forked from rajpatel0909/Generative-ChatBot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseq2seqsampleTrain.py
199 lines (149 loc) · 6.85 KB
/
seq2seqsampleTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import numpy as np
import tensorflow as tf
import helpers
tf.reset_default_graph()
sess = tf.InteractiveSession()
PAD = 0
EOS = 1
batch_size = 1
vocab_size = 10
input_embedding_size = 20
encoder_hidden_units = 20
decoder_hidden_units = encoder_hidden_units * 2
encoder_inputs = tf.placeholder(shape=(None, None), dtype=tf.int32, name='encoder_inputs')
encoder_inputs_length = tf.placeholder(shape=(None,), dtype=tf.int32, name='encoder_inputs_length')
decoder_targets = tf.placeholder(shape=(None, None), dtype=tf.int32, name='decoder_targets')
#embeddings
embeddings = tf.Variable(tf.random_uniform([vocab_size, input_embedding_size], -1.0, 1.0), dtype=tf.float32)
encoder_inputs_embedded = tf.nn.embedding_lookup(embeddings, encoder_inputs)
from tensorflow.contrib.rnn import LSTMCell, LSTMStateTuple
encoder_cell = LSTMCell(encoder_hidden_units)
((encoder_fw_outputs,
encoder_bw_outputs),
(encoder_fw_final_state,
encoder_bw_final_state)) = (
tf.nn.bidirectional_dynamic_rnn(cell_fw=encoder_cell,
cell_bw=encoder_cell,
inputs=encoder_inputs_embedded,
sequence_length=encoder_inputs_length,
dtype=tf.float32, time_major=True)
)
encoder_outputs = tf.concat((encoder_fw_outputs, encoder_bw_outputs), 2)
encoder_final_state_c = tf.concat((encoder_fw_final_state.c, encoder_bw_final_state.c), 1)
encoder_final_state_h = tf.concat((encoder_fw_final_state.h, encoder_bw_final_state.h), 1)
encoder_final_state = LSTMStateTuple(c=encoder_final_state_c, h=encoder_final_state_h)
decoder_cell = LSTMCell(decoder_hidden_units)
_, de_batch_size = tf.unstack(tf.shape(encoder_inputs))
decoder_lengths = encoder_inputs_length + 3
W = tf.Variable(tf.random_uniform([decoder_hidden_units, vocab_size], -1, 1), dtype=tf.float32)
b = tf.Variable(tf.zeros([vocab_size]), dtype=tf.float32)
assert EOS == 1 and PAD == 0
eos_time_slice = tf.ones([de_batch_size], dtype=tf.int32, name='EOS')
pad_time_slice = tf.zeros([de_batch_size], dtype=tf.int32, name='PAD')
eos_step_embedded = tf.nn.embedding_lookup(embeddings, eos_time_slice)
pad_step_embedded = tf.nn.embedding_lookup(embeddings, pad_time_slice)
def loop_fn_initial():
initial_elements_finished = (0 >= decoder_lengths) # all False at the initial step
initial_input = eos_step_embedded
initial_cell_state = encoder_final_state
initial_cell_output = None
initial_loop_state = None # we don't need to pass any additional information
return (initial_elements_finished,
initial_input,
initial_cell_state,
initial_cell_output,
initial_loop_state)
def loop_fn_transition(time, previous_output, previous_state, previous_loop_state):
def get_next_input():
output_logits = tf.add(tf.matmul(previous_output, W), b)
prediction = tf.argmax(output_logits, axis=1)
next_input = tf.nn.embedding_lookup(embeddings, prediction)
return next_input
elements_finished = (time >= decoder_lengths) # this operation produces boolean tensor of [batch_size]
# defining if corresponding sequence has ended
finished = tf.reduce_all(elements_finished) # -> boolean scalar
input = tf.cond(finished, lambda: pad_step_embedded, get_next_input)
state = previous_state
output = previous_output
loop_state = None
return (elements_finished,
input,
state,
output,
loop_state)
def loop_fn(time, previous_output, previous_state, previous_loop_state):
if previous_state is None: # time == 0
assert previous_output is None and previous_state is None
return loop_fn_initial()
else:
return loop_fn_transition(time, previous_output, previous_state, previous_loop_state)
decoder_outputs_ta, decoder_final_state, _ = tf.nn.raw_rnn(decoder_cell, loop_fn)
decoder_outputs = decoder_outputs_ta.stack()
decoder_max_steps, decoder_batch_size, decoder_dim = tf.unstack(tf.shape(decoder_outputs))
decoder_outputs_flat = tf.reshape(decoder_outputs, (-1, decoder_dim))
decoder_logits_flat = tf.add(tf.matmul(decoder_outputs_flat, W), b)
decoder_logits = tf.reshape(decoder_logits_flat, (decoder_max_steps, decoder_batch_size, vocab_size))
decoder_prediction = tf.argmax(decoder_logits, 2)
stepwise_cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
labels=tf.one_hot(decoder_targets, depth=vocab_size, dtype=tf.float32),
logits=decoder_logits,
)
loss = tf.reduce_mean(stepwise_cross_entropy)
train_op = tf.train.AdamOptimizer().minimize(loss)
sess.run(tf.global_variables_initializer())
# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
batches = helpers.random_sequences(length_from=3, length_to=8,
vocab_lower=2, vocab_upper=10,
batch_size=batch_size)
print('head of the batch:')
for seq in next(batches)[:10]:
print(seq)
#
def next_feed():
batch = next(batches)
encoder_inputs_, encoder_input_lengths_ = helpers.batch(batch)
decoder_targets_, _ = helpers.batch([(sequence) + [EOS] + [PAD] * 2 for sequence in batch]
)
return {
encoder_inputs: encoder_inputs_,
encoder_inputs_length: encoder_input_lengths_,
decoder_targets: decoder_targets_,
}
loss_track = []
max_batches = 3001
batches_in_epoch = 1000
train = True
sess.run(init_op)
try:
for batch in range(max_batches):
fd = next_feed()
print('---------------------')
print(fd[encoder_inputs])
print('---')
print(fd[decoder_targets])
print('---------------------')
_, l = sess.run([train_op, loss], fd)
loss_track.append(l)
# Save the variables to disk.
# if batch == 3000:
# save_path = saver.save(sess, "C:/MyStuff/SEM3/DL/Project1/chatbotnew/modelsseq2seq/model.ckpt")
# print("Model saved in file: %s" % save_path)
if batch == 0 or batch % batches_in_epoch == 0:
print('batch {}'.format(batch))
print(' minibatch loss: {}'.format(sess.run(loss, fd)))
predict_ = sess.run(decoder_prediction, fd)
for i, (inp, pred) in enumerate(zip(fd[encoder_inputs].T, predict_.T)):
print(' sample {}:'.format(i + 1))
print(' input > {}'.format(inp))
print(' predicted > {}'.format(pred))
if i >= 2:
break
print()
except KeyboardInterrupt:
print('training interrupted')
import matplotlib.pyplot as plt
plt.plot(loss_track)
print('loss {:.4f} after {} examples (batch_size={})'.format(loss_track[-1], len(loss_track)*batch_size, batch_size))