-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
executable file
·178 lines (153 loc) · 6.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from __future__ import print_function
import os
import time
import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils import data
from torchvision import transforms
from readxy import Dataset, Testset, RandomCrop, ToTensor,Valtset
from modelStruct.unetd import UnetD
from tensorboardX import SummaryWriter
from transformData import mu_law_encode,mu_law_decode
# In[2]:
batchSize = 10
sampleSize = 16384*batchSize # the length of the sample size
sample_rate = 16384
songnum=45
savemusic='vsCorpus/nus2xtr{}.wav'
#savemusic0='vsCorpus/nus10xtr{}.wav'
#savemusic1='vsCorpus/nus11xtr{}.wav'
resumefile = 'model/instrument2' # name of checkpoint
continueTrain = False # whether use checkpoint
sampleCnt=0
USEBOARD = True
if(USEBOARD):writer = SummaryWriter()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1" # use specific GPU
# In[4]:
from datetime import datetime
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
if(USEBOARD):writer = SummaryWriter(log_dir='../conditioned-wavenet/runs/'+str(current_time)+',mulaw,0.1leaky,dilation,45batch',comment="uwavenet")
use_cuda = torch.cuda.is_available() # whether have available GPU
torch.manual_seed(1)
device = torch.device("cuda" if use_cuda else "cpu")
# device = 'cpu'
# torch.set_default_tensor_type('torch.cuda.FloatTensor') #set_default_tensor_type as cuda tensor
#training_set = Dataset(np.arange(45), 'ccmixter3/',pad=pad,transform=transform)
#validation_set = Testset(np.arange(45,50), 'ccmixter3/',pad=pad)
training_set = Dataset(np.arange(45), 'ccmixter3/',transform=None)
test_set = Testset(np.arange(50), 'ccmixter3/')
validation_set =Valtset(np.arange(45,50), 'ccmixter3/')
worker_init_fn = lambda worker_id: np.random.seed(np.random.get_state()[1][0] + worker_id)
loadtr = data.DataLoader(training_set, batch_size=45,shuffle=True,num_workers=10,worker_init_fn=worker_init_fn)
loadtest = data.DataLoader(test_set,batch_size=1,num_workers=10)
loadval = data.DataLoader(validation_set,batch_size=5,num_workers=10,worker_init_fn=worker_init_fn)
# In[6]:
#model = Unet(skipDim, quantization_channels, residualDim,device)
model = UnetD()
#model = nn.DataParallel(model)
model = model.cuda()
criterion = nn.MSELoss()
# in wavenet paper, they said crossentropyloss is far better than MSELoss
optimizer = optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-6,betas=(0.5, 0.999))
# use adam to train
maxloss=np.zeros(50)+100
# In[7]:
iteration = 0
start_epoch=0
if continueTrain: # if continueTrain, the program will find the checkpoints
if os.path.isfile(resumefile):
print("=> loading checkpoint '{}'".format(resumefile))
checkpoint = torch.load(resumefile)
start_epoch = checkpoint['epoch']
iteration = checkpoint['iteration']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(resumefile, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(resumefile))
# In[9]:
def test(epoch): # testing data
model.eval()
start_time = time.time()
with torch.no_grad():
for iloader, xtrain, ytrain in loadtest:
iloader=iloader.item()
listofpred0 = []
cnt,aveloss=0,0
for ind in range(0, xtrain.shape[-1] - sampleSize, sampleSize):
output = model(xtrain[:, :,ind:ind + sampleSize].to(device))
listofpred0.append(output.reshape(-1))
loss = criterion(output, (ytrain[:, :,ind:ind + sampleSize].to(device)))
cnt+=1
aveloss += float(loss)
aveloss /= cnt
print('loss for test:{},num{},epoch{}'.format(aveloss, iloader,epoch))
ans0 = mu_law_decode(np.concatenate(listofpred0))
if not os.path.exists('vsCorpus/'): os.makedirs('vsCorpus/')
sf.write(savemusic.format(iloader), ans0, sample_rate)
print('test stored done', np.round(time.time() - start_time))
def val(epoch):
model.eval()
start_time = time.time()
cnt, aveloss = 0, 0
with torch.no_grad():
for iloader, xtrain, ytrain in loadval:
for ind in range(0, xtrain.shape[-1] - sampleSize, sampleSize):
output = model(xtrain[:, :, ind:ind + sampleSize].to(device))
loss = criterion(output, (ytrain[:, :, ind:ind + sampleSize].to(device)))
cnt += 1
aveloss += float(loss)
aveloss /= cnt
print('loss for validation:{},epoch{},valtime{}'.format(aveloss, epoch,np.round(time.time() - start_time)))
if (USEBOARD): writer.add_scalar('waveunet val loss', aveloss, iteration)
def train(epoch): # training data, the audio except for last 15 seconds
for iloader,xtrain, ytrain in loadtr:
startx = 0
idx = np.arange(startx, xtrain.shape[-1] - sampleSize, sampleSize//batchSize)
np.random.shuffle(idx)
#lens = 100
#idx = idx[:lens]
cnt, aveloss = 0, 0
start_time = time.time()
model.train()
for i, ind in enumerate(idx):
data = xtrain[:, :, ind:ind + sampleSize//batchSize*2].to(device)
target = ytrain[:, :,ind:ind + sampleSize//batchSize*2].to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
aveloss+=float(loss)
cnt+=1
loss.backward()
optimizer.step()
global sampleCnt
sampleCnt+=1
if sampleCnt % 10000 == 0 and sampleCnt > 0:
for param in optimizer.param_groups:
param['lr'] *= 0.98
#if(param['lr'] < 1e-5):param['lr'] = 1e-5
global iteration
iteration += 1
print('loss for train:{:.6f},epoch{},({:.3f} sec/step)'.format(
aveloss / cnt, epoch,time.time() - start_time))
if (USEBOARD): writer.add_scalar('waveunet loss', (aveloss / cnt), iteration)
if epoch % 5 == 0:
if not os.path.exists('model/'): os.makedirs('model/')
state = {'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'iteration': iteration}
torch.save(state, resumefile)
print('write finish')
# In[ ]:
print('training...')
for epoch in range(100000):
train(epoch+start_epoch)
val(epoch+start_epoch)
#test(epoch + start_epoch)
if (epoch+start_epoch) % 25 == 0 and epoch+start_epoch > 0: test(epoch+start_epoch)