-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
286 lines (243 loc) · 12.8 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import numpy as np
import pandas as pd
import random
import torch
import time
import os
import copy
import json
import tifffile
import h3
import setup
from sklearn.linear_model import RidgeCV
from sklearn.preprocessing import MinMaxScaler
import utils
import models
import datasets
class EvaluatorSNT:
def __init__(self, train_params, eval_params):
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
D = np.load(os.path.join(paths['snt'], 'snt_res_5.npy'), allow_pickle=True)
D = D.item()
self.loc_indices_per_species = D['loc_indices_per_species']
self.labels_per_species = D['labels_per_species']
self.taxa = D['taxa']
self.obs_locs = D['obs_locs']
self.obs_locs_idx = D['obs_locs_idx']
def get_labels(self, species):
species = str(species)
lat = []
lon = []
gt = []
for hx in self.data:
cur_lat, cur_lon = h3.h3_to_geo(hx)
if species in self.data[hx]:
cur_label = int(len(self.data[hx][species]) > 0)
gt.append(cur_label)
lat.append(cur_lat)
lon.append(cur_lon)
lat = np.array(lat).astype(np.float32)
lon = np.array(lon).astype(np.float32)
obs_locs = np.vstack((lon, lat)).T
gt = np.array(gt).astype(np.float32)
return obs_locs, gt
def run_evaluation(self, model, enc):
results = {}
# set seeds:
np.random.seed(self.eval_params['seed'])
random.seed(self.eval_params['seed'])
# evaluate the geo model for each taxon
results['per_species_average_precision_all'] = np.zeros((len(self.taxa)), dtype=np.float32)
# get eval locations and apply input encoding
obs_locs = torch.from_numpy(self.obs_locs).to(self.eval_params['device'])
loc_feat = enc.encode(obs_locs)
# get classes to eval
classes_of_interest = torch.zeros(len(self.taxa), dtype=torch.int64)
for tt_id, tt in enumerate(self.taxa):
class_of_interest = np.where(np.array(self.train_params['class_to_taxa']) == tt)[0]
if len(class_of_interest) != 0:
classes_of_interest[tt_id] = torch.from_numpy(class_of_interest)
# generate model predictions for classes of interest at eval locations
with torch.no_grad():
loc_emb = model(loc_feat, return_feats=True)
wt = model.class_emb.weight[classes_of_interest, :]
pred_mtx = torch.matmul(loc_emb, torch.transpose(wt, 0, 1)).cpu().numpy()
split_rng = np.random.default_rng(self.eval_params['split_seed'])
for tt_id, tt in enumerate(self.taxa):
class_of_interest = np.where(np.array(self.train_params['class_to_taxa']) == tt)[0]
if len(class_of_interest) == 0:
# taxa of interest is not in the model
results['per_species_average_precision_all'][tt_id] = np.nan
else:
# generate ground truth labels for current taxa
cur_loc_indices = np.array(self.loc_indices_per_species[tt_id])
cur_labels = np.array(self.labels_per_species[tt_id])
# apply per-species split:
assert self.eval_params['split'] in ['all', 'val', 'test']
if self.eval_params['split'] != 'all':
num_val = np.floor(len(cur_labels) * self.eval_params['val_frac']).astype(int)
idx_rand = split_rng.permutation(len(cur_labels))
if self.eval_params['split'] == 'val':
idx_sel = idx_rand[:num_val]
elif self.eval_params['split'] == 'test':
idx_sel = idx_rand[num_val:]
cur_loc_indices = cur_loc_indices[idx_sel]
cur_labels = cur_labels[idx_sel]
# extract model predictions for current taxa from prediction matrix
pred = pred_mtx[cur_loc_indices, tt_id]
# compute the AP for each taxa
results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_faster((cur_labels > 0).astype(np.int32), pred)
valid_taxa = ~np.isnan(results['per_species_average_precision_all'])
# store results
per_species_average_precision_valid = results['per_species_average_precision_all'][valid_taxa]
results['mean_average_precision'] = per_species_average_precision_valid.mean()
results['num_eval_species_w_valid_ap'] = valid_taxa.sum()
results['num_eval_species_total'] = len(self.taxa)
return results
def report(self, results):
for field in ['mean_average_precision', 'num_eval_species_w_valid_ap', 'num_eval_species_total']:
print(f'{field}: {results[field]}')
class EvaluatorIUCN:
def __init__(self, train_params, eval_params):
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
with open(os.path.join(paths['iucn'], 'iucn_res_5.json'), 'r') as f:
self.data = json.load(f)
self.obs_locs = np.array(self.data['locs'], dtype=np.float32)
self.taxa = [int(tt) for tt in self.data['taxa_presence'].keys()]
def run_evaluation(self, model, enc):
results = {}
results['per_species_average_precision_all'] = np.zeros(len(self.taxa), dtype=np.float32)
# get eval locations and apply input encoding
obs_locs = torch.from_numpy(self.obs_locs).to(self.eval_params['device'])
loc_feat = enc.encode(obs_locs)
# get classes to eval
classes_of_interest = torch.zeros(len(self.taxa), dtype=torch.int64)
for tt_id, tt in enumerate(self.taxa):
class_of_interest = np.where(np.array(self.train_params['class_to_taxa']) == tt)[0]
if len(class_of_interest) != 0:
classes_of_interest[tt_id] = torch.from_numpy(class_of_interest)
with torch.no_grad():
# generate model predictions for classes of interest at eval locations
loc_emb = model(loc_feat, return_feats=True)
wt = model.class_emb.weight[classes_of_interest, :]
pred_mtx = torch.matmul(loc_emb, torch.transpose(wt, 0, 1)).cpu().numpy()
for tt_id, tt in enumerate(self.taxa):
class_of_interest = np.where(np.array(self.train_params['class_to_taxa']) == tt)[0]
if len(class_of_interest) == 0:
# taxa of interest is not in the model
results['per_species_average_precision_all'][tt_id] = np.nan
else:
# extract model predictions for current taxa from prediction matrix
pred = pred_mtx[:, tt_id]
gt = np.zeros(obs_locs.shape[0], dtype=np.float32)
gt[self.data['taxa_presence'][str(tt)]] = 1.0
# average precision score:
results['per_species_average_precision_all'][tt_id] = utils.average_precision_score_faster(gt, pred)
valid_taxa = ~np.isnan(results['per_species_average_precision_all'])
# store results
per_species_average_precision_valid = results['per_species_average_precision_all'][valid_taxa]
results['mean_average_precision'] = per_species_average_precision_valid.mean()
results['num_eval_species_w_valid_ap'] = valid_taxa.sum()
results['num_eval_species_total'] = len(self.taxa)
return results
def report(self, results):
for field in ['mean_average_precision', 'num_eval_species_w_valid_ap', 'num_eval_species_total']:
print(f'{field}: {results[field]}')
class EvaluatorGeoFeature:
def __init__(self, train_params, eval_params):
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
self.data_path = paths['geo_feature']
self.country_mask = tifffile.imread(os.path.join(paths['masks'], 'USA_MASK.tif')) == 1
self.raster_names = ['ABOVE_GROUND_CARBON', 'ELEVATION', 'LEAF_AREA_INDEX', 'NON_TREE_VEGITATED', 'NOT_VEGITATED', 'POPULATION_DENSITY', 'SNOW_COVER', 'SOIL_MOISTURE', 'TREE_COVER']
self.raster_names_log_transform = ['POPULATION_DENSITY']
def load_raster(self, raster_name, log_transform=False):
raster = tifffile.imread(os.path.join(self.data_path, raster_name + '.tif')).astype(np.float32)
valid_mask = ~np.isnan(raster).copy() & self.country_mask
# log scaling:
if log_transform:
raster[valid_mask] = np.log1p(raster[valid_mask] - raster[valid_mask].min())
# 0/1 scaling:
raster[valid_mask] -= raster[valid_mask].min()
raster[valid_mask] /= raster[valid_mask].max()
return raster, valid_mask
def get_split_labels(self, raster, split_ids, split_of_interest):
# get the GT labels for a subset
inds_y, inds_x = np.where(split_ids==split_of_interest)
return raster[inds_y, inds_x]
def get_split_feats(self, model, enc, split_ids, split_of_interest):
locs = utils.coord_grid(self.country_mask.shape, split_ids=split_ids, split_of_interest=split_of_interest)
locs = torch.from_numpy(locs).to(self.eval_params['device'])
locs_enc = enc.encode(locs)
with torch.no_grad():
feats = model(locs_enc, return_feats=True).cpu().numpy()
return feats
def run_evaluation(self, model, enc):
results = {}
for raster_name in self.raster_names:
do_log_transform = raster_name in self.raster_names_log_transform
raster, valid_mask = self.load_raster(raster_name, do_log_transform)
split_ids = utils.create_spatial_split(raster, valid_mask, cell_size=self.eval_params['cell_size'])
feats_train = self.get_split_feats(model, enc, split_ids=split_ids, split_of_interest=1)
feats_test = self.get_split_feats(model, enc, split_ids=split_ids, split_of_interest=2)
labels_train = self.get_split_labels(raster, split_ids, 1)
labels_test = self.get_split_labels(raster, split_ids, 2)
scaler = MinMaxScaler()
feats_train_scaled = scaler.fit_transform(feats_train)
feats_test_scaled = scaler.transform(feats_test)
clf = RidgeCV(alphas=(0.1, 1.0, 10.0), normalize=False, cv=10, fit_intercept=True, scoring='r2').fit(feats_train_scaled, labels_train)
train_score = clf.score(feats_train_scaled, labels_train)
test_score = clf.score(feats_test_scaled, labels_test)
results[f'train_r2_{raster_name}'] = float(train_score)
results[f'test_r2_{raster_name}'] = float(test_score)
results[f'alpha_{raster_name}'] = float(clf.alpha_)
return results
def report(self, results):
report_fields = [x for x in results if 'test_r2' in x]
for field in report_fields:
print(f'{field}: {results[field]}')
print(np.mean([results[field] for field in report_fields]))
def launch_eval_run(overrides):
eval_params = setup.get_default_params_eval(overrides)
# set up model:
eval_params['model_path'] = os.path.join(eval_params['exp_base'], eval_params['experiment_name'], eval_params['ckp_name'])
train_params = torch.load(eval_params['model_path'], map_location='cpu')
model = models.get_model(train_params['params'])
model.load_state_dict(train_params['state_dict'], strict=True)
model = model.to(eval_params['device'])
model.eval()
# create input encoder:
if train_params['params']['input_enc'] in ['env', 'sin_cos_env']:
raster = datasets.load_env().to(eval_params['device'])
else:
raster = None
enc = utils.CoordEncoder(train_params['params']['input_enc'], raster=raster)
print('\n' + eval_params['eval_type'])
t = time.time()
if eval_params['eval_type'] == 'snt':
eval_params['split'] = 'test' # val, test, all
eval_params['val_frac'] = 0.50
eval_params['split_seed'] = 7499
evaluator = EvaluatorSNT(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
elif eval_params['eval_type'] == 'iucn':
evaluator = EvaluatorIUCN(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
elif eval_params['eval_type'] == 'geo_feature':
evaluator = EvaluatorGeoFeature(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
else:
raise NotImplementedError('Eval type not implemented.')
print(f'evaluation completed in {np.around((time.time()-t)/60, 1)} min')
return results