-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFAST3D-parabolaTest2.nb
10003 lines (9837 loc) · 425 KB
/
FAST3D-parabolaTest2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 434740, 9995]
NotebookOptionsPosition[ 430354, 9929]
NotebookOutlinePosition[ 430695, 9944]
CellTagsIndexPosition[ 430652, 9941]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"hullcurve", " ", "=", " ",
RowBox[{"2.", "*",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"x", "/", "2."}], "]"}], "^", "3"}]}]}], "\[IndentingNewLine]",
RowBox[{"hull", " ", "=", " ",
RowBox[{"(",
RowBox[{
RowBox[{"x", "\[GreaterEqual]",
RowBox[{"-", "2."}]}], "&&",
RowBox[{"x", "\[LessEqual]", "2."}], "&&",
RowBox[{"y", "\[GreaterEqual]", "0."}], "&&",
RowBox[{"y", "\[LessEqual]", "10."}], "&&",
RowBox[{"z", "\[GreaterEqual]", "hullcurve"}], "&&",
RowBox[{"z", "\[LessEqual]", "2."}]}], ")"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hull1", "=",
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"y", "\[LessEqual]", "10.`"}], "&&",
RowBox[{"y", "\[GreaterEqual]",
RowBox[{"2.215384615384615`", "\[VeryThinSpace]", "+",
RowBox[{"1.159647461884313`", " ",
SuperscriptBox["x", "2."]}]}]}], "&&",
RowBox[{"0", "<=", "z", "\[LessEqual]", "10"}]}], ")"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hull2", "=",
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"y", "\[LessEqual]", "10.`"}], "&&",
RowBox[{"y", "\[GreaterEqual]",
RowBox[{"0.7538461538461538`", "\[VeryThinSpace]", "+",
RowBox[{"0.3102990715481003`", " ",
SuperscriptBox["x", "2.`"]}]}]}], "&&",
RowBox[{"10", "<=", "z", "\[LessEqual]", "20"}]}], ")"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hull3", "=",
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"y", "\[LessEqual]", "10.`"}], "&&",
RowBox[{"y", "\[GreaterEqual]",
RowBox[{"0.061538461538461535`", "\[VeryThinSpace]", "+",
RowBox[{"0.16809777948184113`", " ",
SuperscriptBox["x", "2.`"]}]}]}], "&&",
RowBox[{"20", "<=", "z", "\[LessEqual]", "30"}]}], ")"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hull4", "=",
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"y", "\[LessEqual]", "10.`"}], "&&",
RowBox[{"y", "\[GreaterEqual]",
RowBox[{"0.13846153846153844`", "\[VeryThinSpace]", "+",
RowBox[{"0.11225568226713982`", " ",
SuperscriptBox["x", "2.`"]}]}]}], "&&",
RowBox[{"30", "<=", "z", "\[LessEqual]", "40"}]}], ")"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hull5", "=",
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"y", "\[LessEqual]", "10.`"}], "&&",
RowBox[{"y", "\[GreaterEqual]",
RowBox[{"0.9846153846153846`", "\[VeryThinSpace]", "+",
RowBox[{"0.08302998710242387`", " ",
SuperscriptBox["x", "2.`"]}]}]}], "&&",
RowBox[{"40", "<=", "z", "\[LessEqual]", "50"}]}], ")"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"hull6", "=",
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"y", "\[LessEqual]", "10.`"}], "&&",
RowBox[{"y", "\[GreaterEqual]",
RowBox[{"2.6`", "\[VeryThinSpace]", "+",
RowBox[{"0.06526115558326687`", " ",
SuperscriptBox["x", "2.`"]}]}]}], "&&",
RowBox[{"50", "<=", "z", "\[LessEqual]", "58"}]}], ")"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"hullreg", " ", "=",
RowBox[{"RegionUnion", "[",
RowBox[{"hull1", ",", "hull2", ",", "hull3"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"Region", "[", "hullreg", "]"}], "\[IndentingNewLine]",
RowBox[{"hulldensity", " ", "=", " ", ".05"}], "\[IndentingNewLine]",
RowBox[{"waterdensity", " ", "=", " ", "1"}], "\[IndentingNewLine]",
RowBox[{"ballastdensity", " ", "=", " ",
RowBox[{"5000000.", "/",
RowBox[{"(",
RowBox[{"81.", "*", "\[Pi]"}], ")"}]}]}], "\[IndentingNewLine]",
RowBox[{"ballast", " ", "=", " ",
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "^", "2"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"z", "-", "0.09"}], ")"}], "^", "2"}]}], "\[LessEqual]",
RowBox[{"0.09", "^", "2"}]}], "&&",
RowBox[{"y", "\[GreaterEqual]", "0."}], "&&",
RowBox[{"y", "\[LessEqual]", "10."}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"boatdens", " ", "=", " ",
RowBox[{"Piecewise", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"ballastdensity", "+", "hulldensity"}], ",", " ",
RowBox[{
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}], "\[Element]",
"ballast"}]}], "}"}], "}"}], ",", " ", "hulldensity"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"RegionPlot3D", "[",
RowBox[{"hullreg", ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Yellow", ",",
RowBox[{"Opacity", "[", "0.5", "]"}]}], "]"}]}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}]}], "]"}], ",", " ",
RowBox[{"RegionPlot3D", "[",
RowBox[{"ballast", ",", " ",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",",
RowBox[{"Opacity", "[", "0.5", "]"}]}], "]"}]}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}]}], "]"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.7590709082786827`*^9, 3.759070976680941*^9}, {
3.7590710164343243`*^9, 3.759071086100382*^9}, 3.759188116258915*^9, {
3.75918816398985*^9, 3.7591882026296964`*^9}, {3.7591882759664655`*^9,
3.7591882853554068`*^9}, {3.759188332776496*^9, 3.7591883396282296`*^9}, {
3.759188374776904*^9, 3.759188376003834*^9}, {3.759188516054896*^9,
3.759188527537196*^9}},
CellLabel->"In[47]:=",ExpressionUUID->"2f6ff26d-771a-4b03-a8f4-d7ffe4270b88"],
Cell[BoxData[
RowBox[{"0.25`", " ",
SuperscriptBox[
RowBox[{"Abs", "[", "x", "]"}], "3"]}]], "Output",
CellChangeTimes->{{3.759070955384362*^9, 3.759070977652513*^9}, {
3.759071021266911*^9, 3.75907105987184*^9}, 3.7590710948405046`*^9,
3.759071884142231*^9, 3.7590727720663548`*^9, 3.759188120365203*^9,
3.759188207894758*^9, 3.759188289719022*^9, 3.7591883455011263`*^9,
3.7591883839906178`*^9, 3.759188530724363*^9},
CellLabel->"Out[47]=",ExpressionUUID->"82952b47-e20b-447a-a9ad-8f4e02b78f8e"],
Cell[BoxData[
RowBox[{
RowBox[{"x", "\[GreaterEqual]",
RowBox[{"-", "2.`"}]}], "&&",
RowBox[{"x", "\[LessEqual]", "2.`"}], "&&",
RowBox[{"y", "\[GreaterEqual]", "0.`"}], "&&",
RowBox[{"y", "\[LessEqual]", "10.`"}], "&&",
RowBox[{"z", "\[GreaterEqual]",
RowBox[{"0.25`", " ",
SuperscriptBox[
RowBox[{"Abs", "[", "x", "]"}], "3"]}]}], "&&",
RowBox[{"z", "\[LessEqual]", "2.`"}]}]], "Output",
CellChangeTimes->{{3.759070955384362*^9, 3.759070977652513*^9}, {
3.759071021266911*^9, 3.75907105987184*^9}, 3.7590710948405046`*^9,
3.759071884142231*^9, 3.7590727720663548`*^9, 3.759188120365203*^9,
3.759188207894758*^9, 3.759188289719022*^9, 3.7591883455011263`*^9,
3.7591883839906178`*^9, 3.759188530724363*^9},
CellLabel->"Out[48]=",ExpressionUUID->"37400091-4e8e-4764-b4a4-72a2f9285765"],
Cell[BoxData[
RowBox[{"ImplicitRegion", "[",
RowBox[{
RowBox[{
RowBox[{"y", "\[LessEqual]", "10.`"}], "&&",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"y", "\[GreaterEqual]",
RowBox[{"0.061538461538461535`", "\[VeryThinSpace]", "+",
RowBox[{"0.16809777948184113`", " ",
SuperscriptBox["x", "2.`"]}]}]}], "&&",
RowBox[{"20", "\[LessEqual]", "z", "\[LessEqual]", "30"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"y", "\[GreaterEqual]",
RowBox[{"0.7538461538461538`", "\[VeryThinSpace]", "+",
RowBox[{"0.3102990715481003`", " ",
SuperscriptBox["x", "2.`"]}]}]}], "&&",
RowBox[{"10", "\[LessEqual]", "z", "\[LessEqual]", "20"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"y", "\[GreaterEqual]",
RowBox[{"2.215384615384615`", "\[VeryThinSpace]", "+",
RowBox[{"1.159647461884313`", " ",
SuperscriptBox["x", "2.`"]}]}]}], "&&",
RowBox[{"0", "\[LessEqual]", "z", "\[LessEqual]", "10"}]}], ")"}]}],
")"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}]], "Output",
CellChangeTimes->{{3.759070955384362*^9, 3.759070977652513*^9}, {
3.759071021266911*^9, 3.75907105987184*^9}, 3.7590710948405046`*^9,
3.759071884142231*^9, 3.7590727720663548`*^9, 3.759188120365203*^9,
3.759188207894758*^9, 3.759188289719022*^9, 3.7591883455011263`*^9,
3.7591883839906178`*^9, 3.7591885314003077`*^9},
CellLabel->"Out[55]=",ExpressionUUID->"18453f3e-e1a7-42a7-8373-b483020ec7ad"],
Cell[BoxData[
Graphics3DBox[
TagBox[
DynamicModuleBox[{Typeset`region = HoldComplete[
Region[
ImplicitRegion[
And[$CellContext`y <= 10.,
Or[
And[$CellContext`y >=
0.061538461538461535` + 0.16809777948184113` $CellContext`x^2.,
20 <= $CellContext`z <= 30],
And[$CellContext`y >=
0.7538461538461538 + 0.3102990715481003 $CellContext`x^2.,
10 <= $CellContext`z <= 20],
And[$CellContext`y >=
2.215384615384615 + 1.159647461884313 $CellContext`x^2.,
0 <= $CellContext`z <=
10]]], {$CellContext`x, $CellContext`y, $CellContext`z}]]]},
TagBox[GraphicsComplex3DBox[CompressedData["
1:eJx0nXk8VH/7/2fs+zJ2xjb2fd/pXKXdXkSItGiTSpuKKKVIJUmpFIUKIVtC
zohslSwtokSlJPu++819f++TX2fM/c887ufn9biceb2v93Xe13XOfD7yW/at
285EIBC8OAgEZtpn9vJ7Fcd/fkJTDZxDRl0pQPjv/5ZAdGk/32e/YTqO6f/v
/yvS6fEcr/eyPsbbaWRFp8c4Xv88fEiydo8lnR7jeL1U7R7VrCQLOj3G8fr/
/NXYj+Z0eozj9c2O/7lSej3G8Xrj2I+0f2JGp8c4Xv9ffMyUTo9xvH5Y8j9f
zIROj3G83um/RhvT6TGO12clldCcptdjHK/n+49tjkZ0eozj9X6q/4lkSKfH
OF7/32UsMaDTYxyv/2+YIX06Pcbx+nP/SStVej3G8fr/fi0vPTo9xvH6/6Z5
rC6dHuN4/fL/ch06PcYX34/aDPajNoP9pclgf2ky2C/qDPaLOoP8V2OQ/2oM
8lmFQT6rMMhPZQb5qcwg3xQZ5Jsig/yhMMgfCoN8kGeQD/IM1leWwfrKMlgv
MoP1IjPwX4KB/xIM/BRl4KcoA39IDPwhMfi+/Ay+Lz+D6+dkcP2cDK6HicH1
MDGIP4ksHn8SWVz/m4H+N53+/z7ljBffj3LGi99/F/R4jultdjyc686S+x9f
uP/i+eL6hfh4jum/GU1OU/ll6OLj+eL6hfh4jum1EpKm0lFJuvh4vrh+IT6e
Y/pAlrWTcfvE6OLj+eL6hfh4junL9wyNn5IVpouP54vrF+LjOabna7o55vdW
gC4+ni+uX4iP55g+51B4d9YcF118PGc6cHnl3dn+vxxfD4WZV+4v285Px/+N
owjjmWzyK4b7ULeNU5p1vlwQcqhk3e/18iB6NuhHIt8wGrbPQsftGx+Eae2O
7XknDw1jA/lOc/3oIZaRjWLzXHDimvQwO7MsfDhxnW/l9mFUsi5js4gHP7RW
Cq2mSMqBxl2X0CD3AVT63Dld1d3cYMry9mHuRSkwlunfKFw+jIZu1QzQb+cH
gZx7jqeyydCkKzdz6tIAurTHjsXgITfs3ujbl2EhDiorzs6FMo+gxCiu4nMy
ArBL8+m18rUSMHsp77Jk2gDa0zPL71fDDXmXs4jUeWE4EN+kvVR9BN05F/H2
ubkARK2rydIniEKHYvxjzvwB9G7hN52UD9wwfJN1JqFJECY3cpt1WI2gc01J
auQ1AtB7MmddXi0J/E/GqSrkDKA/si94U5q4QePCQW6uPbzwJc2+YGzpCEqR
c/CWshWA/R9+PAq354crcW6HJZMGUGRshWh0KTccu+ZyhteeHfrNDpXMG4+g
1pEJPwWWC4DExYSsNE1O2CZ0f+vzkAH04Llo89Nx3EA9Ff32yUYi1B1oSLgj
NYL6yqQ18+sKgO7tU+VVxsxwwqiUmWgzgAaf3SH20ZUbXM8Hdhch4wiPaUp9
3/Awutn5HPdSIQHg9Wh2reyYQvB5YvS/eminEfLIq4eWhysrJGt5BYDtdOa1
V5F9yOJ5uJCfq60//jrrxUKXn3gu45AZJi3W8Zfj8/BfvSLIb05q73v4E136
a0PwvDcbcKd8VStNkgNtguQm9tFfqK/FrNnSHjZQeH/Ohi1PGv40PFddH9CF
WgrvWWWgwA4tebu5crdKQlaYf3Pi4y60sv838w0rdlj/53vARjUxGA3dlfG7
ugtt9TMValxD0/tUqrlOCcHs15Lq6LoulO1swRJPW3a4V3QlKqJJAO6ve3z+
GLUL/dp/JJFjJTswc3XvT93FDewRGYnG8V3ozi11n44bskPtsNpE2lJW+BY4
sPqSZReaU6OuG8TNDivvsZvnnJlDXv28IWcl8AutijZPqo1kg67usqIPQcOI
NM4f/H3qX38W/C9RcKx9GjSN4P3Hc0zfs+fpJcElzHTnon/1igziKNLFwZ+X
MI4/F2Ecf/7BOP6cg3H8eebf6ycx+Lv8DOJzMojDxEC/cK74ly+sS/2p7xFV
gT10/uO5ssHr9+u0Ov9yfH/UrenGre4zTMf/jWMIyh3976Ro+azd9WeCxN6H
BOcrUQ+91YfrQ9Y3W3VH0CU+Z1ip48NInPiV4J/6BjAzKlw2mfcb7bI5Mz9z
rg8ZitgPfWN6MB3Gr8EcNYKeiereU4GMINFtx5mGvfVB+ZHQwWO63ejc1rBJ
SmUf8mNJ2Ybz8nrQrX0h/HzlCGqRILYjzX8EeTY7hjpF6MGTePtS0cBuVB71
2JDX3YcYZ+qFHrfXhU+XH+Tp9I+gsYJaLVGXRxCVM66XbubpQrrIxJ11yd3o
zg/hlkHEfuSge9HLmWlt6HnxNu8Q1yhaw3P8BZoygrxY2pgq/lIHPKe7qg4/
70YPaWQ7hPD1I15vrrw4tFkLrN7V+UlIjqJ8vgfen88ZQY48kD9RoKwNvzoE
Gy687EbHfDceeELqR9b8MdY7VKsBXZsLXW1kRlGR5U7qE/kjyBXpQ23kS5ow
qLz0+YqibnT/SjBt5ulHzpW/DBo3U4efJlSFCyKj6BqzL8l1mSPIzRYbAv+0
OhyP5NhWdaUbPd+sQO0e70OkJyioVJYqXP7J+uDJ9Ag6llzW9DR+BBkRenao
yU8NUjZumylR70Y/DfYGmJX3IYk7ki51qKuA+BuXSdkq2v1lrd9BxX0jyBmd
QNGNHSqQGN9A+czxG3XXGza3M+hDRLbfzTmQqwT2nWqmH71H0OqXhtYF5BFk
17168nVHZVDB5RW+b/r9v7zC903/5tUC70r4NGz8poAunxuulgaXv2r6y2/8
Onhx6c736KNZlhXnr+QhpQKyHrFuVqB1X1psndYgaukhUnBsQz3yTdiel++w
Fbg7VB46qduE7g+Ct953c5FCN//ywARLuOJ6OFlish990f6DK8DjDfKNS6VD
7JUl7M7adMtIoBEVOHD97AXtXOTN7e8W+1sswFaGor/9WR9aX/U40LrgFbJt
tlhFQtASrN48rCg504C6zIRL7pzKQcqfZczfF7KApNQHox5CfajR4RseSt9q
EeFnazazO1hAmPYjhb0bGtDAfbMXAn7nIC1juz8UrzWHeuv2drbaXvRqlGjz
z7O1yMG3UxnHzpvDdbbHrXcPNKA32EU+bRnOQdh/NJ5zCzWDls8nOp0qetHn
O/ZFvzhZi3QUFR2eLTWDy3c9sqSbG9Bzr+5ab5HIRZKZresv5pnC6c7z75Vn
e9HVhl/NZCprkeNepXv4hk1hUDCh71JCI5r2vvMa8/ZcRMqrX2zqpwnMDzy+
kHyyD932W5GYvfsVcvRosuJORVO4ml0sqNvVhAqsKrnf1J2LUK5x+8WJmoDj
hcvrnbb2oxT2+7Icsa+RkY4b7RNOJvDw1qqtcb/fo9Hf6uq3vc5DcrkyOIWX
GsMn3ZGUhr0DqM69JeHc0XXI6dPP3TYeMwb51F3j92Kb0Qrdzfs5JQsQ8WSr
6V1bjKBqx0EelluDqK+dUULDWD2CfouLUY01ossf/LwIyx/8vCiVS8OoEf39
t+7demLLraNZh8oaav+mZnQhZ+J7DjYYGICqfEs+cfotmn/YtEentAsZeXmp
RGmLPuz3Xrm9aLge3afX++xTQxdi/T7R80yUHqSWOx0fPN2AGp4tqK//0oWs
tQwt21uoC0uHN3p9+dyAqlp/aA/v7EICaiffOLzRAc28Y2MfpRvR0Lbql3p/
uhAPIrpkSFsbXkoP2fava0SPCY75fevvQmKyOJ+wxmmCqrCc3VBYI+qWpDSy
bKQL8WNfO1XIpAHaxbpBrYWNaKcoSy7nZBdiuX3U/9xhNWi8aqtwdKYRnSk4
8NFkvgsZFpzf6zegAj4yFPPyTU1o+z3Ph9YcvxFnC/dLFieUoZS/0lnY6B36
ndc2+w/5N3JdPcRkSEcJpg57FPDoEqj4eS/Gsf3MiGPzWzzH5rR4js1j8Ryb
u+I5Nl/Fc2yOiufYvBTPsbkonmPzTzzH5px4js0z8RzLQzzH8hDPsTkknmPz
RjzH5op4js0P8RybEy6+jtoM1kuTwbqoM/BfjYHPKgz8VGbgmyIDfygMfJBn
8H1lGXwvMoPrl2BwnaIMrofE4O/yM4jPySAOEwP9JLI4/03H/+9Tznjx/bvA
8XOhxfmCHj/nWZwv6PFzmxIHmTfbtObRmePkjT7HJGHiJres6KOFddw9mHgj
ukWKbn3/jaMInBcujgwXz6HuRq1aslMSEJ4s/XlnhDywGRTcld5CoNYOZWmX
OZJB1qtroq9NHqJWNoow58+h5UFbWLYPSYAa3xX0HbMc6F/3UTh9nEA9/SZb
oiWSDDKnhZ74uMhBz5w4U27dHCpj/DiBjV8Scgs/E7wryFCqfE4/8gKBevOw
34eEXDKwiAedrNkrDUm2uXIpvXPoiGPloWQ9Schz+7bd5qgEPN752q8snkD9
lbg+sOI9GfIv1+8/ryoJemDy0JR9HvXSz212t5eE9EDJ9X56ouC8xUiOnEKg
Gsx6essNkqHD/YXS05+i4Ce7IzpafB4VWENOa/eRhKaEYmHeCRIkrlyew/uY
QN0QJnHGgUUatpzr/dT4WAhcnputTpCfR68ssWoS9pOEwm6Rx8M3+KGJi5Cx
/gmB+u5l75oUPmnoy7x+5WyoAKSSZu6MKMyjpirqws/8JSGz58j9Hg9OuOdX
XDlM06tx9RSqCkhD7t77nsFULjA3yJLarjiPDhqKspnukwTlQb2V7LrMcNo2
3ygvi0BdN7xCp5BLGngGnXVexLMA+lZA+KjuPBrRVtnxKUgSjrtUie//M4ns
W/NqNjqTQH2ou+LbOLs0SK03niycm0G6mLzmNu2ZRzX/t+5Ynu+iBsbnlRKo
1Q4CMYI60kD5RPxmZTPwN//xczzDSlHbPZ4zf+d1+Lz6V68IQUs/RFhLzKBc
6e4HvquLQUhLzNOYbfJwv910WZrODModsYylZKkYhEetzr96SBaucaa9a980
g9YM3v8jekAMRHy9rtzkp+XFp3gLjfAZtLouyPXuTTGQ5dS2phSIQ8oFU0Od
+zPoY2+OyoxCMYg5Fh28da8IxHCF3hXKn0EdYh3El78SA68mh7kgIxKI6hpY
Wz6fQTvKBtReNImB4qTzzU5JPtp5UjU9nsYbDnoFKLwTg2SDj23+v9ihosY+
VqRwBhWy2Gq9vY4Wn69U5PBrIuR0VsUGPJxBKy+FxSiUisGrOm2tJXfGEbw/
+HqCn1sWh9oOyfdN/J1P4v38V68Id0OvZBjKTaIPVq7d02MrDDtLXSj52vIg
mOy6iuvMJHrI24l0/qEwWHqIiT0slAGX18vSt9dMorGrJzmJv4WhmmQxkWcl
BUmrFN9LT0yiyEy2RoOwCKiuKfhj0y4GjckTLz6KTKFPnTXbWnRFwFUg80lx
vDBUmmZwNipNodOiQ7xTiAgwRZbk3fYVhJq9O052qk2h1MhsiY/WIhDgV6hz
O5IHugWT73+Qn0KfvIrfZmgpAprNGYav/NgAFRGwXM4+hZJnq1eLKYjAy6tr
9e1CCfDT8XVodSntekpu9Il9FYb6uT9i1X9GkSKcP3g/8XNa6yOZyz8Pjvyd
x+L9/FevCGIPLDzHrcfQ24Pe4krNgtC5Yc/ad0/lwPySf8lO6hjaP32qJNWK
BEtthIzsKqRhekedDw/nOJq2V8+j+xgJWqd3mDrS6s23naePPzIeR2+LwHuF
RBK8LM+03D4uCvdSfZX4nGh6gfjt2wpIIPjlJTdnoRBE8E0dlfIcR23niPbP
URKcjlXNORUlAM23H9eMuo2jyQ7+AULPSbC6w13HsosL8lhTnq5eMY6ec+JO
PZRBAgf+tkChHyyg61G9iVVyHH0mU54ueZ4Epvvj7xZYziE2cR4Rgo1jqM1F
/3ILWxIg3S/VcnyHkRbr2wmPM8bQ6T8sGru0SHBoRucToefbXz/xc+nF+cL5
AT8nXJwv6PFzrRPnelh+Gcz8nVPhz2867z6Pvtcj0J3r/o1jCI+tOeIrTkyj
8zdUZD/nTyEvI9qKO1/pw2Upj/MDqQTqa4ExvZU1BLjzYeNOFx0D8HjF5NYd
Po2uNbj3kFo2hWz12EHNGqCd9841g2IJgdqZyEsq/kGANOOPuZGu+iAtG/pk
66NplGu1W2Tqzylksn/bun0SevDG5GBuUB2Butxsp1j8DAFk1v9qcQvWA5mn
rh/9qqbRT0IXugbZphGz1m+pDit0oV3wga3/VwKVctIwoJhEBAVEZH1gqi7Y
54bNHmilxc9J/3mBPI14+Qpcf9WlDX66raXiPQSqU65FgYsCEQ4+rblemKoD
AakCCtXfp9FaLjC+rDSNhGxwe73NTgt8++7Jag4TqLJh188maRJBnH3Aqotd
m7Z/v77tbJtGAxS+SK2Sm0Y6hi1M9Qs1oLIocFsvTX9PJCr9rhYRWr4cObB8
vya0vw6y56qdRh+IRXiXc04j2sVXCuJU1SFzXfizI70EKtuTVSbySkSIfysb
EvJVHV451ZkFJk6je1bFiYt+mUL0uGTn2BNUoXggV9GhjUAdvFh1z1qQCLo2
s1n9zmqwd9c4v9OmaVTl1vuJo9emkF83Ro6sJqnAH1/dREIF7X5aIzw02EeA
tgdvhe7VqUClyaU79eLT6PDY/nfSdlNI47VL5cKRSmCRYNbmdoNATfkxWX2o
gABboC51crkyHMflFf7cq/u/vMJz/Nxvcb7Qd2Sv2nPSde7XX72DkHf8qf5p
9HL/1qDJTd+QtP2T6XEJVlDRzm5k6DqFhhdc5FsX1Y4wd/++JTNrCeVZdRGe
IZPos7IMl33LviLbzj5Yu2GNJZjHLF/ByjaJ2mQsc6+HNiQk3WHa84IFHDT4
peJVNYE+E0/+kvX8C9LhyvPcucoc1hg9FObInUArahR7fK9+QQbcC4ac5s1A
/2jMYa/yCfR0W/Elz/wviK6UG5ORoRlYzbOnfJiaQO+7ne13VGtD/BJH5Nh8
TcHhXJUqbJtE5dxzig9xfEX4iblFbLEmMGvdojNFuy+kxytfObq8HWmwS7px
t8QYfkWEcGebT6OcQ9p3faI6kHDOEwdffjECZWHZa0e1Z9GVd3iFqj5/R6Le
5QU8GDeEDB5ke/ojNrr+F+P/nrfpOdb/4jnW/+I51v/iOdb/4jnW/+I51v/i
Odb/4jnW/+I51v/iOdb/4jnW/+I51v/iOVYn8Rzrf/Ec63/xHOt/8Rzrf/Ec
638XX0dtBuulyWBd1Bn4r8bAZxUGfioz8E0RUvqvmJkVseD8oTC4fkUIVUHm
WG8w/81bvP7ffKaPj/XRRwWayw0Tmak3SleUxW2lQD019SrZUZ5Oj/XXnonL
3u57zEz9wM0+5n+EAo116VuEbWXp9KX/67sdXJdVjBYyU+/sihn5Fk6BD51J
Gb/mpej0WD9uUfZixVIqM7Wpb+2WdVcocP7Bgz0vXojT6TP/16c7W0devlPB
TBWlugXFXKfAJicW28+XRBj4SQJUIeGNTBUzNeZ8FovqLQrcOqO75epmEp3e
+n99/eiR7z9kq5mpfjPrrt24TQHd+AO9HP58DK6fE7YmEu640eJn2n/+cZwW
P8fS7E+yMgeD62GCUC37Tv9yZmqno9yRr9coYHsw6gTrMJFB/EmkjGPPrCLN
T/GfzhcKz1LARmTqyWzTOLK4/jeCzxOMY3mCnw+UyulJTmxl+svxefWvXhHS
057rHz7NRL3Zfksxu1kOBF4pnVfQkgerXYLORveZqOFMH5MrWeQhPGgXceqN
DIxsDGj4ms9ETSCkSXLJyMPEnoCmtQelYE/xbPs9KhN1fMO0X6qmPOSrZCaN
6IhD9s+WAuUqmv7ibM1pI3nwOvXss8yEMARon5KtqWWirqUkRh42lweX9OvP
wqoFQZqklfD4FRM1UNauKsNCHsz2BRI1rXnh/Yqi4J5qJmqLe1ZQj4k8ZK5i
81HmZYeh8vNBySgTVVXkRZ6thjy0sgptvT9PAE3K6XCfB0xUk1XfDHdzyYPb
AXEr6wtjCN4fvJ/4+UnD6AoDG0niX47381+9Iih0oVKpx4jUtp+1nEVzMlD7
pPFY3Gs5sJ3VCmu6RaRyxoRJ3HORhSvkVZ++yclA7MleHf/HRCqL6a+qB6dl
gSvC1LGzQRKcZQpS7hQSqRO563963pUFkQDnWcdoMXiw2il6BCVS59eufGma
Iwukkzzzva7CoFlZOzRWTqT2pWaVR5bIQvCDUGNETRAMX5ws3FtBpCq7vU8u
eS4LoaU3tY7z8IDGXrfLEVQiVSZns0phrizcPdZy5usPVrgUprr6ewGRqiVy
2LD7piysjpjNSa2fRwhqOo/sHhCphdVM5uMBtOu5FDrr4jGCrOevHV6WQqTu
zxLofb5XFi5WzpqnFnz/6yd+vsTsZXZeb5SdaikercUnujAvwvT4+cDifEGP
739dipcvU/JipeYNML+UrRGm0+P7u8X5gh7fvyzOF/T4/mX81rNiHnPmvxx/
P22Z/rzp6TAnHf83jiGY3URstLyZqeqXk89JxbFA1E7N48de6AMsjxvmeMVK
ne04aNt4kAOC3niQ1ZQNIIm07phnIDM1eGthHk8JC6iKtk1zdOhBdYdPgk4H
K/XAbWM5t3gOyDkSQWqy1ofrV82R+YvMVK8f4XGvP7OA8u/T7tpseuB1QZmd
NM9KXRJ7qs3gNQd0n3zQDNv04OdHrdt77jBTnxjrtFJHWUClKXMpoqsLS2MH
uYaE2ah+G6miNwc5QC4nXaYnUhf+NAoHjDxkph7nibnwhpUVfupsObXruTYo
Op6oOqHARn1k5309gosTOpS/ry7eqwMl7er5TrT7VPz5NKsjPKyw80z+7BWK
FlQ0vFwRqcFG9e5AzbeIc0KB8GDVzzotMBwh7SenM1P3EQxjxThZQaOix7fm
sgYMN8bf2arFRl1Wb3MgWooTeJ3PvBwx1YRL1a1BMUnM1EmWXuTiFAsERPI6
KbOqA7nNgKlZlY26hcXPCxXihGy1/AP6GerQdOLD3KnLzFQzmyJ3sa8s4NZP
rpo5rQorj7wMcZVmo84ckW2am+eApf0ZA4/U1OCi8/cjZw8yUz8mCJmV5rGA
dZF2kCOXChw861YizsVG3fh4tTLnVw5wfZLcW5mrAifH519dtWemltjvtzQM
ZoGI1gBT8SQl2HJ1iVZMPyu1Wj7seu0Tml6h6PQBJ2UYw+UVdg4prPJK0+xk
pV7VS6mSTuSAt6GXl/4WU/qbV/h+eXFuCHK9USodZUS6/gXTR8Vd5jtzZewv
16X0tVxKJVKXFN89FajSg8QepUz7IlYg/7pUWzOblTpREb0phDqCfNGMKPt8
3grUAralxNkTqRt2db0hKP1B8s+zZbift4RTPQ3hR2j7d30H84cUzRHEIuTJ
3LV6S5g1v5N6m49IHVvp/dXUrxs5y/TbX+OVBUxlJsT7KLNSP5o/37q/ehiZ
O8ibkS1gCcqxnxoEumh99LdAJd2534j7vbrv+zksYLnucp5tBNp+mYQkxbPD
yKNNYv3Cdhbgt+XuJ7UPBCqZ6+G53a9+I7EaX8LuLDWHjskXNi+6WahKaq12
nN7DiHv5EN+WcHMYILR0KtL0b9ySwjxp+qBQ/8tXj5rB+saAcakfLFSNLTc2
u68fRup90tzmS8xAkv/RSTHa9ZyNfS9tTbue7ovnTS6mmcLBSL4Y6GGhfjAf
OPTIZxh5HPuHKDVoCid5iWxm/ESqB3+69eTebmTX7Jtzyi0mIDMxsKeChZXq
eddf8GvUMGLP4jscQzGFKwkO6eXriFS2Y1muqnp/ELkTbbf1WU2gKk8+3F+P
lfrwV5yN5Odh5HtfxK8GRxOoudOjZU6r/9HCYPDpYA+SZO9RGadmDAIPDm9/
GchKtYvkZ2X2HEGc79sMGh03BnvTB9e++TNRHTXn6ljP9SHhwgGFHquMoOMN
h9i7n6zUTjOhtXcUR5G0To8b528YwROBM+tsaPVquMiYcqRsANnw/SHn0EVD
uvzB+o5XdzdvPlQnCPg+7ufDL4JrFXjpOKbH6i9ej+d4Pdb34fUYx+uxfhCv
xzhej/WJeD3G8Xqsf8TrMY7XY30lXo9xvB7rN/F6jOP1WB+K12Mcr8f6U7we
43g91rfi9RjH67F+Fq/HOF6P9bl4PcbxeiwP8Xp8fmIcu1/j9RjH67F+Ga/H
OF6P9dF4Pcbxeqy/xusxjtdjfTdej3G8HuvH8XqML74ftRnsR20G+0uTwf7S
ZLBf1BnsF3UG+a/GIP/VGOSzCoN8VmGQn8oM8lOZQb4pMsg3RQZ+0uuxz8Xr
pyL8WLR+Lujx/SMWH88X1y/Ex3NMj++nsPh4vrh+IT6eY3p8f4HFp+s7ynQf
ZA0LwqmUJRyjzGQQaP+uftzVAKCBl7U0eCEOfv9q/hPHEDI9UzW05wTBZ7W0
oqk8GYaufeeLideHtj1a24o0BWFX+NxMXacEfCHYJu5TNADRLqlUGyIJzPgV
5f6okaGaS++15Ts9gJ9Xl2VRBGFLsWGq0CsJeH26t4Fplz58z7b+UcZCgpVp
xLLrBmToDfuutppLDyIcpHpVVAShLGt408QHCVhy0KmYP1GP1ie6LtHnIIF8
UNULIysycO5tT+iy0oWo10uCJWnXc/BrUL/iDwkwPJt5VbtRF9RnScfOc5Mg
SOzu0aiVZCiqGFDU7dAGR5ONV6x1BeGkRFa/Rb8E2HryP5Bl1oWtm9fa9PKR
IIwrqJrXkQxbjgbugZVaYJVlTPhmIAjl/rcufZ+QgOC1Y9vv7tSGZzKv31wg
kcBERPy+vjsZ3rjtlqlJ14Aoil6gjokgZLQcHMojSsJ6n/vdKa81gXrkp9ZG
URJMiXhzftlGBsUfyFsPEu0cvvrWhJW5IOQT7Z595ZSEYnPj5d36GpBc2EUK
kSCBkFCfS+5eMpzjPJLudkIVmH+xxI9ZCkL2Bo4VyoKSoC/JE1Z/i7av191+
9VOcBK2lSCm7Hy3+ZBJHyh9leDBSpZ2ICEJ9p2DBCnFJeCaoOd/Apgr28SeH
ynlIUNfOUj+/hgyhev2Rmw4pASvhSvahVYLwVqaleImWJPhX6rXu2rOwr22W
hFU9vi31d//i8wq/3/HvS2Bx8P0vpsfz1qZaSrCZwF+Oz9t/9YYgMhSaoKwh
AE+b33lethGDZ9QuAW12A4hrnwq+aCkAPKUqZPujYpAjtt5+naU+5B34w3p+
hQCk2vjGDF0UA0VbTo2eXXqgF6gXqGgjAOta47xkb4vBh+qJbVbXdUGmsnCL
p4MAGG+Ny6tNFQPZUWTq8QUdkJi9OoiuE4A9FI9BrywxqLb0F0J6tCCz64h2
oIsAvP7UUbGsQAyi5cX0LzpqworWV+/OuArAs8c7Hh4qFoN7jzbofS9Uh0RH
Pt5+NwFI6zutz42KQevVplxbJTXY8+j4vXXuNL59yOjKCzG4JJpotD9WBfif
nX71x0MAyorQ0LuVYiB076Lzb6IynW/4dcHPGTA/8XMGTI/nN11t73rkLnD8
ulT8ozcExzcrVlpE8sGSUEpBpKQIdOSqZX7/pQ/vRWK/2zziA1LT44ZdiAgM
XEHOnWWn1YdyG78nBXywe8/wkIeDCFxZpTWTqaUHV43VVU9Q+eDNQNgPNg8R
OD52JJDopgu823Td5qv44He/u/z8VhGIHhcKa+fSge7Q5+In3vABeud51oXd
IrCndovwlj1aoGNUr9ZezwfmTlYWN/1FACoNfp9u0ICj0UKFnxr4gKBrFlGx
TwR+cLctTbZShx0ZSQohb/mg5IS5w4ifCEx5X1ZozVYF5y+HDbNf8sHWi6sO
W/mIgOSpX63uOipwIPBS1ds7tOs5cqx+WF8EonKe9K6sUwKbP6UlT+X44GcJ
75Ptd4RhbreLrsMXRQY+L6wLfp6D6RnxrWkrbpNPCNGty796Q/i1aBxDWBt6
ZCqGygMz6bnZq3mEIFegueN9mj40d1q8DqRxYr/1SQ0avywR5cBRqQe1T7Mb
TWp5oEnG5C23mBCt3pzhKe7Whe0vZ6GmkQd2WzPfuiMnBBVfBE6tFdal1SFn
8bFmHhBWlcgNVxGCm8dv8J8N0wZZBW/n0M88wBqpMhSkIQSzxdM9jzo1YTLW
K57jCw+sj6wIEdEUAiud29n8DhrwMkaC6+UnHrg8pbvcX1UIStM+8V2gqkFg
0cXzTA08kF85ZHNPRggctWU+nLBUBST2I5887fp9mfNTariF4LxFb4xhjTIE
i+97RX3CA195k6+9nCYB0rLidvIRJTo/8eeWFI2bx1cqcv/1f7/2MtWOMkHA
z9OwOHiu85JtQNmGBC0sVl8S7/CA9m+10JskK8iU/toxzioICJF1yOsTB1iN
HtG+dcoKjv8WMM3fRYLlwXxPOmd4IJVwd5e0iSXsc5z/oCggCEIyQkNnxzjg
7DpQSi+whPRjelpzh0kAOwcuTVB4wbCqwFp3kwXcT/9+W1JSEAL8f+TKCnFC
6mablMHPFmAf+M3UKogEf/jO83kZ84L+p2+r+s+aw2FmjfIoGdp95Fmj029Z
TrjYpmMkxmwBrXc4SH9CSJDeov7hzVJecI3adswxxwxUW77y58gJQhHZbL+o
MidopPGdvappDnKk7I6zp0ngqFnM1rWGF7Z47X6d+M0URr+vC99EOyecqXm/
rVOdE9hLX943dTcDGybviJ9nSDA0dtLB3okX2qs4z34UNQUWI+OVUYqCMFPx
UkZHjxNGhDv2kaNMAXJTFDLPkcDq3hP9sY28cMBduSPH3gREZ0bOj9POFeM2
KfZcFpzA01FXwfPCBBQUNmYeukACjXcd7EXbaXVR+jb1ZoQxbL6rKXZRSxDs
tuUlqdhwgrDXNeGoaWOoTQo2V44mwW3f7tBNh3ih77rUfadKI9AonmG+Q7vv
kx5UGS7dyQlvNpSMWZsYw87wmvq7ESSw+aKex7KZF9j3hBnksRrB1md926Ic
BcHtgYJJQjYnJHiplIvuN6LLK6wvw+cVxn8tmleGsKde9fmTMj7Az2mxPMTz
Q8tt3qLb+eEzr4hulSErRIeRDyiBFUx/4presocfqteQBUwtWQGxF//D5W0J
2QdcDon78sPl7XYqlkasMGexIi4zxIJ2LvwwyObDD+Ed5reitFnhRpzeK6EU
cwgZKZqw9+KHypcjs2PqrJB7w3X/ybdmwKdctoPXmx/iUwO4hjRYYV3GktGa
OVO44uJdLbmNHyKsbZ/e0meFxrMbrxfrm0JPbB5yxJ8f7rgGvVgFrFBStExN
aI8J2P2kXi8L4Yeg99Yiyq6s8OGe0WjIA2MY2zFqfeMmP2gmLqeUHGeFDbwD
1c9+GYHWwy7pe4X8YIlcXpZ3jxViGtw112sbwRq38RYfIX7gOcX+4EE1C+gk
8gwU3Ddk4NsCr3QZ/z7jzPTXT245FfIa2n7WJ+6KvZpLhEjjTFnktyU8v6d7
uPogD7w2/1J4K5QIqdl6u7tnLEDQaHiiwIMHlLzJj9q3EmFtftUVIbIFPPv4
Tlvdjge6TDLkLq0jgmcB253Ny8whLfzqyk0reeB0/LaowLVEiHWL07njbwZK
knZmhTRuf2vvnR80PrgmY5dRoilo2eYwUex5YO/3qp9564lws22zetsHE5Bd
uiU1z5MHrqnlz/NtJ8JleHQqnmQCnoJeYTcO8EDvT2u7uWAiNB/nu9m63hhu
fvXZ/SCcByhyTREG14lw3KX6TcZtI1D/1ivzPIIHft1L3vvzJhEq2+RLMsfo
/cHyVp80tSX9ERvdvAvj2P2PEcfmV3iOzanwHJtH4Tk2d8JzbL6E59gcCc+x
eRGeY3MhPMfmP3iOzXnwHJvn4DneT4xj9308x+YweI7NW/Acm6vgOTY/wXNs
TrL4OmozWC9NBuuizsB/NQY+qzDwU5mBb4oMrlORQX4ucPzcYHG+oMfPARbn
C3p8X2+4KF/Q071vvChf0OPP84aL8gU9/pwpM2Z84VY611+O5VuOBMfTpxFc
MGNHdj6UIQBrn6083KtvAHarVCVdUrlodY14eqJGAOpWOuzO8dCHgJR2ybcF
XDAUFvmWtVUAll4/aKYWrAftZIuLT8u4IOiT4xWXnwLQeO1Cg/89Xchcc/TW
2houcNIJETLoE4DOQqO9327oQGqX7vPSN1ywMUCS7d2QAPCWpnWnjWrBL3/l
8to6LlD5mv+ke1gAbrDfyypx1wQXjaR9ba+4oJffA20fEADN6UL5VdXqUP7u
3E/JCi7Yn7BZub5LAK5c2KFhgKjB2qvLP9fTrjP6vk4SO+06iy6enfehqsDH
4r1jWx5wAUuA1HH+VwLwkNvshv4KZZDF+YPPN/xzWIzjz4ezBM3wOIT9L8d8
trXJk3zgzgHpe/c3OHPyggQPV93YiD7srO++vvsUBwRev6r/ah0vvLdrEmzk
1wfe6fND9y9zQMTmONsve3khSv9G0iUdPSi8+3itZjwH2PgVHOEK5YXtxQp3
T7vowo8u3lvL7nIA3/qnwY8u8ELGSM7tKKIOsN59TIhL4oBoOY5ByWheqOE+
pbTTRwtM/cybcmj6GjtCc0gUL7gZE8kytRqwbOjpwMwNDjjD91YqO4QXZpuj
hEYt1EFDoS0rOYoDRHOlX6rs5AXOgcpdTU//83vSQ9rrjnHAQBuVf7c1Lyh8
z4mWQFRAqVYoYOcGDlB/PnXOkcgLiUyUJT7NShB6cNX39tfswO7jKHCOwANn
RhzWVn5h5OcCx59/MP4l7uvG//859eJ6QxC6VTpfbcoGVxs8I3R1aOfJXL+s
uhR9iOvIDXcyYYM1IUs8H2lyQo7i6FqNYj2IuDUqEruUDaQqHgl5LuGE36vG
Zf0+60Ly/QsxvGvZ4CLLlTMEO05If822cieLLjyJPL3kmD0bbJBdxZHqzAkf
a++SDbdqw3e0PHsVjT8m9K52pHHRvKKi6kpNiJUo1RRZwwabCCjvetp51dxt
tzpioAHOpdcTXJewweZnp6QrTTkhJUjVmv2RGmw72Ll8qRYb2G585eYixQmJ
VG7JJDVV6IwyKhkVZoMap5ldiYMc8G7c/ANbkTKQZ15HJM7TzoVGlnwqbzjA
mMdbqNlfic43LM/FX3RpN5M5Af8cFtPjeaCWHlH8KicYtLt3xwfOINWc6B/V
rVbgtJtl/6QHJ8j4PMy/wzSDfP92u7XuqCVoj/tpamhwwp1kebuZm9NIY3K0
x59oC0jj2NAazMUJsZsszDg3TCMHhQnnz+aYQ4O5nV7mOAekvKh9Fqo9jbCb
5LG5tprBu2uBh5cMcADhK1GkS2YaMSusrFnBZQb80Qf4Hg1xgHCk+cCEwjSS
oMCeXrrEFLId+WWs5zjgxpMDbussp5EX9e0+eYEmICfvGbiFxAmPmJZefug7
jch5PD2YUGgMujsMCYO069zyVO3tndvTSJfusPrqeSNY+dCuQRHhhPjBCwH2
L6cRBZZjm3NsjOh8w9/f8c+vMX5j2JLr/39O/ei2aNKYFBtI+0Wk/AgfRcp3
8v/MHbSEAUmvKp9KVjA5S9QW+D2CnLyXML+LyRKmlm5SNo1ihYqknlGNkBFk
+Sn5U1yytD5R/yz7852sYLhUsVwGGUGWubSZBiw3h0jB3rKzG1jhe/6XqO0y
I8iN259MyvabwVHHwuYyJ1ZQW9GT0SIygtRvndjdfs8USC6a+alutDiJMSQT
Ck1/Bk0+3mICM2u+yvHsofEGuLPSegTROFs4NS5mAuNvhN89i2CFAatT2g+P
jyBvP0s8O+lpDHpTn5CT+aygvG98j0HtCCJ+USSz5pERsNWxTvgOs8LVEIvV
tRajSOkMf3wekxGdP5ifp0+I5vHoEujOnxj/9zxAz7HzJ55j5088x86feI6d
P/EcO3/iOXb+xHPs/Inn2PkTz7HzJ55j5088x86feI73E+NY/cRz7PyJ59j5
E8+x8yeeY+dPPMfOn4uvozaD9dJksC7qDPxXY+CzCgM/lRn4pgjJ//c+JM4f
CgPfKNj7tIB/nzYFFwd7b3ZxP+WBu51gOHqHGVS2kpfW+1Ag7+VYuPR6ebo4
2Pu0i/ssC+IRoaphacywg+J1yTqAAjd1+qdn3WXp4mC/b13cfzKo7l2boJXP
DL9mzC6eOEWB5mdQfE+ETOcP9v7t4usiAQeoZT3bSpihf1m22OsLFMi4YxN0
/7M4XRzs97OLr5coOL3fWfmUygxqzZfYZ65Q4OiTYvOJdBEG60VisF4kICeg
rfUvmGG3W5XEbCwFXvxwttwcSqKLg/0+d3Gf+eGkW/KvOlocQ9HTdlO0OJIj
pyjOT/gY+MPJwB9OiBATr5KnfS/ZuURbJdr3cuknlzXv5qBbL+y938W/FxM8
fV/61vQZMyhCyKtl5yhwaaTiEacBE4PrmUQWv55JJKb9FtuydGZw6NyXtP4g
BQzjukP5DCaQxeP8ZhDn7/vDgH9/ePE6IGe8eP1f4AzeNwb8+8Yqgjl9icFM
QJI9E2zcKAcXPTu5CkzkYYxa1vrmJhO4E55M+k/KgbaX/46bYzLgYhZJDHrM
BMFlx1kySPLg5O1i5ZQsBYKdKqy5hUyQc7FM9qu8PIg9ikoJ2CEO7/aQe1hR
Jrhe0QaH1eVBDplbmmckAq2ys057ypjAo8qpvUBLHr7EBJwV5SZB1/Ui5jia
/qzpMS4zDXnY8Hhgu3EdL3zJ8lWveUrTW938kCQnD5u71u4wu8EOYluzA7em
MMHP3VMvCtnlaefy+DXip4gg6jyqUXWcCV7IfqraVicHD87lhHQtG0f+yFgI
SswQIXiXbuKcshwoJ11w9Wn9hSzu24KfDN43Bvz7xqqXI4Vv7SQC74zF2L0m
GVjJte/A8l45uNJ2I/ZrFBHm035Fn9ORhSgmu6zLO2UgiPSHryWRCOs35zUc
3SILhvVcilVyUuB9zjWsI4MIlQ2DzsgpWeChPi4c7xKDxk18a0JyibDXP0rX
OEYWNoxemmAqEoZLl54rcOQTQTdji49ynCxsXPI+bGWMIAjf4jS9lE2E5gur
z6dFykILr2H55k4eUHmz+1j4fSIsHxJC7HbJgnL2zWThUjZI8D3uxnOeCDr2
aq+WKcgCd23WnewyAjxNvd+zyokIZVzJa/puyED4vp4NJavHEJJ0ukbXHAEs
DF+ykV5Lw7HU8e9D1d3I4r4t+ImfD3wUelItqkMAXsOA6w7NUjB68DVfv/bC
fQQ/N1jyKfL5HW8CzJb4+rxbSwamt58GK8Pl4BSTyBWLYwRQ3q2gXHeODEfE
3Ifs30qDmU3nNb9IArBlbx4cyCbDa54uUuZ1SZAI2XZVLo4A145Lr+Z6Qwau
lEj7/O1icGXwt37QbQIUTLid3vCZDP3SaRG1ZsIQ1T+7ij2BAE4OXntTvpDh
hMmXwV3CgnDlVmhOHy3OV0+Trsk6MoicWi+2rpcbCjMTOZQjCHByyyHxb4/J
4Op/LaTtJSsYvJSTLjlIALuw935Zx8mQtkl2TDN4HnEJ6wm75kmAXSec3BOt
ySCZFK4+KD3y10+ux3ZX//O7fnx9wM9PFueKfzl+frI4X9Dj5yeL8wU9fg5w
alG+oGfwPjbg38fevbXbdu1FZvBZ3SFT1MoC7iGu7GOKBvC09JrH5WRmyHs+
4is5zwIZJferf4I+yDSUX58rYIaeitrsJVKscD3f4/Frbz04PLte9mgFM/B+
Gq7/qsMKS5WHRihndWHwiW+h/Wtm6NukVN5lwQoubSS7Em8dUDnW9Diujhku
Ox9r2oWwwvOGdcYnSrVARse73+sVMxCYG8IDzVmBTX+YVKOkCduVtQuCafe7
3vc+g82arFCm2Op96po68Jid/Ho5lxn0a34tnRdhhcxifTc2PjU4niT9vTqB
GVrHTE1rRlggVo71wJJoFfCNv32zNZgZstIv6XtUsIDSU0/iNO08hvcHO48t
7ucCx/etGP+zjHn4//+97eJ6Q2ChNKyIf0bbd0nnjf07CHDxc4hdP1UfUpcY
h5V2ESBO6PPpfhkiPKj3MdRu0wMt5U1etkQiuK1ADC0RWt2KEtBUZNKDNgFf
SgMfEUYr7t0Wp9WVH461PmQNXXhoMC9yRZgI0QGx6fluRHB/dwqdydaGI2k7
SfVCRJiuzhvKdyVCwoz//EchLeA+fnPjCA8RrK+KfEiyJ8LScz9MvE5qwD6z
Exvn5glwY7QtOcyKFv9tRq7LgBocuOwbwttLAJY6Hu7rikSYEbTMvbRLFVYW
p46/eUeAh80FWh9ZiMDNzP3l929lUG7k6I/PIQDRUGvMo5kAj4L2xmw7qkTn
G+b//97HBvz72JgezyOSDgeaJzDBFyuOXevF+pGUA92tm7ysICEmb/YhhQks
Ytf9en67F/E+1/Jax98SSLs8bIQqiPA0QKTbJaQH0fH1XO0YbgGUE3Iimy8Q
QexM9TP+j38Q5r1HNvY9NAevVZ88z/oRIb9IbnZz0B+kt2e33dImM/CdueG8
1psIy35tds9y+YPklajU+jObgQfrs7Z0Gn94TsTw9YY/SPG8xudHpqZgoVoT
+ocW5/f9arWo4D+IX83vYP6DJlAT/yvGL4LmV9j5X/YNf5DVxiucn+Yaw4vN
mzkvFhOhdWXfz5/be5BV0r/VWGeNIMn9q6U0LxPUdk5wGXv0IqKau9cprjeC
F8rIGuudTPBLnu3kmYA+JLZt/drRZ4YMfFvgPV5LAv//3+Ge67B/InB5BtHv
YZn2kfqOKFlJSul8sASW+KHh92bTyA7VzUI7L3QgW5/LrnvXaQH7O06lGt6Y
QmpMAmbvvGtHijbsvktktwBBFs0rQiumkOeGnoTVge3IB0/WtB5dc3Cy5KdM
kaeQ8qQdRCXbdmTPzR1qnptpvq0uU1UUnEJi/ky0qyPtCIehvdjkVVOoUOco
/ELTK+gxNbHS9LltgwlHXpnAl7BLRvbWU0jcJceY9UfakczHenIH2E1gBdyc
zIqZQjy7tV8dqmtH7u87bFezxhjELwc3OutNI04dy+9mnupAFMdabtfFGcHn
m0aOcVEzyAchdXSn+HekSjiC33WC3h+szzU7cuX5k7KFeT3m24/ViqzBAdJ0
84SPxALfb2ekGHJ8HHx8bM6A12NcojE98+JFafjgaysfdowCuhLst85oWdHF
weYS+DgY9/eLdhDPkIbi2R3cZ+9SYBmThaHGBku6ONgcAx/n7++Fd/bFHy2S
hoMlrxwOP6FAjn9L7J5QC7o42NwDHwfjxcIFSZFl0uBoOtttW0QBgV4Vh8JM
c7o42JwEHwfjqUqDSvYvpUG1d5DEhFJgXYua4NBXM7o42FwFHwfjAdE+n3Sq
pKHhY94bzzIK9G4PsFUToo+DzWHwcTCesHGZZTItzqbTGw710eLIlhbaDa0y
pYuDzW3wcTBePHBYIL5SGtaTyDKJVAokv8pksT1pQhcHm/Pg42D80KGP3h7l
0kC8d1YhpoQCDs2hz7MLjOniYHMhfByM83DmJ1YUS4M5k8MOkVwKrZ5umAsb
MqKLg82R8HEw3lJRROZ5JA3zo6RNhbcooOhkc3KVEX0cbD/i42Acvx8x3rzo
vlvg/+5TQ+gIXPUwTYhM1w9ifxfPfVcsVcw+Q4aBwDPb1hnLw8kn0U8tJKyg
7/Xypx2pZHCI/Ny43Vse9A7FFNrrWkL4ZLnPZAEZ1FfFpL8KkIdnfKY6o+st
gKXSqXIaJUPJ24CojGB5WD78jPP1SXNQuoMs53xJBv75+o6qMHmgjkPaxGMz
8B6xKF5VRYZEpu3nT4bT+sQ7fE7L201B0WZD2kwlGVYemEYVaHzPMsNvjiKm
sMuMxTynnAzrP9/XVDstD6drL03usDOBbRJxFe+KybCjmz3uYaA81AvrXSiO
MIbTidKoezoZXL5mDldvkwee+2qfA94YQSdnpedbWp8gfKd8n4C5PLyP7I21
lTeCZ16J041GZKgdvcjr1CwHjzxtXPOTFnz+17cFrn3P4bsM54KfZs4Klu+u
SMFsQOhLSXE5WJmXeGfDd0uYT5XadJrWNxOub82o1JIDybhDRVemLMAkkl3I
JEcKttddv1JgJQdPWZuys2QswOU9raQVS4H0dJXPyCo5YOZl1tRaYw47X99f
8weVAquWNVWP7eRgs6RwoHggrQ5s4dEIL5MC95QnM1EOcuB/Ic43O80UOOa5
d7+l6dc+Ia28SNPrPBSJ+dxuAl1Psooki6Qg+lv4tZ8r5YBS6pNAkTKBpB3f
Pk5mSkH5Cd97g2Zy8OlRs0CLuzHox/e8enpbCnyefuwtUpSDpPMSZdR7RrA5
1vndh7NSoL5mOtaMi+ZDhBNb4SS9P1g+hxgv5xdaLU53f8H4v3lOz7H7CJ5j
9wU8x+o8nmN1G8+xOoznWF3Fc6xO4jlW9/Acq2N4jtUlPMfqDJ7j/cTXh8V9
XuD4OrA4N4SuO9dKGu5J0s1DMD3df9fgsc3PP8ckoXW3l3pgHq2eqTgO2xyy
guQDE+stL0hCdAQzwtMqDeRy28OBtyzh1N3zunm3JUFlFemZIJMMbCK/8930
3AKkz1uGqT2ShL63rV9GpWVAfk790/vv5jC1zWiF4BNJOOXkvDFLRwZcFN+c
VuY3B5+WmDTZfEmY3uJ0rcZUBj6ms88XLjEDtaiuuFQaVwpdcWTCTAbs0pJu
WwWYQueoRW9kjiQEaJo8ntOXAbjSx17+yARKSzoDtqVLgvzVTftGKTKQ5mJn
fo+2XjVChss0EiWheZOieyOnDPgJFh0bUjKGbJ439XdjJSGng0OcaUAa7rlL
Rfb7GtH5hl+vf30zhMqenTrNZAm6OQmmx/ML3uGNR7ZJwOXjvE6ZrlJwf7v/
nS/mtH1hlPPLJkQC1n0tuS1Aq0MTX+VMpN0toZhJLC/xsgQ0s27cIJUnBV0a
sZ4CwRagd77ke8BNCWi78OeR9yspiNTa0DiWbA4PhjqauZMkgCeKmzn2kxTs
ieqO8Gkwg+PrG3dN35eAOZ0ep19fpcCjY6P8FNEM/E53qh6m8X2XqoiVbVLg
m4UsvW1sCq3NL1r33ZUAspv1Q/IHKUhpce2032cCdUHvxRuuS0BXCB+h4KUU
SDpN/ZDOMIb0iei8HVESYO1SsUnnsRS0+ITqtfUYwY0YU8FvgRJQV7S2dX2Y
FNSP7zy1ysAImt0qZ3erSsC5KVlt2WZJiKl9dCYv1ZCBbwv8yrc7v5jYJP76
KUOt9NuwSRw2Ggb2HNeTgJAjl4/JjlvC8/q+o2P+4jA0J9R410UCtny5ucdH
2BJ0gp9JD50QB+v2bZ6O+yXgBO8qWQkzC2hPNrKsOCMOct19EcdP067X4vX2
Q1vMIV5m19HRCHGo39z9U/uiBEwInXcRizYD6flvdR8viEN236kvglckIL/k
osC7MlNY9rQj5mqkOJRs9GQ6fEkCbNaey48eN4G86ZMfzcLFYe/F8cigsxJw
X8D89DI9E5CzvHys9iQtTv5EtMYRCZBYFralz98YStNj3qcfFIc6n3xxW28J
ENnhu/HQEyPYEB3tqO0jDlvMeLzdzSTg4arqtkyCEZ0/WN4q7Wl8as0tQle3
Mf5v/aHnWN3Gc6xu4zlWt/Ecq9t4jtVtPMfqNp5jdRvPsbqN51jdxnOsbuM5
VrfxHPPzpV4c77P3Cxybw+D1GL/05vplay0RSDz+y370JwWkU6Td1202YLAu
hlCBi489x8THx/iGx+cu/lIVAddJNPP1VwpQXQ3THNL16a4Te+6Jj4PxZwdC
z/EpiMC7mK05hh8o4NFDmbr8W4/uerDnpPg4GL89Ov+kRE4EPOV1DXY0UkBb
Z9j5DIU+DvZcFR8H45so3Mf1aHHismI5whoo8GFb4rLAjbp0cbDnsPg4CzzF
ey8tDutGM/1OWpxCbhYxAVkdujj/96nNYF9oQ3JdeTNZXgQuegy/YmmigFkG
5Zx8pBZdHOw57+L7RRP845fGrKSIAGlbzaeedxRYZfR0ld2IBl0c7Lnw4vtI
HZLKTUZAUQQ4ub7raTRT4GWU+KrVm9Tp4mDPkRffX2qQtKXsQKcKLT8VyriV
2igQUvLutFKFKl0c7Lnz4vtOBayjWZLrtEXgmNhD/5O/KTDvVJNbpKJCFwd7
Tr34flQG/iDCx48mItC5/MNL9wkKPN/UKdgXrUSXz9gcb/F9usDjrZ2vr8qi
MNRjnxjHn6+UF+ULdRV/jlJelC/o8eeBxbkhbJ/aoXAvWIzueQGmx3PpYur4
fjMxEDx8PODpb1EguZIGe49ZwQWlw3yHVonBQG/+PQlWMaBoqvBSHlgCq8ts
4h4XMcj3i35+WE4M/Jbbfv7Pv/9hZlPLyjfeYqD9nsXrg6EYfA3m2Vg6aA5O
Yfwdrb5ikN1fkZ6/TAwyDAinDpPNAa2mrH6/Www2Nmw7fG6tGLgKWdu72pgB
UeWg6sAeMZgVWb08z1YMglWCP1mdNIUEM4W7njT9n2LSTPwaMWiwmhPizjeB
XfHb5NbR4seYzZekLhWDNKnb++70G4N6pKNZ4GYxuEm8aqZsLAY+V2vUT2oZ
g0qSnoPwJjHY63HbP1hHDPzZkhxGdhvR+YbVbeVFfTOE30fqf0eiInTPWTCf
8VzawScmTlgUbmfb3lUuEQZJ5bkGipUVtJiyZW9VFgXnkBw9qy/CsPrJZsM4
T0u4qiMcfFJPFN6tzHzRNygMY07PXVxCLMBtbcrcDzNRGNa+KpNAFIHlHLaO
I6nmYPVBnu0yIgqJyWZLDHhEQDVPOoXYZAZl2u9tby0ThbblV/N+CopAZVCR
uDqzGTQoKj9dYy0KKV9qubWERODQpvfBiIkpZFEepn1YKgry1RwfjwiIwHD6
ZgcV2vktKGbMx3+JKAQXlF8U4xKB5nNxVu/TjOFDro7puKkoJE9UTLTPC4Nd
rxNxd7cRjDhPvzbSEoVKX0rL4G9h6GsV3Xla1wimb/k8+dAmAiIJe8e/ugnD
4J6CU3PJhgx8W+CFwWHbHFpJf/30tlZylhwShus51cNdmSSo229o8HXAEgqm
szSqJoShWmZKK72IBCxFZykItyXsPbuHOkPzS1242a27lgQWw2wsm3UsoOfa
w3BOTppfaldFvT+SIOogseiBmzlUTUSeucYrAjszxL/v+kqLv1vrm2q4GSwz
XIbO84tAXukj4ezvJDjdyy+Y+NQUNOPr3qTR/Grjnexu+0GC84Q3pX09JrQ+
/EvLG5reQ8/rhStNf6bwDwevsgnotJkX6NHibxx8teZZGwmCnYuq1m41hgvH
85qc2EVAqregyeUdCXh+mB16mmoETc08TkVTwuDctVNNqpQEHa/P/OmYovcH
y9ulh9ZQT70X/ntO+Pvch69wtXyYMFxhsn30qUkebmqW9TSoG8D2NJ8gNT9h
WPpdjLglSx56fZEVuof04fZET1jrdmE4s1Yt1jdFHtZKV6jEZOvBKkslk53b
hOHxH0Re6r482Nm9Ku/s0gVy5qjoAxpnMlW7cZLGfz4Ov3ZYVhe+BOfxFtLi
yDx2PqpNi9NIfPD/6jrzsJq69/83d5pPZ+g0q2ie57l9k8yEZHokoUKliKQR
RYlUKBWikqIQRSVqJUNongyFJimNVNIgv/P8vs/Wxz7lH9f1uu5rnXXee+17
vd+dfdYp+3ZDC5IUs+x8XGnwgF2kcDBdHko6G0Y8qJpQPTF0TWMPDdQS73Na
ZMlDftDjJ/b+6jDJ5rG6eC8Ndmp7v/DLkQfHjaEKD1pUQX9wl83JQzQQMAil
uZfIwyKfM1J7QAUy7krvdzrNvK94x2xi25jjH4tzuHpGiUUfvM8vmfNj8cYy
6p++jevmtvSfMzVpVNDQWSUs4y8H2TqGSZW8+uBpIJyhkUyF7G1LqvgOyMH+
7Ry/JkEPBuxy6egqFdJW9gbs9JaD1ra6ZKXDuvC5l9x2glnfu36B4TlmvYbO
FmXBbB1QJm0140n99/uHUrQmHzkY2lJbi73WhsXnxOlzmK/rUMItJOQnB2db
LiVvN9CCTi8em5/pVCiNCbu8M0gO7GR+eQ1f1ICn9msiyFlU2PjmTHZqqBxs
u+TaVsmuDuP9Z0ie96jw+vyVIIczzPlfmPKq3KkKEppC7hOPqEBvuDMenCQH
NitWnqE/UYbmB9zVByqo4LO5QvZpnhzocH6fukpXYtEH1+3gZc6vglmUP/sX
rpt8TSJVt5wCPCE/KzU9ZGGJjgPpRIMesP/OrVlYRwGjHcdONhyVhavDxS8j
+fVgsR975/cGCuy9mP79xklZOCApyZc6Xxe8oosi17ylANKYsLoQzRzng+Kk
+SEdaF8ZvL/rPQUSb33oU42XBbO8QDr7Bm3Y9HvDwQ8fKJAyHDS35qosSJm/
OfDzsSb4Nr8/5tlKgePv1uXYZMqCxil2a855GlARYC058pkCH7LtLU/ky0LE
6Dojm5NqcBuydY/1UKDYdPXmqjJZCNDJbWnrU4Gz35X0uAcp0LcqdpNIoyxk
zRnlvLZOGXqWPjs70kkBexhe6VMoC+qdF+OyKhVZ9MF1e3SgK3X/eyrL5+85
Us94BpjrBEv4UZ22jwyrPtw+a7LXEjbyZEa/vUOF/d1qdSnhZODZ/NotIcYC
9C1f9eg+pkL/7pZWlESGzjuoryfXHCI/dnPKPadCm82K0fO3yMBvfytdpNkM
4voEzr18TQU/ZL//9wMyWCVK6ojxmkHWYqt/lldR4VV4ckHDIzLU/3Q+xGlk
CieoDfxuNVSI6uNUdERkuMBzPaVylwlE6Yb9vFFLBaPfGfv2PyFDnGprh8MV
Y9jhkHhnQR0VHB3DPnuVkmGybFND1Dsj0C4987abWb99yv5jM7M+wE1kjw3D
CIIrF6gMVVOhffysz4ViMij1h3Bt3GDIog/e37amKtCWzRViOW8W53/7NFaO
51Mix/MpkeP5lMjxfErkeD4lcjyfEjmeT4kcz6dEjudTIsfzKZHj+ZTIiXri
HL9/iRzPj0SO50Eix/MdkeN5jcjx/DXzddSa5XppzHJd1GbRX3UWnZVn0VNp
Ft3mzTLPedBRXijnLyGEyrV66g9tVvjD8XpiXjh6qcDRq0sQ6S3TYxsrkmOp
J+aFjNXUiqnXAmh72/wdO4tlWeqJeWFmPl1PzAUz8+l6or+dmU/XE/vbf98/
QsTvZ+H1hYsak/73fICZxzGA+nwJwbPW/EjV2Q67spMMEhP79BNG9eD2wYY5
I96C6FXQ5ztL8ijwKLYtwcJQH9rKL3aUO/Gj5U25FwNCyGC68BOdh64Hyg8X
Fj7zEkShmz+yPcuhwPZ2v4QlTnpw6uSEzJFgfhRoUMH1PZkMGluW5tUZ6YJo
Wu3jrjBB5N4gOd++ggKaWcJ0r+O6EGfvtLH4PD86rLRXpSaPzPSB5roOW3Wg
J40j890lQZTutnBrBNMfplMEHdKydOCwpFvYYAo/0k753uXznAzVm39M3Kdr
Q27NFdeFWYJosVWedOYIc5/5XtbRf0cbcnbGbFzD1K0z6pyhHFOHyZfcnRmH
NEFna0vymQeCKC0lp1qWnQqfxrQq9wtrwVtfg4Uht/mRe1pLwN5aMkQEHh2L
aVMHIY/n3isfCaI5fbtCj/NSwXKhzN4nBzRg5Zz4aw+y+NH2qD1vY6rJ8Chr
fc7uDWqw3WU9qfGxIFq9/v4ccz4qhNKd1OLa1SAnSPxKbRo/Ou7lmbrvJRnI
Fl4uym9V4EKaoJBBoSDasvbe5+U8TD9y7LVn1RZVCAyztTNM5EcF3yii3o/J
oMr+bY2kqzLcuGL/42WOIOI4cukB3xQFQpav/jzazuRWPvkQzY9qPxRZaeeQ
YS5vTRFwKEHOOf4Qw+uCSOXZebaBfgo8SHV9qROkxLKu8PuU9ILx6FqaIHom
VSC3ill/4x/1boaO4p91Ncv32hDxe20z1xvAJefaKBseEnr1vGfk1x5BoO4z
y43L0IOILdWT0VYklFH43mlHvSCs1esr+VWsC6YaTR4SW0hojfTBCLKgENRb
kwLa23RgINgztnkvCb1Q/f3wrLYQ7Cytu2MhqAOl9atcXPxISCaq6biPjRBM
nuFdufygFpSWtLd+CCYhnTlBc9/ZCkFwfukPhyYNeAs3Oy8w+a3Mi3PXMTl/
UcDST8vUIWJhw/jBwyRUzy7Ie9taCG4LB+xpf6oKpOiSOC4PEsr2uoXRNIRg
pP9qh9tyFRhhSLgkbyShsTNtHce4hUBqzhufrFYlEGlJnxpUJyHzY2V7dt8V
hGc5mQa6UYosuhH7JPE5wJm5Af49I5ZzMvH6E0VFnf/7ffbAmJ6W6ikSqrLS
VwqwnMAidiX2YIqWsE1GdmvKCkHE8B9J6F3DDlfFGMMThy1ByLDO7FkjCbWv
LAlP6h7Hri5HC2UcLGBsX+R9ho4gki+RVBfUYYf17q5N5DsWcGd8gKskj4QW
qHCu4Lkxjl2QW/mJGmcOoc27gvdKC6L9q04KvRJnB9kNBmvN2s3hivB9ZZ5U
EhLOqVnHGzSOZd2ne/FXmoG8iEe8vaAg4txnZP2amx0eBZVvTxQ3h0WbumSH
4kmI9PulnvbucWyxrKCUH5cZMF62PJXiEERfjB5VFI+xgROpOnVspRn8oHc3
vkggIaFPo78794xjb71L/Q1MTUFO4b3lmykBZF70YdeXETZo379yx/VjptDI
OK+/9jpzndg6RjaFjmNqVx6qS7mbwDIf/whZTkF01N5+1+A4G0Axn8jyBybA
1xFGckIklLpI5Pzww3Es/lJbj/BlY1CWbl9fKCKI/pHUuF3Oxw6+hYNKZV3G
YKb0ODX1Kwntq7YZUqVOYD90fR5zlxvBRnHDAjEl5n03nn7eYB472Pl4PnWS
NIYbwda+Ukp8yEqm3HtJ9AS2aUGW+doxQ/hg97RWf4kgcvuU9Dh9BTuoflEN
urTCCGgSu94c3MGHags2F8RSJrF+q8pUaRVDqG8tFv7noCC6vqJYJfAYO1jk
F5QnhRqyrB/c5+jE7/Y3ThZEqwyPGkrmsYNwPP+7ynIDIMmEOB2oFGXxkzj/
e39n5bifJHLcTxI57ieJHPeTRI77SSLH/SSR436SyHE/SeS4nyRy3E8SOe4n
iRzXmcjx/knkuJ8kctxPEjnuJ4kc95NEjvvJma+j1izXS2OW66I2i/6qs+is
PIueSrPoNm+Wec6bZX1Oc6KfnJlP1xP95Mx8up7oJyUG3wdobBBFEgukGAc3
SEICv8r6plPT1zf4adqrf89hI153LcLfqw1/3C4flxdF7CRKr/5LCThcsobi
y6cPy/ceGGL7wRzHY33Pbn5p4Kv85nLCRB8+rlldnccQRfRtjQYjtyRAsMMn
eucyPcjIMHvj8FMUme6xH/lNloZjuvHr24L14N13201HJUWR7XIvgc33JeCJ
+9FyvQBdsNuQvvUbsz7adnzlRYo0cNy5cc05Xxe4XngrKc4RRf0hFZmZJRIg
YjHf5UCmDuywbszXmxBFGRZP4j+LS8P1S3cHY3t0QKspyCNwrihKjlCuMq6Q
gBUttLs372uDyoafe6SnRNFdeftYHnlpOJ6cS+KX0YHTp4UalZVFkVdggty/
5wcefYsaxulasOlmvbsoOwV9C03yX6IqDRXmHx1ELmnBFyjmFVQTRVPD61Ju
fpSA7fcZ8ZivBrjf33K1kZOC9mqqy/LoSoNkwLnr/b80oMvmwAo+DVFE07ul
MNouATrZGYsvNauBLL2FtJqHgs5b9Y4PGkuDl1aTd72jOuh+L54qZ9abpN2J
YuuUAF+Kd1nLAlVw45hI1iBR0AnujWQlS2m442TmcaNEFe4kvezSZ9Yf2hNx
Y1eHBOyN7whacUMZLF+8U+jgpaCQ72T4x0IaVmjd9buroAKCRXwCrjqiqGeB
4KnEAQmIeO1EqeNXAn7amFcZUx/DRfvrOxWk4Tl7+JY8PyX8vD5EPK+PuK6I
fJZz+RDxXL6Z6w0gnrSRkj+HjA4/7lPo1WLAJtdyfY8+PWh4PFn8XY2MKHd2
LRBazoCWkvy+55R/z4P1rpQ2IKNN3EuyyNsZ4MM98MbaQhdMQvw/85qTkULU
h2ZfbwZ4T64Z3b5LB6oi3n5YB2Qkkqg+p/4IA070CcgYaGpDSDvtt9VCMuLk
eCySG8GAiz8C825FaoKwSbnr+0VklG7R82NJDANenju6afN3dfB3LtqjsYSM
POK47yadZ0CYe9mN6/+oQWOl+a0DTL778AIL+1gGvM6MDvV5pQK/3gxOeC0l
I+snm/JqLzCAJJK3L2o+sy+JcX7VXk1G/Tv38LZlMGDowVq/0xWKLLoRdZ7l
nD1EPGcPryees2fqWpwlZCuM9nN3D+TW0yCfs6L1eLYerD6QTM30EUaZi07F
O3PSIWz7TrFzVbqgUqjAveu0MHqXx7FKVoYO+vauymU/dKC8rNvz00VhtCay
x9NHmw6+zs9vvJfXAZcJr8TB68xxgnMPXLKgQ6fdOTn9q1pgtP/Fbovbwijm
eLPyMhs6PGgyePCaQxOcl9Y30u8Jo1iVl7KfltKhzO17aJObOnxUflbzkMkL
SvoiU5fRoaFfav75ZuZ9ERXi5JgtjBwzrys2LKbD2UL5gbcbVMDZ7EbUhgxh
5IblWi+2osNCzz3J9zqUoK8pL+ljoDB6K7B2oEuADtJvBgN3nFVk0Y2oMzEv
z8z/nLv1x2///v//pn3Irczfgf+e04XzlLRXg4uZ/SThFId+3nw++NHgYtZv
awkv7O+mzw2koOFsDxU1UyFQkhEx6j5pCSKkxcfbmf12cpl+Y4kgH/gaBB57
dNQCngkrT5kdpqD4BuED3JpC0GzZH7Ch3AJWd2hjyRRR9LV27G36LxK8NVgR
Rsoxh3my3YlbD1DQeuO7qgMyQrD8EFllIZsFNMxPskwVEUXWdEUryggJhh5+
WeT72Qzq9qc5JuynoITcRPd94kIgl1zzUEPPHKpscsXKhERRr6xdffEACVZ5
z+XMFTeDvQOhbB/2UdCzfa12qmJCEPRwVerpnWaQGJUW+15QFNXxFQkw+kjA
Kc/+xG6FKbRvVEjawKzvbB9+eYomBKt2ry/Iv2AKThMFjdeZ9ftlLjw+1kuC
sfnkmvFgEwhTW3U/w4uC/DJiz3lQhMAtxOdO+GsTcCG9N3jKrNerutDVyKy/
X3jC3CbHGEbrFSo3eFIQl5Dn7k3CQsDg5P6R/tsYlOR+aexj1k9i8d+7ekgQ
994r+CLTd+3tdelb505B+vWxa7mZOUtzqGPlQX1jaDiiE44JiCKDxZXzArtI
IFBi6v+WbgS1mvWTZ3dSkINbrgJXnyC0SGh+03E2gkvhux4upomirmcPI3dy
8EHpOA8Pt7UhWCXxbTi0nIKQ1DrZ+CuCsMZxU3RrpCHL+iH6N3z94Py/c9tY
cpzs+9MXdpuJoFupv6zRBBesGggcSOe1hJ2PQmXZLUVQvpGZtvJvLnCRO7vX
Tt8C3gX5PLmkL4IM3XbcqP/OBVGyn+h7nc0h0l3IL1hdBO3tuYfpdXGBDv/a
eu0EM+gXOjnKqSyCSu8Xn7Zr44JLjhVvF1SYgkb35RfZSiLoYFFwWmcrFxiK
75xHYzeFzHH+nSlqIoiRTLlJ/sIF4z/8qtcamMAO/uFzv/VE0M8PB2N4mK8b
lPe+u9XFGMJSb3H8BBE0eHyg4R8ubvho+/CBeYIRTLkrCxVtFkEhfe+rrJW4
Qe9SwBHbSkNo7rJIdjotgjbG1T//5MoN70zYXO5SDFn0wXXb3jWcby1AZ8kX
OP/b77FyPF8QOZ4viBzPF0SO5wsix/MFkeP5gsjxfEHkeL4gcjxfEDmeL4gc
zxdETtQT5/i+I8bh2SCYRUPumb7JxnQFKLwlltF2Vv9P/VV/rYR/n+vA62e+
Lqzj4znlg5Z5VrgfDan/jH+r9Vwetp6S1VOT0ofXj2V2V2rQ0Yg8/weDTgVI
P4B5TS3VZxkHzzVsr1N59u6ioUcqpo2+N+RBbZ3iGe3delBXK8N7WomO+p0u
mPc3KYDsdYdkmRQ9lnHwHCQZ99X2w3YaSv6mEXrzqjyYhTy4GpfG3DfLz31Z
K09Hi7+nuTrUKUDYvFWC29t1WcbBc9OdqSDDpU40dMH9bYR6kjw47NW+LfhB
Bz6+0d6jN4eOXqb2iLZWKcCnrqV1KdKs4+A5q13MNFqfOQ73qRVr+ZjjmHT3
W4VTdKDyyNDcWFk6EgaBHZ8qFWDBC/JJYzudWda/FjjdLN3ZyBxn2DOwlP+K
PPg9fedyKVILBCmN1FTmOAskD5v8YI5TJGp03kVUe5b7QgNW3SsR/8HUZ8hu
w4Mapj6FjVIvW4c0YHXBuSkB5vs61mQtm8J8XxWRYkd7/TRnuV/UgIOmc/36
ThqC1JLPganysBiLVqlcrw7/aH75UMwcp2Fl7vuyagWIf2HJdqdNfZb7SBVs
joY1OLvSUOsDxtXGdHkYqfRWMMpRhZqS0xP1cnQ0Jl3GHlWrALlfD+h/W6Q2
y/2lDPUffeqb3GkobzQ8JiBbHup02JbdYVcBHo3WB3YKdETxGXXmaFCAkhY9
q8ZklVnuOyV4mSR5SCKQhpwPVQQveCUPKxz77dOMlEBLQLN6AXMcpang7M56
BQg/lmYV2qw0y/04D/88/c995PEfJ9537gT+93Wf5sQ8+9/nzoj4ufzM9QYg
/pvj+Y0UKlrys8NqlY8cpH1ackt5Sg8Wh63YE3qZiiLum2T47pWDxex15Aw9
PXimP5HoeImKaIpayoXuctDvw5cbvksXRJbE9x1h8sBd3O/6mLx5l3Va5mUd
cNpiO+HBHOdTu8/x9cxxJiovLDdI1QbTmHhGexIVlSlcXn/GSw4Onj7a+I6k
BVkRmaXVV6nIZU9kW6A3c/4NX/2F3TXAK9hB4FAqFfVso347cUgOutLW+ue8
VoNzJpJF99OpaN4qac3fgXJgU3f867iiKrjesRhVzqaiICup520RcjBvnve6
TH9l8GRcL5YopaJ+e5Nnn9LlYHei1Z0dLYosuhH1J/4d4L/PqRHxc/yZ6w3A
m0so78JLZn0f29sEZ1n4Qr/WePmpHmhIcPUwKinIOl9poGC/LIyuPTmndEQX
2jdYxmyroqCvUgF9vj6yIOK3I9xOTRcUp3Z+76umIOlbY9Vs/rIwaO8Q+MJB
BygdRje7aynI3Xa17esjspB86cj8tXLa0P3+xVGVBgpac2/lyc1hstA4/xT5
SIgmDL8hW6a+oaC1MV+SEs7IQsxZ+xahz+qwJHNflt97CvKMeV/dFScLOSOG
J88vVAO+qgsZ+R+Y44z1uDlflQVXiX234lJU4Gv4VPLVTxTUtMaObzxNFiq3
1ye6cCnDodZ3C9bWM33jG8sLXaGysOSR++HxQEUW3Yg6E/9+MjOf3neIeXZm
Pl1PzGUzcwP883SWfIHXb1t63OV/n7N6ECJ1RvAJFQlRjA9WXSfDh89ir03n
WMLvYx8b8r7SkObKBRI9yRS45u8gFn/AEr5TfO3eFlPRYuvg20qpZBgJCE8m
21pAEFe0ve4wDZUauU3F3aOAX8wRCEi2gHn6Tz5wl1ARW+M/NlJpZFh22e/h
9mBzOBi5INN+koasTmpeHEQU4LsucPxphTn0HOUb8WXO51Sai39IOhmGs/rt
wrPNwM1MPiKHnY6wDe9pu19R4HTU8uGrk2ZQfqJAfQPzvuB7djVqOIMM4yF8
73raTCGBjxo+zEVHYh7pVirVFOhd9Y9ntqYZqNRU3FzHrJcW5nYdZNabxdyL
OiVmCu++tNM9eOgo+sThcyW1FLBafv/rzW2mYJvp/kmHOZ/cc91PBZjzYdPd
Imm+3ASytJqDLJj13D+cH7gx6wUXdrzYHmsCucF7lXcz9Um7t0x5bwpzPnZ+
tvePGEMzW1nNFuZ8irKuWEhXUWCL8Jy8otfGIHZ7eH9DARXppt9+rZlAhkI9
70thD4zg1D3T4WtsdETXHdp+qowCKQohZyo4jUF7s8ppsztUVBTEt+1yGBms
St1sf/UYAj3QvWt0nIaeWp17GlZEgZ/2m7+qWxlBpUT0xuPMvrT/djNjjScZ
BJbyVCcoGMJ+y88xtBEaon6UMlXOpcBXyZVhNwINWdYP7sdUX6fu3cecT/HU
FS8d5nxiL2t2XHtlAJdeOvM3uw9hRN+L87/7PyvHfS+R476XyHHfS+S47yVy
3PcSOe57iRz3vUSO+14ix30vkeO+l8hx30vkuM5EjvdnIsf9KpHj/pPI/zyH
T+C4PyRy3O/NfB21ZrleGrNcF7VZ9FedRWflWfRUmkW3ebPoozCLDvKzvN85
s7wv6VnmLzHLPMVmmQ9lltcVmWV8vlnG4ZilfgybmXez8P/7X85o5vt3mhN9
2sx8up7oN2bm0/XEfVNnabJ196IpTMdPPavQVwIWVum6Fv1k+m6tng1cHlPY
qUCvdWkpEvAzsHS5xUNmHqofZuMNm8K2Ou/yciyWgHtsoc7qRnIgoJKZNO/m
FKYZsOzdqk4JGJRad/Y0yMDYPX2XyNdTWI/z0x0hApLgG91YiQlLwvLbX2/1
tU9hF10vGj5RkgQN6Tsv+j+KQdvUN/ekwSlMloujfcxAEu62KIY8yqXCL1UV
eaFvU1julQpOH0NJeHtwQd+NKDI8Lwm3XNc5hW18Yb9ov6oknDkb9srkAz94
lEeaJjdOYeHnPDa1MSShIujTsdUJXKDBPgVmzVOY0vOPLvNkJSE7SO+6lc0k
1sWxdcrB7fcffYjX8W/dpvVkOYf5udgKty2Tfzh+X9BTN49E/ZzAfuqL2t7k
Y0CYwvBzrRPysFvZu2SNwCR2si7xZ440Ax4ejT7h0zMHBK3inI1MJ7GY0acG
QcsZsFXrnt/T+9JwgztxqZnTJCbVcP1s+AEGdBj/eGx+TALUOlZdnPSfxGS+
3H8lGc0AczXxeNV1YrB4gNu4NXwSe1dq1+B+mQGmj4P8c9WocLm3csj35CRW
6ypVzJfEgE3BN1MVuMigWwvV145OYuHw0eZ7LAOWtPPuHC3gg51Z6xys/SYx
2i63bXZnGMBreGrX9Y2csDlKeOvUkUlsUjvFfhGzPtHttndC4BhG1IGo59+6
TetJ9F0Pj6z4Lt//8w/H9bzQy964i3sMU60RXnPOgAZbyvQ4qzfJw+Fy9qg4
hzEsa1XEfdpxGrz8lX242GkO2HdMOh1OGcPe245yP35KgwYJOenKudKg0ZEs
r1szhl1tnvNx2SANSlOutb/+Jg7rd9yVqukdw859H1LU5adD6te9tVXP6KC8
3erH0Z9jmO+L667adDroXmtqHLpEgQLBNyZWo2OY5KmSoikqHQJpD85t/SoM
l56MHY/uGcPQ5/ZJTj46CMeqyZXFk4C+RO3QvboxzGONO3vqdxocjdp9PtqG
A4LJK3wE4saw7z7HOvULaPAK1bnkqP/EcB2e/KcDUc+/dZvWk+hLrX1uL2z+
NvyH43ouawqrcBf9gSm5KIWfuiMKgQ2HK3pJ8hBqxr4z89wP7AGHQNkXcQrM
udZMiiyWhV9vflvJtP7ARL7aGt7dSAG3HWcOKZ6SAqPE2KV9IqMY21Sg5o1g
CkRoqsX2bhUHa6uMPQ9URrFcB8UFbucpQKddeRZnSIeYYKfPtjqj2OplS0Ur
EikwlX2kIFqIAjViW471MeuvS5OCE5j1yw2jSz+WC0En6dbNCPIotr+j84HG
EQoUdr6vsgjlhTun/S5oNf3ADN/C3ed2FHDRNY9wXM8Oev5Oruf2/MDqnzau
cx0VBXE9N/17gsxxSYvu6fuOYD0DERmZRqIwVGB/RT2mB5tZt2k9ic81nZWz
o+ke/o6tNs65JsEQhotHkK+byfQ+SDy/y1lk4a1dSkOYieNnaxtOEbC93XSQ
86ocuASvFRaIH8JcSgwdalJEgDNwE22ZpCxImz1uufpxCPtFqrjdykkGpfFV
et+GJOHYvnNtMTzDGH/8c9USOTLwkVN0LpczIKf+pPpd8WFM3nN1e58mGeZS
216wpdFgyCUyJlRiGGu+sqgpTIsM1lN3nBIDRcFoe8CHAL5hTGhV4K5PCmS4
CWd53W8LAqUy3XtXxxB2urvlhgCJDDzlL5wv7OIBRf2S4yapQ9iI+teT9++J
wOWHRakyxmxQG5t3Xtd2CHvC4ygsYyEChV7ikvmJw3/0dGG07S5xFmFZt8S/
e8/Mp/0G8fklv7Beri/6k3847t9eBjuZqRtNYPOfPDtJch/H+rbx62Vq6cNP
PmONlRcmMI1nhtkL68Yx1/RJUqu9HhQZblvC3TaBdZ7kjkyfO4HtGfToyPPT
BSX65bEhZn8OzelcOHfNBHYoaPm1vhQdULrbJtA5ZxLjVp288cFlAjvxYml4
82VtGCzjJo/OncTsuXMvrnSbwN5zdfmY/dKElPKLECM5iTkxYnYIOTHnf7H4
45UdGrD6R1atGNckJpI2uS9uyQR2eJN5RFa1GojJHPy5rWUCG/O5RGqVn8DW
FuwsLfnXv2lEduTdm8BK5xXF3hwcx/Jr4mh7CpUhfUj8xfrYCczxeraUes04
xrXsXW61nhL4E/Qh+re/9ZzmxHO3cP7ibi+vmtMQRvTJxPOmTm0c65kXM4xx
Zx741mQ9jHns11pGe60H9yUk42y5RrB/tA+kPro6jHl6Jz+eO6ALtPCGcTWL
Eax6oejbo5XDWOhdNVNdhi4syE4//Wb9CBbl84QtvGMY+7nKPW7nAh14FLU5
0dlxBDufJyeT1DOMFXfsJ19q1QID/bHjHJtHMLHi1Z7KX4Yx2ithav1Cpv5m
R3R3Lh7Bfq1XqH7yZhjTd9zHYXlbHS4P73Z8pziCBUxSAlQfDWN+2u6p22XU
oNFpwP0Es0/y9oRKezPfR5zI0Q/mMSowTn+i0XJtGPPiM6Im2w1jJyuP9Jbz
KsOqK6Nfp0yGsRsL37yXmxrCvi44iz6EKv7Rp+w/3Yj6+wbY+5S+rsPwzxPv
LnK/8fX9d2ztjqEXEy212BLPzcZ90pag1PEs3S7vG3ZaMan0jVwNVnwtri/N
0AKo4YMii2S/YZd6FDlfQTXmciV229Z/zGFnAE2KUTuIqT1TWmKdUYVFX180
f2W4GXhv1E09kjWIkcbPbthvVYVxXe1dBgWmoCMi0f720iCWSCppSaNUYQsu
eiS86TWBuRuStyEmP6ai7OnE5JuKOBriFEyY+0jd2qHMQeykzeOlnRZV2BG5
yOcXNhvDXkkHq8/Vg5hK4MqzbdeqsNjgiezkWCPYEjKs4DvnGxZzcte+Ywuq
seY5diVlDYbwdIlA8N7Kb1helXiovXUNNtaU1BEpZ8iiD57XBr387vl1vmPJ
vzj/22+zcjz/Ejmef4kcz79EjudfIsfzL5Hj+ZfI8fxL5Hj+JXI8/xI5nn+J
HM+/RE7UE+f4fU3keP4lcjz/Ejmef4kcz79Ejuffma+j1izXS2OW66I2i/6q
s+isPIueSrPoNm8WfRRm0UF+lvc7Z5b3JT3L/CVmmafYLPOhzPK6IrOMzzfL
OByz1I9hM/NuFv5//8sZzXz/TnNi/p2ZT9cT8+/MfLqemH9n5tP1xHw3M5+u
J+aXmfl0PdGfz8yn64n+k2Nf1KIrvwb+cHwdRq8JVhs72Y/5Ti5IUdTgB/JF
54O+T+XB5eUO/tTMAUxlo+RHlyp+EPhlt8hwpRwsD1nXrG46iJlcuZlbt0AA
DjB41bBQGVgSt/7MEa9BbKRNYHxNqADIDrZWDDhJQo9PnoHz6UHM4ro1djNN
AArf7HVD5gxoqdpqnhI7iG2+aPitJFsAqHYrf26h0cBAZCXaFTWIFSe2/1h8
QwBer7578UwvM7+/DBAlHx7EyiqEa8LOCEDp52v+D8IEgGNhi9yI7SAWcMf2
8F0HAQj+Ilsuoc4N/2y54becMYiJqKpyqUgJQLmjk6qcxC+Mk6ADcR3+rdu0
nkT/KW17O0SG0fqH43p+sr/pa+DbiV024dOhruCB5tB9aqLR8qBE/flt//Mv
WGVAT7z0Wx4Qz3bJtxWQg/MtLmfnLu3CPOP2WHOJ8sKinQNuw6PSoLhwic3t
E12Y2701G801eMGmNtq7qFYCfNO6jPWTu7BDEgsf8pvwQriK2/lDmWJwD336
8iy1C1uxNrtIx5QXOC4X1ewNocLh5xHaH6O7MNSxw6pUhxd23XJOObOZDCfr
3M5UOndhX6K36dyQ4QUh5z09Hg78cDPtw0NL8S7MQscnNHaCBx5nz+l+M8gJ
vUVbKjfv+YLt0KgdfZTNA+9KtJSac8axU5SM/fa2HZhjcaNd+UFuKL/80xTr
6Mdm1m1aT6I/x/lWmbjTolacLH2S6D+J9cT+iXNi/8Q5sX/inNg/cZ5N6J9/
z5Myy+uKzDI+3yzjcMxSP90//+bT65bow5X0yxvWan7+w/H9enT3cNKBgm6s
b3TBqElEPybt82hbvJ4+ZJvkhCy6+xUz37BBQZs0gAnW9fBqOTLzTlS3dYRo
DzY/eLPJVrMBbB19CZdYuC7MDfDnv2rZgzUESybHrhnAVB3pNV/v6QDvXv7V
Iit6sGeM7vfGmwawvadVGPVIG9QarjXSF/ZgUde9C3+vG8DsJ9a3RMprwWLK
cd5spR4sn+3dmQCbAexbvNsq8XANaB1UN4sf+Iql2YgHXFAZwIS3P1qxflgN
nq/3XbTg7FesWe4iRe1nP8ZTr2T92VkV7FS7Tgn0d2PqzQ/soq/1Y5fLk7m9
mpTh/C3je/OvMtf/nQy+frZ+rGcwmLN7pRIzn/6tD3G//lvPae6n+rPbqOIB
y7rFOdE34pzoG3EuTfCNOCf6RpwTfSPOjQm+EedE34hzom/EOdE34pzoG3FO
9I04J/pGix3terXF3X/W4dpPO62XXq/HRA+EyymodGNJ68v361XpwaWDHPJZ
HXXYAafo65L0biylolHE64cuSC7ua++9W4eR/jnWYk7uxsoOs7VUyTHXoTz9
l+nZOsxNX9vdWKgbU7CYKgxfqQOhJREeT93rsH11y1uy+LqxefsmaBljWnBW
8G7ZhHEdZnluH0chVzf2rdjQPsdBE9aLno67/bUWayRphsf+6sIsu9NubXih
DsEBLhYF3rXYnroXTyu/d2GRw9X8eUZqQI/IKPTJrMGysZBQm9YuzFCP7dDy
LBUwfXnK00CrGtvgexcmS7qwLQVVi/nVlGG/wG5aMeMV9vaynPfck13Y6XDO
taUFipDHEestVfQYY7+2uqNmfhe2Sj5//pzseVCY40KmLhFneW4N53/7JVaO
r0Mix9chkeP5hcj/nLtL4Pg6JHI8vxA5vg6J/M+5tQSOr0Mix9chkePrkMjx
dfjfuUZ/OL4OH82opwGM3BxLMqwVR72dp2lLRRX+cOI4eN4hcjzvPCNwPO8Q
OZ53iBzPO0T+f/9rsXA87xA5nneIHM87RI7nHSLH8w7x/eL9E9ef6M+PPao7
OviYgbhzPXdf+DH9vBBeT/Tnj2bk0/VEfz4z/3MuE8tzHXh9U8FA9/+eT1jf
N3e1mDkDXVgqzd3fKwZbt3feCLK2hBiPK/lqduJI9s3qLZn/nh/p5HVROsgS
Ii0DwiIXM9BizpLDy7kZwHlWOcpojwXsn+f59b2jODocsu1XipEEfC8oan56
1wJuGSr2utozUERrvu9eOQYYbcr+J+6cOchfCXvo6CmOpq5F/Dq0XgKCUzsr
ZZvNIT5QQpjkyEA68WsH1uoz4Ei7kd97ZAa2X1aHXvYXR4Lqx2xSPCVAwe/i
GlOSOQR9s7D8upOBHCLm87RbMUAXvmds/WYKR4e27q8IEUePNzuzBx2RgLL8
lXLexmZw/wJ3VKErA52rMcvwWMiALqfIU7nzTGHPk1ZJx3Bx1HIqprPrpAQo
5v0qzdttCs96vE7/ZNYfXW6T+plZL7Tb4cvtzSYwYhk8UXNSHMVffpv3+bQE
7Pg+Ft+aZAKht1PniLgwUEu+5KjCfAbEL+X1X3fOGIpkf5dEMscnZUyKL42Q
gPkn0scHG40hNk4mKGU7s/5C5H5XMwaQf7x/3lRpBMtJPCkcx8URTb5abuKY
BEzyGjkKUoxBfkRwjTZTn7zgLuGrTH2qc3g7zgoZgd5orfnXYHHktblQOMCX
6efaF/fvW20EYbcZTfe2MVC30CqPBCMG1FZIn0lfZQiHDctNm/3E0ahA7Gna
Xgn4PXja0PGsIcv6wfuJaLlQx3CQONoXUtRxzEcCbH5+LElp/HM+FctzQfO5
JbcJkcVQ8in/4Ec5NKBvWGr5cdwCUtLOqyQqiaEuR7/ElA80yN8i9tNDxgJM
fzzqydAVQ5Twrd2W32lAUr5+MWuJOTy+4XFZ2UQM7XH1t3SYokFRmLN81SEz
eKpu5nXPXAzpBbnbTHDRoVBD/ejtG6YQYrQ8udVCDFGNL3zW5aXDp5HK3s4P
JlB6dbspL5P3vQ58kMBNh+ay9+6baCbQee38OzdTMbRA6HfNQzY6kPvrhWVW
GgN36yB3iKEYWm905pfHGA1uF60jZ4QbgYuD4fIXOmJIX20XOWGQBrsGPTN8
ywwh5OR1E3tFMTQgqZNv00QD61+KFYoUQxZ9cD1pwW9d20KlWPY7nP/d91g5
vt8ROb7fETm+3xE5vt8ROb7fETm+3xE5vt8ROb7fETm+3xE5vt8ROb7fETlR
z791m03naU7s2zNz5jr/v3N3Wfo2Xp927krH/57XXe54YNGQjyTiD17R03RL
BmTqFbgC5luC2LvB+QmHpNA6wx0nIobmwM2EpsSDhy1h/KHp7b6Tkqh1OKxA
/q0MiEeJZD12tWDmaQnyg0gpdEb0U6k9VQ6uxHJWLsuwgLCwMa2pi5KIy/ll
mh+bLFis8/+nJtocvhW0+75NkUJTx4Yn36jLwbKDR9tUa8zhBukh9XKGJBIV
SdQplJaFiD3zbAofm4E/pbt2x10p5NQRk4ss5CBpC6/f2l9mgB3h3nkyWxJx
yDHCgrRkAevPNB/tM4Xr6oXDRx5KIc+5v3McFjPHH6m626thBoJDVcWJuZJI
U4RhfsVYFlSXfDyjIW8K3GdKBGOKpZCcc8jphSvlYPRwpImLoyl0PYHsRfcl
0UmFZ5ryprJgoCInarPBBE7ksW23K5FCRt4yaI2tHMzb0CB4+LwJeHVwGSbd
k0QvfiQPqurLgueVd+Ne0cZQ28aZ3sEcP8J+D/915vhqmkLtUG4MBQ4FdO8s
SVRHLZmzTlEW7N5xaEtUGEHpR89vecz5f9wU9OIyc/65axkjS3iNYU/Dm27e
VEm0JOibjRlZFhbzNKUFMPsqT9K222eypVBvr3ZmmbkckLAnpsmLjAATirSd
TJBEVQEGp39NyMD7V/MTy2wN4dyGBatjr0qhvizRQ8aqciAj6jcv5pThn/XT
Tji3udhoe69TrBTKcMfYTKXlQP/siU1jdX/ObWbZ9+u9hQ3GnCWQlYMn75fN
UuCw6eQt598WoJmlezs1WAKd+JWcXx4jBb7yyxTnz7WAuE2c7K5REuiqr4DT
lRwpaE0P3X5tpTn0umLynQkS6NyWQ890XkkBZZ8xV7q/Gcztt/pgclUCSRfR
oyveSMH73aML32SZgoDeySu/UiQQV2WSx9MPUlArGB/D3WoCpNh21/NMvuKR
dX5rsxRILPqipS1uAkd2H2cYXpFAlYF8kkkNUnDOb5lb0FpjeGugcFiG+bq9
Uoh0tEwKCnsM8vSjjcBM3eH+umgJ5DaYSk26LwX5alU3EmsMYVRXOf94kAT6
GS7b6xolBVL39ZVWSxiy6EP4XZI/fYD9P93++x0Eln5LrMf76lK96wcqTsug
1pq5u877KoDHnI6YO3MtWerxfssW2XHqx01m/VbLYqkkBSjqW9V9wMaCpR7v
w3laiZoFBTLou2GUe1i2AgjsufAie585Sz3en/OUVSPlS2TQtlNLj78sUACZ
yzviU1PMWOrxvl3+vLua/kwGTa6iJxQWKcBgn8unugZTlnq8n1u/LTxNfSGD
DnA+22FaogDPu/3zd/Kz1uN9Pl6NoZ/ErB80uNDZyaxP8LZeSwcTlvrh//r/
DvVog6znMmjOomzRfKQA48WmmpM+xiz1a//bF6jVxtnhpTLo3SmdmlePFGDg
Y7FG4h0jlnp8v+BcqZI3UMjUh7zVanmOAmz9vvqaY48hSz2+j4zzPzn3PEMG
+fkvuet0UQEul74JD9dirXf7+3c0EPF3NP77XQyWfSQaqTcZHZVGm9nEP6ro
ycPGhxWGP/stYLV+sEvrNWmkxCfE/2uLPJgku1Z1CVvA+t8Xtw7fl0Z7vakF
0fvkofTW8vAmU3NAsvsn9xVLo1QZaRpPoDzw3swW3b7bDK66fkwufCqN4nYl
cO8JkQc9qYndty+aQmhL2bDcC2n0MD0w1faEPOSMFSRJVZvA3oPuouxMHn2W
h6rK5MkFumrRPCbQ5sLXO1wqjXZ7WZUfPiYPxx2NjrtjxlBqtC97xyNp5FFr
rGF/WB6aLUXvVvobwZDWqtjuTGk0eqhC8KCzPHQwBIoDiwyhTP6iwLbj0oj3
1iVjRWN5cNfLX8AhYsiiD67b/wPfKQ6w
"],
{Hue[0.6, 0.3, 0.85], Opacity[1], EdgeForm[Hue[0.6, 0.3, 0.75]],
EdgeForm[None],
TagBox[Polygon3DBox[CompressedData["
1:eJxNnXfcFtL7x+/x3PfdkiJJUkmlpSntpZImJRmFrGRGkmTvvYmQSsPee0sJ
FRUlDSp7ZwvJ97y/531enj+u1/W+Pp9zvr/f6/Pcns557rXrUeOGnZLLZDLP
Vctk8qFPKWQytYuZzK32neTbQu1cjD69tnx7qDrF6NN3lqeG2qUYfXod+Y5Q
dYvRp+8i3xmqXjH69LryXaHqF6NPrydPC7VrMfr0+vLdoRoUo0/fVZ4eardi
9OkN5BmhGhajT99NnhmqUTH69IbyPaEaF6NPbyTvHnrTUE1CzQpzs2JcS28s
s6ZFqOaug9FmB28P99GbyaxrFaqla1u5d07wWruPvofMurah2ri2rXvnBq+d
++itZda1D7Wna9u7997g7eU+ejuZdR1DdXBtR/feF7xO7qPvJbOuS6jOru3i
3vuD19V99E4y67qH6uba7u59IHg93EfvKrOuV6ieru3l3geDt7f76D1k1vUJ
1du1fdz7UPD6uo++t8y6fqH2cW0/9z4cvH3dR+8rs25AqP6uHeDeR4I30H30
fWXWDQ41yLWD3fto8IYU41r2Puq+Qa4ZItMfK8Qa4r7HQ90Sar9i7LWKkff3
8cnjbaiMNsze3L67fIBeS3tzebheG3tL+UC9Pe1t5BF6Hex7ygfpdbZ3kA/W
62bvLB+i19PeTT5Ur7e9pzxSbx97b3mUXn/7PvJheoPs/WWyfaIQ/TTDT5r1
4cXYyRg+wnzJcrSMdqR9mD1lf5TeAfZh8tF6w+0HyMfoHWgfLh+rN8J+oDxG
7yD7CPk4vYPtB8lj9Q6xHywfr3eo/RD5BL2R9kPlE/VG2UfKJ+kdZh8lk/FT
heinGX66ELM+2czJGH62EPM9Qn7OmX6K2b9QiF7K/wX5pULkI832JfmVQuSj
zPYV+bVC5KPN9jX59ULkY8z2dXlBIfKxZrtAXliIPMZsF8pvFSIfZ7ZvyYsK
kcea7SJ5SSHy8Wa7RH63EPkEs31XXlaIfKL5L5PJe5k5Ly/ErMeZORnD7wc+
1Vyfk8l3QyHuOc29rIU/CTzefe/L7JkQ6vRQmwqRN7n3NJn/PfyJoc5w/UT3
ME8KdabaJDXmyaHOUpusxnxOqLPVzlFjPi/UuWrnqTFfEOp8tQvUmC8KdaHa
RWrMl4S6WO0SNebLQl2qdpka8xWhLle7Qo35qlBXql2lxnxNqKvVrlG7Wh4v
038sxBpv9j8XYp7k9qtzyvBX+fdC5JTh7/LmQuSU4Wb5r0LklOFf8pZC5JTh
FnlrIXLKcKuckVOGGf2cnDLMyWVyyrBMLsopw6JcQU4ZVpArySnDSjK5VVI7
NBx+R4a6thj7dcXIowJfr0a/Tj4s1A369Ovlw0PdWIw+/Qb5iFA3FaNPv1Ee
HermYvTpN8lHhrqlGH36zfJRoW4tRp9+i3x0qCnF6NNvlY8JdVsx+vQp8rGh
bi9Gn36bPCbU1GL06bfLx4W6oxh9+lR5bKg7i9Gn3yEfH+quYvTpd8onhJpW
jD79LvnEUHcXo0+fJp8Uanox+vS75ZNDzShGnz5dPiXUzGL06TPkcaHuKUaf
PlM+NdSsYvTp98inhZpdjD59ljw+1Jxi9Omz5dNDzS1Gnz5HnhDq3mL06XPl
iaHuK0affq98Vqj7i9Gn3yefE+qBYvTp98vnh3qwGH36A/JFoR4qRp/+oHxp
qIeL0ac/JF8R6pFi9OkPy1eHerQYffoj8nWhHitGn/6ofGOox4vRpz8m3xLq
iWL06Y/Lt4V6shh9+hPy1FBPFaN2mzN8R+hPF+M8VWbdnfn43/Az/rfMf7vw
fYGfdd8dMnvuz8c9z7mXtfAzgZ93330ye57Nxz0vuJe18IvsY12ol2S0F/KR
0V52hl/MR0Z7xRl+KR8Z7VVn+OV8ZLTXnOFX8pHR5jnDr+Yjo73uDL+Wj4w2
3xmel4+MtsAZfj0fGe0NZ3h+PjLaQmd4QT7yQpn+pvymuT4jk+kb+ZjpW2ZL
lvBC8yPPt80XbVEx5ve29ZLeYvNdZL2st8R8F1uv6L1jvkusV/XeNd93rNf0
lprvu9Y8vWXmu9R6XW+5+S6z5uu9Z77LrQV675vve9YbeivM931rYfG/zPFW
mu/CxPmY6QdmS5bwW+ZIhqvMDu1D81plLdJbbV4fWov11pjXamuJ3lrzWmO9
o7fOvNZa7+p9ZF7rrKV6H5vXR9YyvfXm9bG1XG+Dea233tPbaF4brPf1PjG3
jdYKvRV6n5rjCvntfMz0M7MlS3iROZLh5ym7wF+Y1+fWh3pfmtcX1mq9r8zr
S2uN3tfm9ZW1Vu8b8/raWqf3rXl9Y32k9515fWt9rPe9eX1nrdf7wby+tzbo
bTKvH6yNej+a2ybrE71P9H4yx0/kxfmY6c9mS5Y/m9WvoX6RyfJX+5L8f95v
5ve58xdqv5tfmr9U+8P80vyV2mbzS/PXan+aX5q/UfvL/NL8rdrf5pfm79S2
mF+av1f7x/zS/IPaVvNL8ya1f80xzT+q/SS/k4+ZZkqxkyW8NnC2FLNbIpPh
unzckyvFzlo4H+qjMH8cqkxGW5+PjFZwhjfkI6MVneGN+choJWf4k3xktArO
8Kf5yGgVneHP8pHRKjnDn+cjo1V2hr/IR0ar4gx/mY+Mto0z/FU+MlpVZ/jr
fGS0bZ3hb/KRt5Xp1eRq5r1WJuvv8jHr6qXYybi6OW8fajuZvLe3/5n/z6tR
ijnnncvUdvDnkOaCWk1/Dmkuqu3ozyHNJbVa/hzSXEFtJ38Oaa6oVtufQ5or
qe3szyHNldXq+HNIcxW1Xfw5pHkbtbr+HNJcVa2eP4c0b6tWTa4f6q98zLu6
M/x3Puq7lmLBeFv0GpRi/e2af/LR260Ua4trtuaj17AU6x/X/JuPXqNSrK2u