-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathfinetune.py
175 lines (133 loc) · 5.6 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import re
import time
import utils.common as utils
from importlib import import_module
from tensorboardX import SummaryWriter
from collections import OrderedDict
import torch.nn.functional as F
import numpy as np
import collections
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from utils.options import args
import pdb
from model import *
device = torch.device(f"cuda:{args.gpus[0]}")
ckpt = utils.checkpoint(args)
print_logger = utils.get_logger(os.path.join(args.job_dir, "logger.log"))
writer_train = SummaryWriter(args.job_dir + '/run/train')
writer_test = SummaryWriter(args.job_dir + '/run/test')
def main():
start_epoch = 0
best_prec1, best_prec5 = 0.0, 0.0
# Data loading
print('=> Preparing data..')
loader = import_module('data.' + args.dataset).Data(args)
# Create model
print('=> Building model...')
criterion = nn.CrossEntropyLoss()
# Fine tune from a checkpoint
refine = args.refine
assert refine is not None, 'refine is required'
checkpoint = torch.load(refine, map_location=device)
if args.pruned:
state_dict = checkpoint['state_dict_s']
if args.arch == 'vgg':
cfg = checkpoint['cfg']
model = vgg_16_bn_sparse(cfg = cfg).to(device)
# pruned = sum([1 for m in mask if mask == 0])
# print(f"Pruned / Total: {pruned} / {len(mask)}")
elif args.arch =='resnet':
mask = checkpoint['mask']
model = resnet_56_sparse(has_mask = mask).to(device)
elif args.arch == 'densenet':
filters = checkpoint['filters']
indexes = checkpoint['indexes']
model = densenet_40_sparse(filters = filters, indexes = indexes).to(device)
elif args.arch =='googlenet':
mask = checkpoint['mask']
model = googlenet_sparse(has_mask = mask).to(device)
model.load_state_dict(state_dict)
else:
model = import_module('utils.preprocess').__dict__[f'{args.arch}'](args, checkpoint['state_dict_s'])
print_logger.info(f"Simply test after pruning...")
test_prec1, test_prec5 = test(args, loader.loader_test, model, criterion, writer_test)
if args.test_only:
return
if args.keep_grad:
for name, weight in model.named_parameters():
if 'mask' in name:
weight.requires_grad = False
train_param = [param for name, param in model.named_parameters() if 'mask' not in name]
optimizer = optim.SGD(train_param, lr=args.lr, momentum=args.momentum,weight_decay=args.weight_decay)
scheduler = StepLR(optimizer, step_size=args.lr_decay_step, gamma=0.1)
resume = args.resume
if resume:
print('=> Loading checkpoint {}'.format(resume))
checkpoint = torch.load(resume, map_location=device)
start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print('=> Continue from epoch {}...'.format(start_epoch))
for epoch in range(start_epoch, args.num_epochs):
scheduler.step(epoch)
train(args, loader.loader_train, model, criterion, optimizer, writer_train, epoch)
test_prec1, test_prec5 = test(args, loader.loader_test, model, criterion, writer_test, epoch)
is_best = best_prec1 < test_prec1
best_prec1 = max(test_prec1, best_prec1)
best_prec5 = max(test_prec5, best_prec5)
state = {
'state_dict_s': model.state_dict(),
'best_prec1': best_prec1,
'best_prec5': best_prec5,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'epoch': epoch + 1
}
ckpt.save_model(state, epoch + 1, is_best)
print_logger.info(f"=> Best @prec1: {best_prec1:.3f} @prec5: {best_prec5:.3f}")
def train(args, loader_train, model, criterion, optimizer, writer_train, epoch):
losses = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
model.train()
num_iterations = len(loader_train)
for i, (inputs, targets) in enumerate(loader_train, 1):
inputs = inputs.to(args.gpus[0])
targets = targets.to(args.gpus[0])
logits = model(inputs)
loss = criterion(logits, targets)
prec1, prec5 = utils.accuracy(logits, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1[0], inputs.size(0))
top5.update(prec5[0], inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
def test(args, loader_test, model, criterion, writer_test, epoch=0):
losses = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
model.eval()
num_iterations = len(loader_test)
with torch.no_grad():
for i, (inputs, targets) in enumerate(loader_test, 1):
inputs = inputs.to(device)
targets = targets.to(device)
logits = model(inputs)
loss = criterion(logits, targets)
prec1, prec5 = utils.accuracy(logits, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1[0], inputs.size(0))
top5.update(prec5[0], inputs.size(0))
print_logger.info(f'* Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}')
if not args.test_only:
writer_test.add_scalar('test_top1', top1.avg, epoch)
return top1.avg, top5.avg
if __name__ == '__main__':
main()