
if log_likelihood - previous_log_likelihood < self.epsilon:
break
previous_log_likelihood = log_likelihood
def pairwise_likelihood(self, X):
"""
return the likelihood of each data piece in X belonging to each Gaussian cluster
"""
# dis[i, j, k] is the distance from i-th center to j-th sample, in k-th dimension
dis = X[None, :, :] - self.mean[:, None, :]
# calculate log likelihood first, then likelihood
if self.independent_variance:
# data_log_likelihood is of shape [k, n, feature_size]
data_log_likelihood = -dis ** 2 * .5 / (self.std[:, None, :] ** 2 + self.epsilon) \
- np.log(np.sqrt(2 * np.pi) + self.epsilon) - np.log(self.std[:, None, :] + self.epsilon)
# reduce likelihood to shape [k, n]
# data_log_likelihood[i, j] is the likelihood of j-th sample belonging to i-th center
data_log_likelihood = data_log_likelihood.sum(-1)
else:
# data_log_likelihood is of shape [k, n]
# data_log_likelihood[i, j] is the likelihood of j-th sample belonging to i-th center
fixed_cov = self.cov + self.epsilon * np.eye(self.feature_size)
data_log_likelihood = -.5 * (dis @ np.linalg.inv(fixed_cov) * dis).sum(axis=-1) \
-.5 * np.linalg.slogdet(2 * np.pi * fixed_cov)[1][:, None] # slogdet returns [sign, logdet], we just need logdet
data_likelihood = np.exp(data_log_likelihood)
# the posterior of each datium belonging to a distribution, of shape [k, n]
posterior = self.prior[:, None] * data_likelihood
return posterior
def log_likelihood(self, X):
"""
return the likelihood of parameter given dataset X.
It is exactly the posterior probability of X given current parametmer
"""
posterior = self.pairwise_likelihood(X)
log_likelihood = np.log(posterior.sum(axis=0)).mean()
return log_likelihood
def predict(self, X):
"""return the probability of each x belonging to each gaussian distribution"""
posterior = self.pairwise_likelihood(X)
posterior /= (posterior.sum(axis=0, keepdims=True) + self.epsilon)
return posterior
if __name__ == '__main__':
def demonstrate(desc, X):
gmm = GMM(3, independent_variance=False)
gmm.fit(X)
pred = gmm.predict(X).T
plt.scatter(X[:, 0], X[:, 1], color=pred)
plt.title(desc)
plt.show()
# ---------------------- Example 1---------------------------------------------
X = np.concatenate([
np.random.normal([0, 0], [.3, .3], [100, 2]),
np.random.normal([0, 1], [.3, .3], [100, 2]),
np.random.normal([1, 0], [.3, .3], [100, 2]),
])
demonstrate("Example 1", X)
# ---------------------- Example 2---------------------------------------------
demonstrate("Example 2: GMM does'nt promise the same result for the same data", X)
# ---------------------- Example 3---------------------------------------------
X = np.concatenate([
np.random.normal([0, 0], [.4, .4], [100, 2]),
np.random.normal([0, 1], [.4, .4], [100, 2]),
np.random.normal([1, 0], [.4, .4], [100, 2]),
])
demonstrate("Example 3", X)
# ---------------------- Example 4---------------------------------------------
X = np.concatenate([
np.random.normal([0, 0], [.4, .4], [100, 2]),
np.random.normal([0, 3], [.4, .4], [100, 2]),
np.random.normal([3, 0], [.4, .4], [100, 2]),
])
demonstrate("Example 4", X)
# ---------------------- Example 5---------------------------------------------
X = np.concatenate([
np.random.normal([0, 0], [.4, .4], [1, 2]),
np.random.normal([0, 3], [.4, .4], [1, 2]),
np.random.normal([3, 0], [.4, .4], [1, 2]),
])
demonstrate("Example 5", X)