-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
84 lines (75 loc) · 4.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import json
import argparse
import os
import datetime
from pathlib import Path
from lib import trainManager
import torch
def parse_args():
parser = argparse.ArgumentParser(description='Attention_OOD')
parser.add_argument('--mode', type=str, default='train', choices=['train', 'eval', 'debug'])
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--model_arch', type=str, default='deit_small_patch16_224', choices=['deit_tiny_distilled_patch16_224',
'deit_tiny_patch16_224', 'deit_small_patch16_224'])
parser.add_argument('--drop', type=float, default=0.0)
parser.add_argument('--drop_path', type=float, default=0.1)
parser.add_argument('--pretrained', action='store_true')
parser.add_argument('--averagemeter', type=str, default='Meter_cls')
parser.add_argument('--loss', type=str, default='CELoss', choices=['CELoss', 'FocalLoss', 'FGLoss'])
parser.add_argument('--distillation_type', default='none', choices=['none', 'soft', 'hard'], type=str, help="")
parser.add_argument('--distillation_alpha', default=0.5, type=float, help="")
parser.add_argument('--distillation_tau', default=1.0, type=float, help="")
parser.add_argument('--teacher_path', type=str, default='/home/xuanli/OOD_compression/output/'
'04_03_17_16_41_resnet34_dermnet_train_0_0/'
'models/best_checkpoint.pth')
parser.add_argument('--num_classes', type=int, default=23)
parser.add_argument('--metric', type=str, default='accuracy')
parser.add_argument('--img_h', type=int, default=224)
parser.add_argument('--img_w', type=int, default=224)
parser.add_argument('--train_file', type=str, default='data/dermnet/dermnet_train_0.txt')
parser.add_argument('--val_file', type=str, default='data/dermnet/dermnet_val_0.txt')
parser.add_argument('--file_prefix', type=str, default='/home/xuanli/Data/DermNet/DermNet')
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--optim', type=str, default='Adam')
parser.add_argument('--scheduler', type=str, default='Step')
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--step_size', type=int, default=60)
parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate decay multiplier')
parser.add_argument('--lr_scheduler', type=str, choices=['StepLR'], default='StepLR')
parser.add_argument('--device', type=str, choices=['cpu', 'cuda', 'cuda:0', 'cuda:1'], default='cuda')
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--out_dir', type=str, default='output')
parser.add_argument('--model_dir', type=str, default='models')
parser.add_argument('--save_freq', type=int, default=10)
parser.add_argument('--tqdm_minintervals', type=float, default=2.0)
parser.add_argument('--resume', type=str, default='', help='path to the pth/tar checkpoints')
parser.add_argument('--reset_epoch', action='store_true')
args = parser.parse_args()
time = datetime.datetime.now().strftime('%m_%d_%H_%M_%S') + \
'_{}_{}_{}_{}'.format(args.model_arch, Path(args.train_file).stem, args.distillation_type, args.seed)
# Make root directory for all outupts
if args.resume != '':
print('Resuming ...')
# args.out_dir = os.path.join(args.out_dir, args.resume)
# args.resume = args.resume#os.path.join(".", args.model_dir, 'checkpoint.pth')
elif args.mode == 'train':
if not os.path.exists(os.path.join(args.out_dir, time)):
os.makedirs(os.path.join(args.out_dir, time))
args.out_dir = os.path.join(args.out_dir, time)
if not os.path.exists(os.path.join(args.out_dir, args.model_dir)):
os.makedirs(os.path.join(args.out_dir, args.model_dir))
with open(os.path.join(args.out_dir, 'config.txt'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
elif args.mode == 'debug':
args.num_workers = 0
args.device = args.device if torch.cuda.is_available() else 'cpu'
elif args.mode == 'eval':
pass
return args
if __name__ == '__main__':
args = parse_args()
print(args.__dict__)
train_manager = trainManager(args)
train_manager.fit()