Skip to content

[ICCV 2023] Prototype Reminiscence and Augmented Asymmetric Knowledge Aggregation for Non-Exemplar Class-Incremental Learning

Notifications You must be signed in to change notification settings

ShiWuxuan/ICCV2023-PRAKA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PRAKA - Official PyTorch Implementation

[ICCV 2023] Prototype Reminiscence and Augmented Asymmetric Knowledge Aggregation for Non-Exemplar Class-Incremental Learning

Wuxuan shi, Mang Ye*

Paper | Supp

Usage

  • Training on CIFAR-100 dataset:
$ python Cifar100/main.py --gpu 0 --task_num 10 --fg_nc 50 --root [your dataset path]

Arguments you can freely tweak given a dataset:

  • --gpu: which gpu used
  • --task_num: number of tasks for incremental learning
  • --fg_nc: number of classes of initial tasks
  • --root: path of datasets (replace [your dataset path] with your own dataset root)

Dataset

We provide a version of the ImageNet-Subset dataset (randomly seeded 1993) that has been segmented for academic research use only. Click here to get it. Please contact me immediately if infringement or violation is involved.

Citation

We are glad that the information provided by this repository is useful for your research and would be grateful if you would consider citing:

@inproceedings{shi2023prototype,
  title={Prototype Reminiscence and Augmented Asymmetric Knowledge Aggregation for Non-Exemplar Class-Incremental Learning},
  author={Shi, Wuxuan and Ye, Mang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={1772--1781},
  year={2023}
}

Acknowledgement

This work is partially supported by the Key Research and Development Program of Hubei Province (2021BAA187), National Natural Science Foundation of China under Grant (62176188), Zhejiang lab (NO.2022NF0AB01), the Special Fund of Hubei Luojia Laboratory (220100015) and CAAI-Huawei MindSpore Open Fund.

We thank the following repos providing helpful components/functions in our work.

About

[ICCV 2023] Prototype Reminiscence and Augmented Asymmetric Knowledge Aggregation for Non-Exemplar Class-Incremental Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages