-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmuextremalPlots.nb
1417 lines (1373 loc) · 58.6 KB
/
muextremalPlots.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 59882, 1409]
NotebookOptionsPosition[ 56557, 1347]
NotebookOutlinePosition[ 56918, 1363]
CellTagsIndexPosition[ 56875, 1360]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"(*",
RowBox[{"HVEDM", " ", "AdS", " ", "case"}], "*)"}]], "Input",
CellChangeTimes->{{3.768739669561707*^9, 3.768739678098649*^9}, {
3.768739710186153*^9,
3.768739712381748*^9}},ExpressionUUID->"7da1ef4d-5c79-4f3d-aaba-\
c91ce059b22e"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{", "\[Mu]extreme", "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"rh_", ",", "z_", ",", "\[Theta]_"}], "]"}], ":=",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"2",
RowBox[{"(",
RowBox[{"2", "-", "\[Theta]"}], ")"}],
RowBox[{"(",
RowBox[{"2", "+", "z", "-", "\[Theta]"}], ")"}]}], "]"}],
RowBox[{"rh", "/",
RowBox[{"(",
RowBox[{"z", "-", "\[Theta]"}], ")"}]}],
RowBox[{"Exp", "[",
RowBox[{"-",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"z", "-", "1", "+",
RowBox[{"\[Theta]", "/", "2"}]}], ")"}], "/", "2"}], "/",
RowBox[{"(",
RowBox[{"2", "-", "\[Theta]"}], ")"}]}], "]"}]}], "]"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\"\<1<=z<2 case\>\"", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"0.1", ",", "1.75", ",", "\[Theta]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "1.5"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Mu]ext"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\"\<z>2 case\>\"", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"0.1", ",", "3", ",", "\[Theta]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "2"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Mu]ext"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.768739678786416*^9, 3.7687397561513157`*^9}, {
3.768739887319951*^9,
3.768740090551032*^9}},ExpressionUUID->"ba8f23ef-46af-421c-8236-\
9adc9925bd87"],
Cell[CellGroupData[{
Cell[BoxData["\<\"1<=z<2 case\"\>"], "Print",
CellChangeTimes->{{3.7687400366419907`*^9,
3.768740091413553*^9}},ExpressionUUID->"e57a1305-9622-45a1-8ae6-\
5b78a043955f"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13k4lF0bAHBLlhD5CCFFTKLIGsJtqRQpLZbImi0USaJkyVLZJSIqlCRb
iLJmFkN5aXkrekOYecYY+zaDLN+Zv+b6XWeeszz3fZ5zbnmPwDNeXBwcHCac
HBzs3yWrK09sAt2MW8zemJ9wJUCC5x7lzzhjeG6mlqyM3D1F9UvBnYTDUvS+
TcgztebJATgX2MwSiWpxIcAdiXnZC7gr8OCyzroacleHJXYWFwkl+hsd/3Mm
QGBB6MdTuFSwu9iXOOBIAHxycpM17imINmb3RdkRgIc3mG/MrwrKE1r9za0J
cDzKPb7O7h3kRb1ImDxMgHfhXgPFX1uhzVGUxWdEgF+O/urBN4jwqQ//tEOb
AKIWKd54kw6IDNeuct9PgK3fvWoOOnXBTunNzFolAuzeFVAa7/EZkhVyCuLk
CKA3cLnL9MFX6A8JSlKUQvNZiT7xPe9fWHH5zy9XlAC+Hzo7W+/8gIKbLRz/
CRIg92KJ9Da3XjDV1vidwUuA/Q7DzHWvX7Cq9TDVhJMAg/OnekyO/wbJmt2R
Nat4mPuz/YCE7QD8MCxQNVjCQ3rZTR97+z8wuX6sxW4BDzgRfuuwvCF4Jfcq
Rn0WD+UzMS/vPRsCX3XKHwVkzW9/N3KeD8HW18YWEsiQNV3TUDYE0vZuGmsz
eHCQ6ZX624SeV8y41oWcuOcl9Xb/ELgOtFVfQp6CwxGxO4bhfJMdrmIaDyHy
rT8y5YdB3t+qohB5hUtP/YXSMBTfrjTKRuYjq46Q9g9DbO/Hm1HIu06IHeM1
Hgbd5TzvM8hnHEbE7rsMQ0QtjXdlCg/1QdFlqc+GYd1HJsIGObFp5u3552i8
ADz1KLIrr3urYskw0N7RbI2Q+fNNvzZWDoPa53enVZAdO7hYtJZhkB58U7UJ
eX1HvBn0D8NGMZ23aRIPR7ru/5qWGgHNoHkNNWRpiZWRRtkRmDjbUamEPOXm
NxG/awRE3rhr70DOZlpuyCiPQOTK3HkhZLq8kNKxgyMwq94pPD6Bh+Sw1KAC
2xHYcshc/jXyd6VMvtMPRiDEnrKshnx8j5Te5ewRyDy5j4lDblV+4nv/8QgQ
EmTW5JBLVUs+4otQ+5ZlFRHkSI2mJM3aEbDZysc3M44HZSOKiPj3Eeh9p0ys
RY44pyXVu40CiZaF7ubIs7bvj81vp4BZaMd7Q2Rve6NwETkKfPJZltZFPu1o
8Z8FjgKNdSkce5Fxbk7573UpMM3/3UYE+Yt/7K7H9hSoNmjhH2TgQTH2X2Xn
XAqUWsdPxiI71HBreD+hgFr3GikSOXlYSz+wkAL6HHEl4ciL8PB4TCkF1KvI
KYHI5NVzfsUNFHjRE/PHCflS6M+yyV8U8LFueKyL/LSY9y1zgALbOvMUNZG/
fddt3himQK8fvmE/soHWo39EGRTAWik8SshCM/aTOisUWNlOVRJHrrz0Sy1S
mgrE/u93F8bwMJKz+eBdOSqk0OM6ZpAlO/UhXYEK1w5W/W8SORr3+FSRChXu
F0R3YcinKY5BZAMqFG0J7+hFTvhfUthnYyooPXS++B250bQpus+MCpdS+wS+
IisUyGQwLJElCyI+IS9c6K8WdkL9Xf413oKsnCzUKOlKBd2wH9RG5AtNhoRd
F6mQmx039g65ffuTb5r+VGBGCUjUIGf/dJ63u0WFkTvSqy+R9W3+aD/Lo0Ki
1O2NB8jNdJ5Jj2dUqHU825+ObByzrxj3HK2XN4mYiny4Jnxb5WsqNNWqVCci
nxQXZzY3UEH+dPTmWOQv5QaV0S1UoHbW68cgnz3i7n0YTwWtNe+QKGSH0Mqf
XZ1UuP3HZHMEskffsXf/9VIhof5A9XVkalBg4NPfaH3aSTohyD6bs/d4/KGC
smwYKRg5wIDyaIxGhaXcbVxByFPfNttUMKiQH/DPmyvIV/0P8F+dosI/8gp+
l5FD82+HLS1SoaC5ftUPeUn7xYHmZSqcYfz9cQn5VvcnetQaFSoSJxp82fFa
lzzPx4NBBLG/0BuZ+5GxaBc/BtVVI8Ve7Hipe31MFcKAv77grSdykluNvoQ4
Br2dp+c8kIWX+2Z/SWLwTdtKnu30jI3SJzIY8N7c7OSOLKaC83DfiQGjK+2Z
GzsehBPSSrsxuOE6POWKLOV07Rsdh8FOf87jbOfN5yaWq2DQh5uvcEEuUBxd
0dLE4HOWQ44zOz9attSydNDzbd92sF1sq+3fpI8BV6Jq5QV2fkw57o4ywmBW
w/s4268TYn6bmWJguhw/7YS8b+erTN4jGAQppBawXfWux+rTMQxSZ2MusK1p
s8idegIDXLnnbrbf0mWaT9tgYJOrv+iIrBtjFrLtHAalnJu+sd2w/dK+X/YY
OKh3NLBtWJNGzXfCQORKQjnbrZb1+W6uGGwSPPKabRNK/znFixjw2PLWsk28
xb2F7o2Ba343me2j4irtZX4YLGg+xdjuLLe5HXgFA42AWyLs+VgeuaGjFYyB
2BPfw2x3DzyZZF7HQEH2UhzbNqGk4sZwDKJMoz+z/U143DnyNgY/vauV2O/D
tkRUwiwGA6/RjQS2+0CvhyceA85dgfNsO/a5JHy8h4FwIJc/+/0OBMUbpyRj
KD9bJtnmaGvbUZSOwZdzUvfY8VEUWV2tf4iBuXOOOjt+Fi4H+7tyMHAqNKWy
7VcR3DSUjwExVOolO/6pqxWPFwswcNSRv87Oj2qrsXCBYgyMDrqdZufP0pir
nnYFag97oMHONxn9PMnj1Rhgoak67Hw0vveT6VyH2g9+O8rO13icdd3dFgwO
Z5llsPP5fxcNNH93o/G8zMjs/aBbc1105isGdZuWtAORz3NWz2z6iUFzj1Q1
ez8VPNtTpTaIQRux4us15P394vvuTGFg+6Xo7U32+1S1EXw0h0GOnXoae/+G
3ExilDEx0Oe2uhHJ/n5JcZX+WMdAc9k06A7yMdtppb0iNLBar+BJQvZ/ocJj
LEaDaGst6xT2+ue9qGckaXD0bEBRGvKPjP6iiJ00uMQSDH3I/j70fNz5RZ0G
o+djCU/Z+28HzwZViwYDm5TDCpFLA0wGlw/SwC61+NAL5BmBd/m7TWgQvG40
UYp82+LF9hs2NBjD+S7UsdeX/Wcp6RwNHt2z396ATMKk+wocaOCVdOREM7JA
XEb2JzcaaMUd6Ccg57RFisldpYGlYeeLL8g1+ue3tGcgE3QHptjxnkvMf5hF
A5d34c/mkLNeN6t65tLgwoTmFSZymMwuS+5CGnTLSGmss+O1RkswfUODSJyc
tTA6T7raQjhae2hQLfxi+ACyYfjLtJRvNHjZpn5Zh33eaPTJOf+kgWZlMI8B
8oOiQ0arA6i/NrUL5uzzMY7rpsEk6u/nfJEdMtUifb5ecBQubD6fG4Vsx0G4
kyAyCiP6J+bikDvez4vaiY0CVqzvkIj8eq/9gUXpUajRE7fKQg4SlLuspTIK
OcvQXYa81lNGqzo2Cs8cdS1+I0vYdfx6FT8K8X2aBw6j8/uo4QsTr/ujsPVe
9BYr5BsKMSXyKaNQKNzDOo3cN2Vw/fHDUZCpDZ93Rc67W7k1+Tnq72TS3Qjk
XQ1ZFoH4UUh2dcG9R1aR9azTWRsFQoCvsz66jzhymcrOcdAhmLqDYoqcRN8R
W7mJDn4/XUMtkSfe9trsEaKDoE1euxNylbXVhJQMHT7vCeKLQtaO0ty9qkcH
ryNZsp3IMMKRQQihw70qzwpPdJ/aGjUn9yWMDksvZv8JRB6RoZYPRNBhr7b8
2k3kONuOzqU4Onz4FJ2WgfypM4VDPYsOcqbTER+Q7aqkg/Lq6ECs2oiSQ/e9
gAjtUyFMOvTO2Z4dQzbejhuIWUH9O1/KZCKL1Ev6p63TYfzoOJUb3T9rplcS
XvOOwdm/55rlkFke+NYhiTH4nRtuZIt85/hJNeuDY5AkNZzajpwr4bsFFzYG
6kHvn9Si+/B7WRurqVtjQNniLEJA7lPQu18fNQaBRZPpX5Cl1Pl5LO6OgUjV
GHESOdvi1apP9hj4sKbGlNH9+2EYfbz0LWo3OHKoCDn1P99P+2fHwDUmXLZw
DuXfkA0/c2EMNGRWsquRu2l6R1uX0PORigoEZKF5fsJJDgbkqqX5UZCTBEsb
AkUYsLvLl4Sbx8M9w7FX1fsZYOicX/gG+c7TS3d1/Bhw4oea2ldUL5g5eU+c
vMIATXM5RwyZW+riad9gBpjYpT1eRo7LuCCTd5MBF39KnldYRPs/7lQVRxID
HuhVdIcg3/fT6e0qY8BiwOn8HUx03upy7vGYZIDGCEkwioWHJz055NSgcUhY
DcXFruBBtsGEOytkHBwEJEzykfOf0yEvbBwGK4sC65DzwvQaSqLHoceldCsd
OVehr6wtfRxMVy87nfyL9neoZMbcm3Hwk5+X2YnqoRS5bCe72XHYx8Wf9HUN
fW+uZM7sCJ4A9X6RIxGofrIkaAwMXp+AOgsV0VxkKYkvH5+FT0B4WsRcHfLb
FqHn8jETMKczvjCNzBBKsFVKn4CkaMqyJxcBHMrCGvdVTsAbB0zwLDcBtOnO
cYcYE+gccUsFHgKMuytLnfeYBIfeIZELmwngGPBb1d97EqghIedjkDtDU+G2
3yT4bKtvfYlcnLTgXRg8CZsOhvbPIrvWtdWN3ZmEf0pOed8XIMC//OfP3nw+
CYwrVa0tqD5sqrqfmkedhJKi7YOHhAmQtMbYNOg9BZeSmv9NFyNA44TFtLDj
NLStDH7uRfXnTyW9EQPFGdChWd5qUUX15t6L6pnFM+AQ5WW01RDVo3ZOt0zl
ZsHNUexzO6qHtRwYpeKFsyCZ414i6kmAgNijvUYyc7DlKkeFYQQB7nnzr3Bm
zsGq4xfujEcEaNnhvsEQn4eBEPfoxQYCNKwncKukzoNa8tSvE38I0FNrzkgR
XYDISMWhLGEitO/yJic/WID0JNYe2yNEiHtnWzgssAjXdsa5hsUQ4cBXq3vj
QovA6te1zrxDhN8M08BF4UXgcZvdVBVLBE05NaPNYotw/JnDD3o8Ef7E8f46
ILMITZ6ywt6JRDA4825rtOoibBVtjL2bSYSZCalouROL8Cth7Iv/SyJcUOh3
cUpZBDBdrB3tIUJlUPcTszTU/7g3UfELETg/tPbvzViE367Hqz2+EuGlU6Hj
0sNFWKlIVB3+F/X30NsuK38RaBGOb+h9aP58s9afyxZhRtu4WoFChPIJHiPz
T4sQ9/Tp9WNLRPhbry6jyseEsGFGR4oSCdTyme38m5mgpGwwwLmHBG4xLUE0
ASb4Gopw3lAmAcnKilwozATDxxfCPFVJkDzkfVVKggmszONmJzRIICvwtINH
iQlu1Nn9NkYktI+FQobMmFBjJ8ipYUeCCO6xf7IimZAo0+2Wk0SCdXMDwfxo
JhS94N4XlUKCmLik40V3mHC5fku6TxoJEnjUyJUJTCD59+01yiRBGt+1Dx2p
aHzzuN6/j0lQJLhWvfyUCapRBq2dr0nwUUz0kfMHJgiauPpVdpFAQlHfXYmD
BZ3qQZbyYu1gkhvP4udiQfm0K912WztcEv6WMsHNAj+LKM9kyXZoXvJrrOVj
AVHy78a6TDt4dOeLmYmwIOSMD+dfxXaoDOUgu8ixoH7BVsnmYDsc/dihkmPI
glrOZN8o53YIMhbH3zJmwf05d/MF13bIrXWzdzVhQRLr7TF/j3aYeLIcizvM
AqqZ+4CrTzs8CFYdeGvFgqqYsvCLV9thUCYt7asjC7Rn1Ck/49vhxhW7BYFw
FsT90M6686YdZHU9O3G30Piv0g88rG2HtrWr+Wa3WaChmDr/qr4dBFJSDt+M
YcHdtkiu/uZ2eFpGejh2nwWNJikk34/tQKZr6nQ+ZsENpX3LuyjtIH5RJDS+
mYXuVeZb1beToUFlh2VhKwsUXIlCVbJkcJlTkWtpY8H1t2f+1dxFhlcxR8kL
JBbs0Sr5cWQPGQ4V3Jbw7GaBQMDgmcc6ZPAYGK83G0T/f1kZwnWWDHzFy4ku
QywQ4s8ZwNuRoTyAz/XmCAuuXlQKjnckA/OvAl8NjQU+Waf0tnuQIVHa0V5+
Gq2Hu3fu2lUyqI/4qBrNsiC7NizY9joZvpde33CYZ0F4RMDZQ+FkkNPPKEln
scCaU91WPIYMRI5nt8qXWVDWKx7HF08G387yU51/WfD12K0DG/fIIJTeuJu6
xoJiu0z3v8lkqLbvZG1ssGDsyBO51XQy/B/VOFfx
"]]},
Annotation[#, "Charting`Private`Tag$2494#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["\[Theta]", HoldForm], TraditionalForm],
FormBox["\[Mu]ext", TraditionalForm]},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.7687400366419907`*^9,
3.768740091473073*^9}},ExpressionUUID->"f65e8542-c620-46df-9cb3-\
4cbfbbc766ed"],
Cell[BoxData["\<\"z>2 case\"\>"], "Print",
CellChangeTimes->{{3.7687400366419907`*^9,
3.768740091482294*^9}},ExpressionUUID->"c6853fdf-619c-493d-b91a-\
22e4ec7464aa"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwtU3k01nkXf7KEylaoh4xIdpMkleX3IVmyZIgIZQlZC0URNcpWg7xGUlL2
imyPraRSjKZVtihbyRiyl13P7/t6z3nvOffcP+6599zPcqXdTlh7cDAYjKzl
/F819Rhqrhv2oMRr5LLXNLPAZSAe0Mfciw/VB/12vmdh++20m+VMGyw16iq4
NbFg9raDlcF0h+lH+eDqtyzYuc89Tmaegt+00lHXVyz0bI01SGBGIbN5IIFV
z0KmqGXMZWYKxFc28ZtWsRDJWy5/iZmL43GW2y3SWbA/lFUyOVUBjmlf6yVn
FlaTSCfjX57CwPPd1iR5FrZYjQ/V/9EALxvfZGqiDKff7Uba9Ev4hzFaFkrL
sL5CuHfFiib4n7zRWRlchqp+gzdNOi3gyi8PVNYow3OfDIlDo21Q7Xh84MT3
UszI6QoW+XfgQYrlj+byUnAsFApJbPkEgxqxXYHHS6FJXKoOFHeDaCw47FIp
xZsojXeNSn04OashX9daAqmkkYV745+h/0ldMFCvBCNzfb3tav3IkWPcqywv
Ru63R68EEr9CTLLrhPf6YghI3pkYGBjAhY3p5+nQIsR7V3pmyg4iil/8ZfDX
+5jVKxzwOv8vMo/dPDCmfR+n1BsqxOqH0OMdx3RKL0RfccMfzdLfwEjYKJg8
VIAln7Z0xbARHBoorB7fXgBlfR7a89EoFrOat2fG3INxtvSxsvXj4OGzOKP7
112clnSW+eI0gXERQwnj1XehMmq7usNiEqmKttx3LO9gneAkb8PiJPgYdXy9
EfngeppesvnmFBwXR7NmyvPgq/HoI5/Zd0wry/JLtuSicJ9b5pPZ7xATOz0x
PZqDmRFxocHUHxASzZYzFspB5QFjzpS905AuVtgnzMzGeZPo2xWD06hJ8NG4
rpQF6R7TzpzoGZR8eu7iuDsTWjujUpjqs5idS5mYtr0Fp1+aFla0zkI86uG2
UfObmHmV0B8QOQd/36aqIe4bSOM6cspadh4uXxKDotuuYV1vZTZHwzzM+2XD
C25dBXdEpM3uwAXkrjnjWaTwJxj3jpT0r13EqZb2JMemJATdKElY+3wRuxni
Yo6B8XisHMcrfHwJnv1hcspWsRA2DVK5IPATZyc2tWy9cgHdqu9bQ2t/QtVA
/Ue80FmU3oLswBE2MlTXhUxrBeFH2A8eV1c2PGJVn44yg6Bpd2ek5ygb0inZ
EtPzgXgkKFje4cXGxe6DKWrVgWj8vVf/dRAbqzzDd7trBKLLLcKZFbPcz7Ks
atsWgJXyj278XsxGXlnlcPlJP+zjPHGOXcpG4pTI7R87/BDfJ+MWVs6Ggp1z
rcO8L4TTLiueesBGqZfemcwIX2zkc3hw7Pny/vxbousu+0B9ZL59/wc2QNLv
9xV44XCJprAkzYY3f9T+SwIeqHKYF3jPoDFS+8/AzWZ3CKysWXORk0YP42/9
0RR31Dnp8g7z0hBP8bbU2+gOmVV7ScU6GrmtwcOvVY9i0N1qzFyRBk+a8fZ/
nFxxXNzvZbgNjc3lPi1tPY5o/Ev1xVY7GnMSBt+WTjlCKnCiof8QjWGNvOTH
axzx/kVQnYkzDe2X5+1FKQeoB4dWi/jQ4J7xs9911x5zTTF598/T2NYbznc4
3Ra/R2dFdhfQSDwe7PCR+zfwn+YxdS2i8dBdyjQ8wBI3vPzXDpbQqD4Wsjft
w36Um+3OmaigodfVdrsp3wKDws0NHE+X769N0gy2M4PZLQavYisNXXIzxmXJ
CJ1XPN8XtdNo4PIsNQgxgnvkmzT1ThpChfbG178b4px7mqJOD40zX1Jtcyb2
olRJzczyXxpiJltFjy3tgVi1c2LwEo0j0uRbcBWFnLt/HVxk01ARmQrS6taF
2g1lqfMMgjtJHPwS3LrYFzFXEsdNIJ+Wz6njoo1wgyvN6YIEBWs/vzLR2QW+
HTPXN60lELE/paN1didS5Rzd8kQIeoWVXZ0ea6KET/5HMZNAe8sBPm2zHehv
eiLyfDOB1FFGREqCOk48k+0xkiN4YaExTw1uw0/W5bzXCgSH8q3l5fdsg2jq
Qc12VYJ1zse0KjjVYOI0bje0kyDkwLfwTEdltFnYbPLXItA/HEFP6inBFTVD
UzoErNPGPs9UFBEmExO6pL88L1Kh2b1eHkVDkukC5gSmi7/ZV2pvRlxGtEvv
fgJxw9h0ay0ZuFuPbSm2IhiV8TUb1pPGxtraUgs7glyD1P31r3/BfIBsiKQD
QZtfs5ELryRat8RrjzkRxLOU1HJsJHD5imNjvBvBs666hUqJDfDcW/+HkwdB
pLdZlEWqGPYsKFmpeBHoNFQpiG8SxYLbYtdrf4KTnjM6jS5r0bbeLSs9gKA2
oT3Pfr0wSt+89PQ9SdDXptK1+qEgvDSvT60KJajhZJeNb16NvSOM6k9nCTJf
mY4XcfJBKtMrvOAcwXXl/HAhshKLNu/1wyIJuMzn32WJcuMD3y4e0yiC7MvD
eYNGnGA9uf2GGUtg8mRw1Cl5BRJP8iQPXyIYmKxQnxsnlGHPh42XrhB0Oqlz
tm9YpDYlU/32yQR5Fx9184XMUT+N8u8oXCUwn3fiebBihupc4vefv0ZQzfjV
MLrmO1VRGqz+9w0C6faGet7bk1SSR8/ctYxl/mZDg1IdxyhfccPHxzKX8RkF
bEt8NUwZNd2/sDOHYIO9d31z7CAlEyViwpO/7I/bLRJSSV8pelc4f8ddghH6
oIH458/Ux7GvLfmFBO2BY/EZQ91URbZZWkgxgUx6zKxbcieVZFd+2KiMgIqz
+s2wqo3yWyOxWaxiWc+3UPli3kyZPLsw9E8VQdl/0o76ZLyhZEO+FVU+XPbL
qL6ztdcLiihZn4yuJdjtdi5aZeQ59anv4S7bpwSMxJ6reqpPqKoUaVr2OcGO
n82tT6qqqeR9l+qnGwj4VOQ/hdmwqOP0ZFzDCwJ+l0Njcs2FlGm5/f6UVwQd
Gz7plhbmUlu86ta5vyXgmfipzGTcohiSCh+3v1/G0yY1rKh2lepuvnKLs5XA
WuJ1rCRHAvUgZu5oazvBjNifF3XlLlIp2s6KOZ3LfhbJE7bXOkMFTDaOB3UR
cGfbXT4q60+Z5f1asaeX4MtQqpXhORdKziE1dO2X5X/0/TxUa2tFcQjSVP/X
Zb1E7puwM/So3noPLtYgQahdubjiIRWq5szbl5HDBEK2HUWGjSJUquqOK1aj
BJvuCUXEtc/rBvbftJGeIJinYx/NHfiga36NS3xqimBoOPbfe64Fugrmfn11
0wTe+aYHT68I0OVa0ZabNEfAbGQKnOlar/u5UtvHZZGAWChN7ZeL1an1ydmq
xiZ4vErTS+iEgfY1qdUzhCzz/f/4LzLe69k=
"]]},
Annotation[#, "Charting`Private`Tag$2552#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["\[Theta]", HoldForm], TraditionalForm],
FormBox["\[Mu]ext", TraditionalForm]},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.7687400366419907`*^9,
3.768740091530806*^9}},ExpressionUUID->"2e1cb0c5-1587-4770-b3f5-\
0a35a6c09155"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Reduce", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"0", "\[LessEqual]", "\[Theta]", "\[LessEqual]",
RowBox[{"2",
RowBox[{"(",
RowBox[{"z", "-", "1"}], ")"}]}]}], "&&",
RowBox[{"1", "\[LessEqual]", "z", "<", "2"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"0", "\[LessEqual]", "\[Theta]", "<", "2"}], "&&",
RowBox[{"z", "\[GreaterEqual]", "2"}]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "z"}], "}"}]}], "\[IndentingNewLine]",
"]"}]], "Input",
CellChangeTimes->{{3.768740172966791*^9,
3.768740241904971*^9}},ExpressionUUID->"0ae3f09e-5726-40ed-9aab-\
4381c53a7477"],
Cell[BoxData[
RowBox[{
RowBox[{"0", "\[LessEqual]", "\[Theta]", "<", "2"}], "&&",
RowBox[{"z", "\[GreaterEqual]",
FractionBox[
RowBox[{"2", "+", "\[Theta]"}], "2"]}]}]], "Output",
CellChangeTimes->{
3.76874024256719*^9},ExpressionUUID->"417f3375-b647-439f-acfa-43c75f3e15e6"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{", "\[Mu]extreme", "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"rh_", ",", "z_", ",", "\[Theta]_"}], "]"}], ":=",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"2",
RowBox[{"(",
RowBox[{"2", "-", "\[Theta]"}], ")"}],
RowBox[{"(",
RowBox[{"2", "+", "z", "-", "\[Theta]"}], ")"}]}], "]"}],
RowBox[{"rh", "/",
RowBox[{"(",
RowBox[{"z", "-", "\[Theta]"}], ")"}]}],
RowBox[{"Exp", "[",
RowBox[{"-",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"z", "-", "1", "+",
RowBox[{"\[Theta]", "/", "2"}]}], ")"}], "/", "2"}], "/",
RowBox[{"(",
RowBox[{"2", "-", "\[Theta]"}], ")"}]}], "]"}]}], "]"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"0.1", ",", "z", ",", "1"}], "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "1.5", ",", "15"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"z", ",", "\[Mu]ext"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.768739678786416*^9, 3.7687397561513157`*^9}, {
3.768739887319951*^9, 3.768740090551032*^9}, {3.768740277783934*^9,
3.768740517360342*^9}},ExpressionUUID->"aba63295-52d5-4dda-a0bb-\
9568b87891c5"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVkHk81AkfgNUM4xp3jtwZdz86FCW+X4UuUiqtVthoJHJTsUWsWIa3DDIl
aTKGcTUt5YN1bCi9utzCkJFq5YiSKN7eP57P88fz36N7Mtj11GoREZGEn/zf
G9PbytSzSFirQO484MIH8pKwv/QWCcfikp4OAR8urTgaqRSScPnj6fawjXxY
IPGiLpeTMLQ30FpTjw8T0iGKbg0k3EVd5vDF+NCh9d1pZYSEiR2nyzuf34P8
nUqNh2hkDNdItOo5eQ+sU+wL53lk1NIP2h+5sQLyjLMZKpVk7Gc4jDurVMDq
tndhVn+TMSXsuLXzj3J4QkmF6BdkXPYRaa5vKwe3xFd9P+bIqDf17pCvbzmE
xXlKidqI4sDbHb4R+WXAizofovhCFE95nysq2VgKMspP3Sz6RFF4hD7yRL0U
QqvUbY6+EUXjppQxklgpWH2ul7g+J4rjY7U+Ha9LoDVU9O5aVTFszKgZfppY
AqOBGd26v4mhzYLg8cIID9b6lG7fMCeGHmkTvw/yiiEo+P36qiUxNAy3sUhi
FUNTDE17O5mCZxQzDzomF8PpzFyS/RoKOuo2m66iF8ODFkb7MUsKDlQ2c06t
KwZXo7OesTEUtOF1hLTnFUHKJBH/nCSOo+5a3ls5XBB88484LC2O8897tcyz
ubBRrJDepySOq7ob/aySuNCnpbV/VF8c3Wxzid/9uWBwUEZpfrc4DrcblLaY
ceGf+1McTYY4inSP7dhXVwiL5yraApUkMPcQLSRslAOW2q8PF2lKYN3s0ZzN
XRyIaCULhAYS6NBQUUVu5cC00vHZ49sk0JDv49dTzIExPll9r6cE6lCf9VqE
ceD5hHugfpEE5t0QGDwR5QDbiywrsJbEsUnlRwWWBTAsZs5Sc5DEgnVve7eY
FoBGubve0QOSyGDyVzq1CuD693LLdm9JlFUjWVmKFQCD5e5dkyiJwR2Z6653
34WoznJ+9gtJ7NdPUi2Nugt7d7sfcfGRwmxsEZY0sSFiTcsjr0ApPNXfajf1
gA35wg2bQyKl8LKBr6J1KRvmY8UVriVJobIBrWcumw3s6ocvOkqk0COkEEcC
2fDdWHm/22cpJN+EbTlr2VAu3Wl3IlEaJQv9Agwu3gHFDifzAC4VIxdWHJU8
8sGMepc3XEHFqirzqzpH8mHfnm/6R6qpmJpvdWyzUz7E1XM0bNqoaCWxGgN3
5MNH3rKE7AQVgx7t5Zpo5kNrwr2x+2YymGEiZBY23IbzW5RuLFbJoJqmP2Hf
mQeCnAFySrMs2ldX2meo3wJhkI5q1TNZXMjTWvah3oL39qdMR3pkceXjhU12
K7nwaWbq0NYPstj7Qr1HU5gL8bTLLp/E5DClzjrTsyQXsn/PzL1lKoc2A3LJ
sza5UL++dut8hBxSrv0wpgbcBGqaeACXIo/DF3X900dZkGyWvzglJY85T/ZN
FPayYPVLy5StcvK499+KxdZ2Fswr+BW3qMqjCn+SrfmQBSM5Le+ExvLY6sLZ
TWOwoLIg3lfHSR5J9y5GXrVkgUfd9xOsq/I47+49cZ+ZAyUTMwdT1RTwPxNs
Ct/rOlCMlgVSBopo6KQyznLMgptNgjNee5XQeYIghlyZYP5NOsLCfQ3enhR8
zWi4BktpMjGDscqo9deGad+dVyFRZIuJ7h0VlBmsuSP8kgay8sVu78pVcX+R
fOXLvlR4dWkmLq5TDcWYHp6qz/8EZkqi0c2xtdiacmcyUy0Z0uYmnyVLa6CG
hJx1QsgVcNgeo65oronZHjXXRb79AT+03Ma1bLVwLaVVW7M2ASa9yRU/fLSx
cdp2wv1yPATrxC2aWeugY/EidzbyMjjGXg0ta9LBpemH4Ut/xEE1I8Uv67Au
mj3eZuBqHAum/qYa9QO6aLsjL1ePcRG2f65yORi8Dl+9YMw0TMWA4ZRr7wYR
PWR8cPCjnY+GNQ+zNV2T9LBZcy6qZ/MFuG3WPDqoRkNuv77o8MdzYByZQy9i
01BD7/qe6pdRkGESa/uPkT5eu9p1X7c9ErLTXbIcavSxal8BpfZRxM+/rTyJ
nQY4mH6g6/lgOOy4awiW3Qb433U36Jtmw2DosHkGx9MQ7y/x6spoYXAifO+2
k28N8cKbBXxDD4ULds5eyeeM8Pa7D8YKnBDIEnzdNb1ihJ2iZqXOX4LB2YTB
bWAaYzhzZnQVKwiEY5u8BDQTbHGWa2x2OwvRQXHdNqUmmOX+4EvM9kAoK3z4
VAxMcTzteGSDcgCMlGVdkntiioSMsPGV0hmY1bty5fSB9dhaOnWMSfOH23u8
qSYj67HzYxFfgzgNzjveuK4/TSCjeX90yyE/GK8LuZN6hkCnX4yPSB7wgzgb
kZl/Awl8ZGW27LLPD+7baqcVhxIYHN3QNLTTD1TtTjw2iCGw5lOsCMnCD8Yc
+q110wk8n1lvFKHsB9Eur2jKlQTKpNamTA/QQemld3jkAwLbvXO/OvfRoezg
TFNXNYHCdneirIsOI4dkvZh/ExiTeGX27DM6OBxxZsk9JtC6LmRooZ4Ocu5t
VKnXBEZ8VSJbsOnA6//F48wgga8rLcby8uiw6/h7XpuAwIwy3p+SN+kQ9Stl
T7KQwG0XavTGmHQYPOEQLzpJIHfiaHp+4s8u6HrpO03gor8iUz6eDrJevtrN
nwiMPhfwa8IlOuz0TqiLnyewYURmq/85OgyMKEiNLhD4webj7qFwOkT8xna3
WyJwbn2yhmsIHWRGNxbl/yDQf7jkr8eBdOCebJpfWSHQ84YO1dafDv8DGJSs
eg==
"]]},
Annotation[#, "Charting`Private`Tag$3657#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["z", HoldForm], TraditionalForm],
FormBox["\[Mu]ext", TraditionalForm]},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 15}, {0., 0.06761639262920031}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.768740302920192*^9, 3.768740362195475*^9}, {
3.7687404106586657`*^9, 3.768740421075925*^9}, {3.7687404634381533`*^9,
3.7687405178782597`*^9}},ExpressionUUID->"93059076-389c-4bae-bfd9-\
ce257555f6dd"]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{"BI", " ", "AdS", " ", "case", " ", "plots"}], "*)"}]], "Input",
CellChangeTimes->{{3.768741593838645*^9,
3.768741604047423*^9}},ExpressionUUID->"d83a3e31-2960-4c3e-aa32-\
9ade90a30d72"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"1", "/", "\[Gamma]"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"(",
RowBox[{"6", "-",
RowBox[{"\[Beta]", "^", "2"}]}], ")"}], "\[Gamma]"}]}], ")"}],
"^", "2"}], "-", "1"}], ")"}]}], "]"}], "//", "OutputForm"}]], "Input",\
ExpressionUUID->"42ec52d1-4955-4c5a-abfe-5ade3835dd11"],
Cell[OutputFormData["\<\
Sqrt[(-1 + (1 + (6 - \[Beta]^2)*\[Gamma])^2)/\[Gamma]]\
\>", "\<\
2 2
-1 + (1 + (6 - \[Beta] ) \[Gamma])
Sqrt[----------------------]
\[Gamma]\
\>"], "Output",
CellChangeTimes->{
3.768740833083125*^9},ExpressionUUID->"f042a78c-db36-4ae9-887c-\
3b72bb419c88"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Reduce", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"1", "/", "\[Gamma]"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"(",
RowBox[{"6", "-",
RowBox[{"\[Beta]", "^", "2"}]}], ")"}], "\[Gamma]"}]}], ")"}],
"^", "2"}], "-", "1"}], ")"}]}], "]"}], "\[Element]", "Reals"}], "&&",
RowBox[{"\[Beta]", "\[GreaterEqual]", "0"}], "&&",
RowBox[{"\[Gamma]", "\[GreaterEqual]", "0"}]}], ",",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "\[Gamma]"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.768740838661462*^9,
3.768740879655645*^9}},ExpressionUUID->"1ea1014f-bec6-4d40-a17f-\
2f98c3ec2e25"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"0", "\[LessEqual]", "\[Beta]", "\[LessEqual]",
SqrtBox["6"]}], "&&",
RowBox[{"\[Gamma]", "\[GreaterEqual]", "0"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"\[Beta]", ">",
SqrtBox["6"]}], "&&",
RowBox[{"\[Gamma]", "\[GreaterEqual]",
FractionBox["2",
RowBox[{
RowBox[{"-", "6"}], "+",
SuperscriptBox["\[Beta]", "2"]}]]}]}], ")"}]}]], "Output",
CellChangeTimes->{{3.768740863799432*^9,
3.768740883322804*^9}},ExpressionUUID->"2da47409-585d-455e-b6b6-\
0ca69c09b970"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Reduce", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"1", "/", "\[Gamma]"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"(",
RowBox[{"6", "-",
RowBox[{"\[Beta]", "^", "2"}]}], ")"}], "\[Gamma]"}]}], ")"}],
"^", "2"}], "-", "1"}], ")"}]}], "]"}], "\[Element]", "Reals"}], "&&",
RowBox[{"\[Beta]", "\[GreaterEqual]", "0"}], "&&",
RowBox[{"\[Gamma]", "\[GreaterEqual]", "0"}]}], ",",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "\[Beta]"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7687409082535543`*^9,
3.768740910079207*^9}},ExpressionUUID->"bebf3671-7c92-4165-b54f-\
71aa29acb5ca"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"\[Gamma]", "\[Equal]", "0"}], "&&",
RowBox[{"0", "\[LessEqual]", "\[Beta]", "\[LessEqual]",
SqrtBox["6"]}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"\[Gamma]", ">", "0"}], "&&",
RowBox[{"(",
RowBox[{
RowBox[{"0", "\[LessEqual]", "\[Beta]", "\[LessEqual]",
SqrtBox["6"]}], "||",
RowBox[{"\[Beta]", "\[GreaterEqual]",
RowBox[{
SqrtBox["2"], " ",
SqrtBox[
FractionBox[
RowBox[{"1", "+",
RowBox[{"3", " ", "\[Gamma]"}]}], "\[Gamma]"]]}]}]}], ")"}]}],
")"}]}]], "Output",
CellChangeTimes->{
3.768740910607339*^9},ExpressionUUID->"99cc7019-bef1-471d-9e31-\
ab2d71265db0"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"\[Mu]extreme", ",", "\[Beta]Test"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"\[Beta]_", ",", "\[Gamma]_"}], "]"}], ":=",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"1", "/", "\[Gamma]"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"(",
RowBox[{"6", "-",
RowBox[{"\[Beta]", "^", "2"}]}], ")"}], "\[Gamma]"}]}], ")"}],
"^", "2"}], "-", "1"}], ")"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\"\<0<=\[Beta]<=Sqrt[6] case\>\"", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"2", ",", "\[Gamma]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "\[Mu]ext"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\"\<\[Beta]>Sqrt[6] case\>\"", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"5", ",", "\[Gamma]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Gamma]", ",",
RowBox[{"2", "/",
RowBox[{"(",
RowBox[{
RowBox[{"5", "^", "2"}], "-", "6"}], ")"}]}], ",", "10"}], "}"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "\[Mu]ext"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[", "\"\<Branch cut 0<=\[Beta]<=Sqrt[6]\>\"", "]"}],
";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"\[Beta]", ",", "10"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Beta]", ",", "0", ",",
RowBox[{"Sqrt", "[", "6", "]"}]}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "\[Mu]ext"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "]"}], ";",
"\[IndentingNewLine]",
RowBox[{
"Print", "[",
"\"\<Branch cut \[Beta]\[GreaterEqual] \!\(\*SqrtBox[FractionBox[\(2 \
\((1 + 3\\\ \[Gamma])\)\), \(\[Gamma]\)]]\)\>\"", "]"}], ";",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"\[Beta]", ",", "10"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Beta]", ",",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"2",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"3", "\[Gamma]"}]}], ")"}], "/", "\[Gamma]"}]}], "]"}],
"/.",
RowBox[{"{",
RowBox[{"\[Gamma]", "\[Rule]", "10"}], "}"}]}], ",",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"20",
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"3", "\[Gamma]"}]}], ")"}], "/", "\[Gamma]"}]}], "]"}],
"/.",
RowBox[{"{",
RowBox[{"\[Gamma]", "\[Rule]", "10"}], "}"}]}]}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "\[Mu]ext"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.7687407058474092`*^9, 3.7687407470874043`*^9}, {
3.768740801285364*^9, 3.768740824440001*^9}, {3.7687408945635023`*^9,
3.7687408968626013`*^9}, {3.7687409270966187`*^9, 3.768740927360405*^9}, {
3.768741086917358*^9, 3.768741294716589*^9}, {3.768741332846211*^9,
3.7687413767242327`*^9}, {3.768741417908558*^9,
3.768741567596114*^9}},ExpressionUUID->"5f1f1801-1559-46aa-a311-\
3b5cb642fc8c"],
Cell[CellGroupData[{
Cell[BoxData["\<\"0<=\[Beta]<=Sqrt[6] case\"\>"], "Print",
CellChangeTimes->{{3.768741166633917*^9, 3.7687411954835987`*^9}, {
3.7687412426596107`*^9, 3.768741257272633*^9}, 3.768741377752941*^9,
3.768741568340981*^9},ExpressionUUID->"521b1b4b-a99a-4172-a0fa-\
be0eb42b62a8"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVz3k41HkABvDRoGK0xjH4khl+MkUH+6xWpX5vRVvIFtkcta2RoVw1j3l2
MhVrnasc22zJ8VhylB5TWjooWYmcHVrrYbZkTIeorCZHyto/3ud93v8+r5Ug
2jtkHoPB2D6X/7vguEDbcX/6hmzuQfO5iaZunudu3gHabWlJ3xZtBmab63/m
8Y7QZRWpS9JZDBQ0nORq8dLoPdk1B1hmDESsF0dOcM/SsvjS6TFHBro/hsne
cS/Qa6IzSj2CGZjfP8gf5d6gfdPYXh5NDBS1FR5+zW2l01+7d3+O04D8Ulp/
xMo+mn4+uMP28zyE0g/PjoiU9JKv06rKt2kiSrVMWS1/RRPRp/vuUi3oWCXy
nzq/ox8MZL+9XK2NDP12u6Ifxuki8sCotG0+BP27bjM7PtDDrzg2TsMLcPhu
oiCaP027KXXHoicXouoQy8d02yd6pm8yWT2sgyJp+LDDbgaeDTUfL3mpi4TC
mZ3vRzQwMcBsy+lkgdE9gJuxTIyZrnvmV64H2xihZJedFvSuh9Q2nFiEIfWZ
73RvaaPcYGDe8z1fwF118NivhxfgwCf/XA8LfXgNZdlbWupARiaaA5P0MXxH
EH+vUhe99jvrdVT6WMnuWbx5nx7OCEvlUnc2dGh1kGJ8EcLvaedblLPxzWjA
hLWvPso6RJGChQbobdyvEbCcjd59d3uehhqgJrXpe56ajQrJ6GO/egMItcQD
XV0GcLbNub2PGCJYJK1h5RpC4quf2BhliFWh9l2eQUZQ3vex4DYY4r7Bcl3x
GmPEKHIkbzhGqJMn5C1nchB+QaRfIjSCVMNuR8c/HGSY57+trDOCjiJ2a1S1
CT64VHoo9IyhKrOSFR41xWqFDlfobwzZUjPNG75myKoZieBXGCMrV9gSxCMY
GnxZfOy9MQJke7tYLwiuvdF4Eu7CwaRr6VRhvTne3HSWiNM4UKo2SRpTLBAv
OyQJf8BB8XpH886gxdgbv9FfYGGCyiQxO3SFJbJvOpwQCUyQ4hvswVRb4hp9
5bx/mQmcFEUXUjq5KL846sV/a4KcZXmVnR483Hrf5LfrS1PENZzM8bjBg6HX
ukU7Yk2x3dy3tM3GCkcmvDc6NJhiY1RLIDvNCo7DFe/kDDMUWghsOtRWcJsv
T1K6mcHmTvlpr0Br2J81ce9Jmvu5otHuUb01OLqqZaN3zCAc13zYakdBXZte
V6xNIKj6l5eWSeErpqF0mytBRILPjHs2hd/FmdJANwKxT/XfrFMU2jMHD0Vu
IUhVizOyTlMIWWWwNnsrgXzN1MczBRRWOd/a0utJMPXnbE/ZRQrBESL3/b4E
WY9YJ5taKLj0tWnGCAlyz0WGJbdSqNxUV5wYSnAupmvz1nYKzMhKp9/CCK5y
sqbbuyjE+eWvvXqQQBFgGNb9F4W9f7Q2TEQR8JVmmweVFLyf/HJb8iOBQ3Ws
ZYmKQoXfanmqhGBtUv9UyIs5X+1kds4RAk9+weVXwxRMYlqcr0sJROE8y7Ex
ClGiKuZEHMFRl5+mroxTKOl3ztP+iSBJb/BxjJpCXukzPieBIOfSufTJyTnP
qXyeUyJBcbxmaO00hWLvqhOuSQQXd4ZsOjpDYeT8yKhPMkG1dfPiDZ/nfMpv
XYNTCOrHbadmZykkeykyRakE/wH/lxk2
"]]},
Annotation[#, "Charting`Private`Tag$4922#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["\[Gamma]", HoldForm], TraditionalForm],
FormBox["\[Mu]ext", TraditionalForm]},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 6.6332495191778715`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.768741166633917*^9, 3.7687411954835987`*^9}, {
3.7687412426596107`*^9, 3.768741257272633*^9}, 3.768741377752941*^9,
3.7687415683932743`*^9},ExpressionUUID->"a62faa41-ecdc-445b-ae0c-\
9462e757b7b8"],
Cell[BoxData["\<\"\[Beta]>Sqrt[6] case\"\>"], "Print",
CellChangeTimes->{{3.768741166633917*^9, 3.7687411954835987`*^9}, {
3.7687412426596107`*^9, 3.768741257272633*^9}, 3.768741377752941*^9,
3.7687415684058323`*^9},ExpressionUUID->"cf6b624a-9e8e-4994-980a-\
1ecc2d7ff40b"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVjnk41fkChzmRXWTPevzocaQSamJOvh/bsf5KlmxTlpGQcq861TQUMt0y
LWSrqKxdNda6kyWc5liSUxRnCCNrWswYu6Qy3T/e533e/15mSLTHfoaIiMih
r/zfOR1/6SbP1JJNCy8Y38cmkNhHjoKDNQ/JbW0zjjtvinxXmXeMjq8jr7IX
4pTKFwk7f5m52bGesB0aqDLRz0QzzfuZgnwDOfZNxKgFTwQfz5SfmBE2kE8/
B6qyaxjoOyplIMzmEe5oAKoTxUD/sq9ekP6I9HWc1xMpl0BdgUwa+8Mj4sQv
qnmsIwWTnOrw0oDfSG4071L+SWnIXlyrfFmfT2q+YXjdFJXD08MtkR4VjST1
S7n0Jp4C2AeOoFGpicTFXEzRtVNESaCeqsXxJhIq/+rAjkZFXHA/+ZuKdTPZ
rF+xsLVmLdzMNqn3ClpIYoLdnXuJyhDMZzQHvnlCkigT5+UyNVhN2mY/d2kj
6QrUtU+y6rg7/ve/bMraCNdOZjEtQh3JPc5aFFdABiNYrEYdDbjUfI4ZZzwj
9xMtrW6eXIf9DWYp29Y8J7f6FYOui2pjLOH6jnrjLhKCBC8Tnh4KjarpwqAu
UhH4sd9rVA+hHb/v/Tmzi1QXe+eYSjAxpqV4yo8hJIUBA9uldn7tqv80zPcK
SaN/2tLhl0yM/nWUbDrfTcLzWxv8h/Ux4rfL5tabXtJ2KlNfIDBAvsih3We1
+0jWbL3D3FsDhPw3OfiQZx9hUmELc+KGGJlrTviW10fKv+/KOE2+9mU2vyez
n+wfXp5vqzDEcDPLToEzQPyrW2WrLqzHlHpiPjyGyCquxbTRRiO8rd84E3lw
iHTyLguv2RthKKTXJiNpiHhc4rDmAozwosR0+N2DIaLlpWMUlmyEexjUTdMc
JmLx5+w440Y4Es6+8XpsmJxrn7jDus7CQtVCVvLxUeJjwHYamTXG5z0HLwpz
xomSzFjd9PGNiHTWyH3++E+ypca+4fSkKaI43aXuddOkZbHWrV3CHMaaViup
/XMkj7cxI+WpBcKvKhTV7/hAuJJt11wub0N39JN92inLZOc4lTjJ2g63k1qy
e+58IQdWtvW0pVoiT3X6bB1DFMvbW6aHGN8iVyovwSqdgae542tjXdioYtme
7dQWQ3r1cfk/4nZA7qbWr4Ot4rBc7MkW1FvjzYamvX4+EhAau4esGiAQlS8y
dZKQwpJf1IZfkgBz7eNyu8ulkX0MLxWVbPDOQTW0xUoWEX3iN56n2WCQPzlW
8UYO/LrVRyI0beHnlz4ocWIN7EZVguMybSGVb8l4n64A2+hSrwB1O8yU5mkM
RCii1zeZk5luhxucqUNnTdditbjL1SZxe4SfD/B5L6GE/ixWQXWcPeZ9S+PE
Xiihsv3WK5cJe8jzFos3ZCpD9FL15zQvB3A69kXIRamga7Zw74UmByCqJKzI
XBVOGdICmQ0c+N9XXVqUUYOelHesylUORFJ/SPEZUkOgypEJY1FHhC/zQw/d
Voec1pQwKdgRU2tY7TviNNA7ceKBU6sjrCq5R5sc1oHLvb+5ZL0TFN7V6vpK
a0J0Teh8Z4ITVgu0gm4PaiLOUe69zagTGiz3D9y9rYXQyOl33WxnZHq0/R1x
Shvy3v8rT81xhukHFTLoqIPex2Y1D+acscfCPy1YThf//sE6meHigpx1D2Nv
juoiyM7L0LPIBZ2chBet3noYSNTo5i65IMzbvFyXr4fVDW91T3m6AuXBa+JM
mHBID/ZtvuuKH3etuvTrZSa25vods1p2RYu9uY/rMhOFf34o5O52Q0x8t3Vd
oD6yxBzPyea5IVRiodicr4/xiDIf60k3hI0W7JXcSOHcyMCP6jY0nog3m1an
UDB1+MTPvEjDvWd8F/cKhfZ+7ZT3l2i8LJaMNkun4Nn6mbZOofHW1a20JIvC
1j6RnNdXaEhe6WLl3aSg40wnmF+lwdEZ0U8uoZCk+CTmaT6Npm0ryt+1Uqj3
TVyZqaLhJsm00GijcP1h0Fv7GhrCXlvPbgEF0V3W/MxaGmOxZ1PdOyjcEVtx
sqqnsapRTt6hm8KW0+358Xwatru0JDaNUdg8EHJe+hmNNj3r9ROvKeTLUGcC
2ml4zAQ6FL+hEGXCOFzSQSM4o+CM/gQF1npDtZ2dNOL7jUXUZij0S22tSun5
+l/qpiucpVAxQFkNv6SRcuqwdeo8hR5/m7ItfTRymfdiZZYoHDRQiOz8g4bR
bFd260cK4X7NlfqvaFQ0zdf+9IlCr2Tl+5hBGtsz1fpsv1BYMPxduXGIBu+A
5dLKCoWfCsxNlUZo/AO9IQ9+
"]]},
Annotation[#, "Charting`Private`Tag$4965#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["\[Gamma]", HoldForm], TraditionalForm],
FormBox["\[Mu]ext", TraditionalForm]},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 10}, {0., 59.76621058007644}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{{3.768741166633917*^9, 3.7687411954835987`*^9}, {
3.7687412426596107`*^9, 3.768741257272633*^9}, 3.768741377752941*^9,
3.768741568466323*^9},ExpressionUUID->"bb618f4a-14ac-4fa3-850b-\
a944f1fdee3e"],
Cell[BoxData["\<\"Branch cut 0<=\[Beta]<=Sqrt[6]\"\>"], "Print",
CellChangeTimes->{{3.768741166633917*^9, 3.7687411954835987`*^9}, {
3.7687412426596107`*^9, 3.768741257272633*^9}, 3.768741377752941*^9,