-
Notifications
You must be signed in to change notification settings - Fork 7
/
index.ts
821 lines (717 loc) · 23.5 KB
/
index.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
// An augmented AVL Tree where each node maintains a list of records and their search intervals.
// Record is composed of an interval and its underlying data, sent by a client. This allows the
// interval tree to have the same interval inserted multiple times, as long its data is different.
// Both insertion and deletion require O(log n) time. Searching requires O(k*logn) time, where `k`
// is the number of intervals in the output list.
import isSame = require('shallowequal')
export interface Interval<N extends number | bigint = number> {
readonly low: N
readonly high: N
}
function max<N extends number | bigint>(a: N, b: N): N {
return a < b ? b : a
}
function height<T extends Interval<N>, N extends number | bigint = number>(node?: Node<T, N>) {
if (node === undefined) {
return -1
} else {
return node.height
}
}
export class Node<T extends Interval<N>, N extends number | bigint = number> {
public key: N
public max: N
public records: T[] = []
public parent?: Node<T, N>
public height = 0
public left?: Node<T, N>
public right?: Node<T, N>
constructor(public intervalTree: IntervalTree<T, N>, record: T) {
this.key = record.low
this.max = record.high
// Save the array of all records with the same key for this node
this.records.push(record)
}
// Gets the highest record.high value for this node
public getNodeHigh() {
let high = this.records[0].high
for (let i = 1; i < this.records.length; i++) {
if (this.records[i].high > high) {
high = this.records[i].high
}
}
return high
}
// Updates height value of the node. Called during insertion, rebalance, removal
public updateHeight() {
this.height = max(height(this.left), height(this.right)) + 1
}
// Updates the max value of all the parents after inserting into already existing node, as well as
// removing the node completely or removing the record of an already existing node. Starts with
// the parent of an affected node and bubbles up to root
public updateMaxOfParents() {
if (this === undefined) {
return
}
const thisHigh = this.getNodeHigh()
if (this.left !== undefined && this.right !== undefined) {
this.max = max(max(this.left.max, this.right.max), thisHigh)
} else if (this.left !== undefined && this.right === undefined) {
this.max = max(this.left.max, thisHigh)
} else if (this.left === undefined && this.right !== undefined) {
this.max = max(this.right.max, thisHigh)
} else {
this.max = thisHigh
}
if (this.parent) {
this.parent.updateMaxOfParents()
}
}
/*
Left-Left case:
z y
/ \ / \
y T4 Right Rotate (z) x z
/ \ - - - - - - - - -> / \ / \
x T3 T1 T2 T3 T4
/ \
T1 T2
Left-Right case:
z z x
/ \ / \ / \
y T4 Left Rotate (y) x T4 Right Rotate(z) y z
/ \ - - - - - - - - -> / \ - - - - - - - -> / \ / \
T1 x y T3 T1 T2 T3 T4
/ \ / \
T2 T3 T1 T2
*/
// Handles Left-Left case and Left-Right case after rebalancing AVL tree
private _updateMaxAfterRightRotate() {
const parent = this.parent!
const left = parent.left!
// Update max of left sibling (x in first case, y in second)
const thisParentLeftHigh = left.getNodeHigh()
if (left.left === undefined && left.right !== undefined) {
left.max = max(thisParentLeftHigh, left.right.max)
} else if (left.left !== undefined && left.right === undefined) {
left.max = max(thisParentLeftHigh, left.left.max)
} else if (left.left === undefined && left.right === undefined) {
left.max = thisParentLeftHigh
} else {
left.max = max(max(left.left!.max, left.right!.max), thisParentLeftHigh)
}
// Update max of itself (z)
const thisHigh = this.getNodeHigh()
if (this.left === undefined && this.right !== undefined) {
this.max = max(thisHigh, this.right.max)
} else if (this.left !== undefined && this.right === undefined) {
this.max = max(thisHigh, this.left.max)
} else if (this.left === undefined && this.right === undefined) {
this.max = thisHigh
} else {
this.max = max(max(this.left!.max, this.right!.max), thisHigh)
}
// Update max of parent (y in first case, x in second)
parent.max = max(max(parent.left!.max, parent.right!.max), parent.getNodeHigh())
}
/*
Right-Right case:
z y
/ \ / \
T1 y Left Rotate(z) z x
/ \ - - - - - - - -> / \ / \
T2 x T1 T2 T3 T4
/ \
T3 T4
Right-Left case:
z z x
/ \ / \ / \
T1 y Right Rotate (y) T1 x Left Rotate(z) z y
/ \ - - - - - - - - -> / \ - - - - - - - -> / \ / \
x T4 T2 y T1 T2 T3 T4
/ \ / \
T2 T3 T3 T4
*/
// Handles Right-Right case and Right-Left case in rebalancing AVL tree
private _updateMaxAfterLeftRotate() {
const parent = this.parent!
const right = parent.right!
// Update max of right sibling (x in first case, y in second)
const thisParentRightHigh = right.getNodeHigh()
if (right.left === undefined && right.right !== undefined) {
right.max = max(thisParentRightHigh, right.right.max)
} else if (right.left !== undefined && right.right === undefined) {
right.max = max(thisParentRightHigh, right.left.max)
} else if (right.left === undefined && right.right === undefined) {
right.max = thisParentRightHigh
} else {
right.max = max(max(right.left!.max, right.right!.max), thisParentRightHigh)
}
// Update max of itself (z)
const thisHigh = this.getNodeHigh()
if (this.left === undefined && this.right !== undefined) {
this.max = max(thisHigh, this.right.max)
} else if (this.left !== undefined && this.right === undefined) {
this.max = max(thisHigh, this.left.max)
} else if (this.left === undefined && this.right === undefined) {
this.max = thisHigh
} else {
this.max = max(max(this.left!.max, this.right!.max), thisHigh)
}
// Update max of parent (y in first case, x in second)
parent.max = max(max(parent.left!.max, right.max), parent.getNodeHigh())
}
private _leftRotate() {
const rightChild = this.right!
rightChild.parent = this.parent
if (rightChild.parent === undefined) {
this.intervalTree.root = rightChild
} else {
if (rightChild.parent.left === this) {
rightChild.parent.left = rightChild
} else if (rightChild.parent.right === this) {
rightChild.parent.right = rightChild
}
}
this.right = rightChild.left
if (this.right !== undefined) {
this.right.parent = this
}
rightChild.left = this
this.parent = rightChild
this.updateHeight()
rightChild.updateHeight()
}
private _rightRotate() {
const leftChild = this.left!
leftChild.parent = this.parent
if (leftChild.parent === undefined) {
this.intervalTree.root = leftChild
} else {
if (leftChild.parent.left === this) {
leftChild.parent.left = leftChild
} else if (leftChild.parent.right === this) {
leftChild.parent.right = leftChild
}
}
this.left = leftChild.right
if (this.left !== undefined) {
this.left.parent = this
}
leftChild.right = this
this.parent = leftChild
this.updateHeight()
leftChild.updateHeight()
}
// Rebalances the tree if the height value between two nodes of the same parent is greater than
// two. There are 4 cases that can happen which are outlined in the graphics above
private _rebalance() {
if (height(this.left) >= 2 + height(this.right)) {
const left = this.left!
if (height(left.left) >= height(left.right)) {
// Left-Left case
this._rightRotate()
this._updateMaxAfterRightRotate()
} else {
// Left-Right case
left._leftRotate()
this._rightRotate()
this._updateMaxAfterRightRotate()
}
} else if (height(this.right) >= 2 + height(this.left)) {
const right = this.right!
if (height(right.right) >= height(right.left)) {
// Right-Right case
this._leftRotate()
this._updateMaxAfterLeftRotate()
} else {
// Right-Left case
right._rightRotate()
this._leftRotate()
this._updateMaxAfterLeftRotate()
}
}
}
public insert(record: T) {
if (record.low < this.key) {
// Insert into left subtree
if (this.left === undefined) {
this.left = new Node(this.intervalTree, record)
this.left.parent = this
} else {
this.left.insert(record)
}
} else {
// Insert into right subtree
if (this.right === undefined) {
this.right = new Node(this.intervalTree, record)
this.right.parent = this
} else {
this.right.insert(record)
}
}
// Update the max value of this ancestor if needed
if (this.max < record.high) {
this.max = record.high
}
// Update height of each node
this.updateHeight()
// Rebalance the tree to ensure all operations are executed in O(logn) time. This is especially
// important in searching, as the tree has a high chance of degenerating without the rebalancing
this._rebalance()
}
private _getOverlappingRecords(currentNode: Node<T, N>, low: N, high: N) {
if (currentNode.key <= high && low <= currentNode.getNodeHigh()) {
// Nodes are overlapping, check if individual records in the node are overlapping
const tempResults: T[] = []
for (let i = 0; i < currentNode.records.length; i++) {
if (currentNode.records[i].high >= low) {
tempResults.push(currentNode.records[i])
}
}
return tempResults
}
return []
}
public search(low: N, high: N) {
// Don't search nodes that don't exist
if (this === undefined) {
return []
}
let leftSearch: T[] = []
let ownSearch: T[] = []
let rightSearch: T[] = []
// If interval is to the right of the rightmost point of any interval in this node and all its
// children, there won't be any matches
if (low > this.max) {
return []
}
// Search left children
if (this.left !== undefined && this.left.max >= low) {
leftSearch = this.left.search(low, high)
}
// Check this node
ownSearch = this._getOverlappingRecords(this, low, high)
// If interval is to the left of the start of this interval, then it can't be in any child to
// the right
if (high < this.key) {
return leftSearch.concat(ownSearch)
}
// Otherwise, search right children
if (this.right !== undefined) {
rightSearch = this.right.search(low, high)
}
// Return accumulated results, if any
return leftSearch.concat(ownSearch, rightSearch)
}
// Searches for a node by a `key` value
public searchExisting(low: N): Node<T, N> | undefined {
if (this === undefined) {
return undefined
}
if (this.key === low) {
return this
} else if (low < this.key) {
if (this.left !== undefined) {
return this.left.searchExisting(low)
}
} else {
if (this.right !== undefined) {
return this.right.searchExisting(low)
}
}
return undefined
}
// Returns the smallest node of the subtree
private _minValue(): Node<T, N> {
if (this.left === undefined) {
return this
} else {
return this.left._minValue()
}
}
public remove(node: Node<T, N>): Node<T, N> | undefined {
const parent = this.parent!
if (node.key < this.key) {
// Node to be removed is on the left side
if (this.left !== undefined) {
return this.left.remove(node)
} else {
return undefined
}
} else if (node.key > this.key) {
// Node to be removed is on the right side
if (this.right !== undefined) {
return this.right.remove(node)
} else {
return undefined
}
} else {
if (this.left !== undefined && this.right !== undefined) {
// Node has two children
const minValue = this.right._minValue()
this.key = minValue.key
this.records = minValue.records
return this.right.remove(this)
} else if (parent.left === this) {
// One child or no child case on left side
if (this.right !== undefined) {
parent.left = this.right
this.right.parent = parent
} else {
parent.left = this.left
if (this.left !== undefined) {
this.left.parent = parent
}
}
parent.updateMaxOfParents()
parent.updateHeight()
parent._rebalance()
return this
} else if (parent.right === this) {
// One child or no child case on right side
if (this.right !== undefined) {
parent.right = this.right
this.right.parent = parent
} else {
parent.right = this.left
if (this.left !== undefined) {
this.left.parent = parent
}
}
parent.updateMaxOfParents()
parent.updateHeight()
parent._rebalance()
return this
}
}
// Make linter happy
return undefined
}
}
export class IntervalTree<T extends Interval<N>, N extends number | bigint = number> {
public root?: Node<T, N>
public count = 0
public insert(record: T) {
if (record.low > record.high) {
throw new Error('`low` value must be lower or equal to `high` value')
}
if (this.root === undefined) {
// Base case: Tree is empty, new node becomes root
this.root = new Node(this, record)
this.count++
return true
} else {
// Otherwise, check if node already exists with the same key
const node = this.root.searchExisting(record.low)
if (node !== undefined) {
// Check the records in this node if there already is the one with same low, high, data
for (let i = 0; i < node.records.length; i++) {
if (isSame(node.records[i], record)) {
// This record is same as the one we're trying to insert; return false to indicate
// nothing has been inserted
return false
}
}
// Add the record to the node
node.records.push(record)
// Update max of the node and its parents if necessary
if (record.high > node.max) {
node.max = record.high
if (node.parent) {
node.parent.updateMaxOfParents()
}
}
this.count++
return true
} else {
// Node with this key doesn't already exist. Call insert function on root's node
this.root.insert(record)
this.count++
return true
}
}
}
public search(low: N, high: N) {
if (this.root === undefined) {
// Tree is empty; return empty array
return []
} else {
return this.root.search(low, high)
}
}
public remove(record: T) {
if (this.root === undefined) {
// Tree is empty; nothing to remove
return false
} else {
const node = this.root.searchExisting(record.low)
if (node === undefined) {
return false
} else if (node.records.length > 1) {
let removedRecord: T | undefined
// Node with this key has 2 or more records. Find the one we need and remove it
for (let i = 0; i < node.records.length; i++) {
if (isSame(node.records[i], record)) {
removedRecord = node.records[i]
node.records.splice(i, 1)
break
}
}
if (removedRecord) {
removedRecord = undefined
// Update max of that node and its parents if necessary
if (record.high === node.max) {
const nodeHigh = node.getNodeHigh()
if (node.left !== undefined && node.right !== undefined) {
node.max = max(max(node.left.max, node.right.max), nodeHigh)
} else if (node.left !== undefined && node.right === undefined) {
node.max = max(node.left.max, nodeHigh)
} else if (node.left === undefined && node.right !== undefined) {
node.max = max(node.right.max, nodeHigh)
} else {
node.max = nodeHigh
}
if (node.parent) {
node.parent.updateMaxOfParents()
}
}
this.count--
return true
} else {
return false
}
} else if (node.records.length === 1) {
// Node with this key has only 1 record. Check if the remaining record in this node is
// actually the one we want to remove
if (isSame(node.records[0], record)) {
// The remaining record is the one we want to remove. Remove the whole node from the tree
if (this.root.key === node.key) {
// We're removing the root element. Create a dummy node that will temporarily take
// root's parent role
const rootParent = new Node<T, N>(this, { low: record.low, high: record.low } as T)
rootParent.left = this.root
this.root.parent = rootParent
let removedNode = this.root.remove(node)
this.root = rootParent.left
if (this.root !== undefined) {
this.root.parent = undefined
}
if (removedNode) {
removedNode = undefined
this.count--
return true
} else {
return false
}
} else {
let removedNode = this.root.remove(node)
if (removedNode) {
removedNode = undefined
this.count--
return true
} else {
return false
}
}
} else {
// The remaining record is not the one we want to remove
return false
}
} else {
// No records at all in this node?! Shouldn't happen
return false
}
}
}
public inOrder() {
return new InOrder(this.root)
}
public reverseInOrder() {
return new ReverseInOrder(this.root)
}
public preOrder() {
return new PreOrder(this.root)
}
}
export interface DataInterval<T, N extends number | bigint = number> extends Interval<N> {
data: T
}
/**
* The default export just wraps the `IntervalTree`, while providing a simpler API. Check out the
* README for description on how to use each.
*/
export default class DataIntervalTree<T, N extends number | bigint = number> {
private tree = new IntervalTree<DataInterval<T, N>, N>()
public insert(low: N, high: N, data: T) {
return this.tree.insert({ low, high, data })
}
public remove(low: N, high: N, data: T) {
return this.tree.remove({ low, high, data })
}
public search(low: N, high: N) {
return this.tree.search(low, high).map(v => v.data)
}
public inOrder() {
return this.tree.inOrder()
}
public reverseInOrder() {
return this.tree.reverseInOrder()
}
public preOrder() {
return this.tree.preOrder()
}
get count() {
return this.tree.count
}
}
export class InOrder<T extends Interval<N>, N extends number | bigint = number>
implements IterableIterator<T>
{
private stack: Node<T, N>[] = []
private currentNode?: Node<T, N>
private i: number
constructor(startNode?: Node<T, N>) {
if (startNode !== undefined) {
this.push(startNode)
}
}
[Symbol.iterator]() {
return this
}
public next(): IteratorResult<T> {
// Will only happen if stack is empty and pop is called
if (this.currentNode === undefined) {
return {
done: true,
value: undefined,
} as any as IteratorResult<T>
}
// Process this node
if (this.i < this.currentNode.records.length) {
return {
done: false,
value: this.currentNode.records[this.i++],
}
}
if (this.currentNode.right !== undefined) {
// Can we go right?
this.push(this.currentNode.right)
} else {
// Otherwise go up
// Might pop the last and set this.currentNode = undefined
this.pop()
}
return this.next()
}
private push(node: Node<T, N>) {
this.currentNode = node
this.i = 0
while (this.currentNode.left !== undefined) {
this.stack.push(this.currentNode)
this.currentNode = this.currentNode.left
}
}
private pop() {
this.currentNode = this.stack.pop()
this.i = 0
}
}
export class ReverseInOrder<T extends Interval<N>, N extends number | bigint = number>
implements IterableIterator<T>
{
private stack: Node<T, N>[] = []
private currentNode?: Node<T, N>
private i: number
constructor(startNode?: Node<T, N>) {
if (startNode !== undefined) {
this.push(startNode)
}
}
[Symbol.iterator]() {
return this
}
public next(): IteratorResult<T> {
// Will only happen if stack is empty and pop is called
if (this.currentNode === undefined) {
return {
done: true,
value: undefined,
} as any as IteratorResult<T>
}
// Process this node
if (this.currentNode.records.length && this.i >= 0) {
return {
done: false,
value: this.currentNode.records[this.i--],
}
}
if (this.currentNode.left !== undefined) {
// Can we go left?
this.push(this.currentNode.left)
} else {
// Otherwise go up
// Might pop the last and set this.currentNode = undefined
this.pop()
}
return this.next()
}
private push(node: Node<T, N>) {
this.currentNode = node
this.i = (this.currentNode?.records.length ?? 0) - 1
while (this.currentNode.right !== undefined) {
this.stack.push(this.currentNode)
this.currentNode = this.currentNode.right
this.i = (this.currentNode?.records.length ?? 0) - 1
}
}
private pop() {
this.currentNode = this.stack.pop()
this.i = (this.currentNode?.records.length ?? 0) - 1
}
}
export class PreOrder<T extends Interval<N>, N extends number | bigint = number>
implements IterableIterator<T>
{
private stack: Node<T, N>[] = []
private currentNode?: Node<T, N>
private i = 0
constructor(startNode?: Node<T, N>) {
this.currentNode = startNode
}
[Symbol.iterator]() {
return this
}
public next(): IteratorResult<T> {
// Will only happen if stack is empty and pop is called,
// which only happens if there is no right node (i.e we are done)
if (this.currentNode === undefined) {
return {
done: true,
value: undefined,
} as any as IteratorResult<T>
}
// Process this node
if (this.i < this.currentNode.records.length) {
return {
done: false,
value: this.currentNode.records[this.i++],
}
}
if (this.currentNode.right !== undefined) {
this.push(this.currentNode.right)
}
if (this.currentNode.left !== undefined) {
this.push(this.currentNode.left)
}
this.pop()
return this.next()
}
private push(node: Node<T, N>) {
this.stack.push(node)
}
private pop() {
this.currentNode = this.stack.pop()
this.i = 0
}
}