-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.yaml
56 lines (43 loc) · 1.33 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# If want to input None, use !!null
# Resume Training, start from scratch or resume training
resume_train: False
load_epoch: 15 #begin from 1
load_hash_loop: 0
# Learning Parameters
n_epochs: 10
load_weights_epoch: 10 # epoch for loading weights in code extraction
learning_rate: 0.0001
lr_policy: step # def: step or auto
lr_adapt_threshold: 0.01
lr_step: [5, 10] # def: 10, learning rate will be reduced by 10 times at these steps
# Data
use_data_layer: False
rand_crop: False # def: True
shuffle: True # def: False, if shuffle the batches
para_load: False
batch_crop_mirror: False # if False, do randomly on each image separately
finetune: True
# Momentum
use_momentum : True # def: True
use_nesterov_momentum: False # def: False
momentum: 0.9 # def: 0.9
print_train_error: True
print_freq: 20 # frequency of printing training error rate
# Weight Decay
weight_decay: 0.0005 # def: 0.0005
# Directories
mean_file: ./preprocessing/preprocessed_data/img_mean.npy
finetune_weights_dir: ./pretrained_model/vggnet/
# weights_dir: ./models/
weights_dir: ./models/classifier_2/
train_folder: ./preprocessing/preprocessed_data/train_hkl/
test_folder: ./preprocessing/preprocessed_data/test_hkl/
code_save_dir: ./
# bias
bias: 0.00001
# conv library
lib_conv: cudnn # or cudaconvnet
#GPU
gpu: 'gpu0'
sock_data: 5001
batch_size: 50 # def: 256