-
Notifications
You must be signed in to change notification settings - Fork 2
/
sam_lora_image_encoder.py
209 lines (168 loc) · 7.82 KB
/
sam_lora_image_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from segment_anything import build_sam, SamPredictor
from segment_anything import sam_model_registry
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn.parameter import Parameter
from segment_anything.modeling import Sam
from safetensors import safe_open
from safetensors.torch import save_file
from icecream import ic
class _LoRA_qkv(nn.Module):
"""In Sam it is implemented as
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
"""
def __init__(
self,
qkv: nn.Module,
linear_a_q: nn.Module,
linear_b_q: nn.Module,
linear_a_v: nn.Module,
linear_b_v: nn.Module,
):
super().__init__()
self.qkv = qkv
self.linear_a_q = linear_a_q
self.linear_b_q = linear_b_q
self.linear_a_v = linear_a_v
self.linear_b_v = linear_b_v
self.dim = qkv.in_features
self.w_identity = torch.eye(qkv.in_features)
def forward(self, x):
qkv = self.qkv(x) # B,N,N,3*org_C
new_q = self.linear_b_q(self.linear_a_q(x))
new_v = self.linear_b_v(self.linear_a_v(x))
qkv[:, :, :, : self.dim] += new_q
qkv[:, :, :, -self.dim:] += new_v
return qkv
class LoRA_Sam(nn.Module):
"""Applies low-rank adaptation to a Sam model's image encoder.
Args:
sam_model: a vision transformer model, see base_vit.py
r: rank of LoRA
num_classes: how many classes the model output, default to the vit model
lora_layer: which layer we apply LoRA.
Examples::
>>> model = ViT('B_16_imagenet1k')
>>> lora_model = LoRA_ViT(model, r=4)
>>> preds = lora_model(img)
>>> print(preds.shape)
torch.Size([1, 1000])
"""
def __init__(self, sam_model: Sam, r: int, lora_layer=None):
super(LoRA_Sam, self).__init__()
assert r > 0
# base_vit_dim = sam_model.image_encoder.patch_embed.proj.out_channels
# dim = base_vit_dim
if lora_layer: self.lora_layer = lora_layer
else: self.lora_layer = list(range(len(sam_model.image_encoder.blocks))) # Only apply lora to the image encoder by default
# create for storage, then we can init them or load weights
self.w_As, self.w_Bs = [], [] # These are linear layers
# lets freeze first
for param in sam_model.image_encoder.parameters(): param.requires_grad = False
for param in sam_model.prompt_encoder.parameters(): param.requires_grad = False
for param in sam_model.mask_decoder.parameters(): param.requires_grad = False
# Here, we do the surgery
for t_layer_i, blk in enumerate(sam_model.image_encoder.blocks):
# If we only want few lora layer instead of all
# if t_layer_i not in self.lora_layer: continue
w_qkv_linear = blk.attn.qkv
self.dim = w_qkv_linear.in_features
w_a_linear_q = nn.Linear(self.dim, r, bias=False)
w_b_linear_q = nn.Linear(r, self.dim, bias=False)
w_a_linear_v = nn.Linear(self.dim, r, bias=False)
w_b_linear_v = nn.Linear(r, self.dim, bias=False)
self.w_As.append(w_a_linear_q)
self.w_Bs.append(w_b_linear_q)
self.w_As.append(w_a_linear_v)
self.w_Bs.append(w_b_linear_v)
blk.attn.qkv = _LoRA_qkv(
w_qkv_linear,
w_a_linear_q,
w_b_linear_q,
w_a_linear_v,
w_b_linear_v,
)
self.reset_parameters()
self.sam = sam_model
def save_lora_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
save both lora and fc parameters.
"""
assert filename.endswith(".pt") or filename.endswith('.pth')
num_layer = len(self.w_As) # actually, it is half
a_tensors = {f"w_a_{i:03d}": self.w_As[i].weight for i in range(num_layer)}
b_tensors = {f"w_b_{i:03d}": self.w_Bs[i].weight for i in range(num_layer)}
prompt_encoder_tensors = {}
mask_decoder_tensors = {}
# save prompt encoder, only `state_dict`, the `named_parameter` is not permitted
if isinstance(self.sam, torch.nn.DataParallel) or isinstance(self.sam, torch.nn.parallel.DistributedDataParallel):
state_dict = self.sam.module.state_dict()
else:
state_dict = self.sam.state_dict()
for key, value in state_dict.items():
if 'prompt_encoder' in key: prompt_encoder_tensors[key] = value
if 'mask_decoder' in key: mask_decoder_tensors[key] = value
merged_dict = {**a_tensors, **b_tensors, **prompt_encoder_tensors, **mask_decoder_tensors}
torch.save(merged_dict, filename)
def load_lora_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.\
load both lora and fc parameters.
"""
assert filename.endswith(".pt") or filename.endswith('.pth')
state_dict = torch.load(filename)
for i, w_A_linear in enumerate(self.w_As):
saved_key = f"w_a_{i:03d}"
saved_tensor = state_dict[saved_key]
w_A_linear.weight = Parameter(saved_tensor)
for i, w_B_linear in enumerate(self.w_Bs):
saved_key = f"w_b_{i:03d}"
saved_tensor = state_dict[saved_key]
w_B_linear.weight = Parameter(saved_tensor)
sam_dict = self.sam.state_dict()
sam_keys = sam_dict.keys()
# load prompt encoder
prompt_encoder_keys = [k for k in sam_keys if 'prompt_encoder' in k]
prompt_encoder_values = [state_dict[k] for k in prompt_encoder_keys]
prompt_encoder_new_state_dict = {k: v for k, v in zip(prompt_encoder_keys, prompt_encoder_values)}
sam_dict.update(prompt_encoder_new_state_dict)
# load mask decoder
mask_decoder_keys = [k for k in sam_keys if 'mask_decoder' in k]
mask_decoder_values = [state_dict[k] for k in mask_decoder_keys]
mask_decoder_new_state_dict = {k: v for k, v in zip(mask_decoder_keys, mask_decoder_values)}
sam_dict.update(mask_decoder_new_state_dict)
self.sam.load_state_dict(sam_dict)
def reset_parameters(self) -> None:
for w_A in self.w_As: nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5))
for w_B in self.w_Bs: nn.init.zeros_(w_B.weight)
def forward(self, images, original_size, point_coords, point_labels, multimask_output=False):
input_size = tuple(images.shape[-2:])
images = self.sam.preprocess(images)
image_features = self.sam.image_encoder(images) # shape: 1, 256, 64, 64, range: 0-1
sparse_embeddings, dense_embeddings = self.sam.prompt_encoder(
points=(point_coords, point_labels),
boxes=None,
masks=None,
)
# Predict masks
low_res_masks, iou_predictions = self.sam.mask_decoder(
image_embeddings=image_features,
image_pe=self.sam.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask_output,
)
# Upscale the masks to the original image resolution
masks = self.sam.postprocess_masks(low_res_masks, input_size, original_size)
return nn.Sigmoid()(masks)
# if __name__ == "__main__":
# sam = sam_model_registry["vit_b"](checkpoint="sam_vit_b_01ec64.pth")
# lora_sam = LoRA_Sam(sam, 4)
# lora_sam.sam.image_encoder(torch.rand(size=(1, 3, 1024, 1024)))