diff --git a/02_fundamentals/Code.ipynb b/02_fundamentals/Code.ipynb index 2995817..81ff5a1 100644 --- a/02_fundamentals/Code.ipynb +++ b/02_fundamentals/Code.ipynb @@ -47,7 +47,7 @@ "metadata": {}, "outputs": [], "source": [ - "from sklearn.datasets import load_boston" + "import pandas as pd" ] }, { @@ -56,7 +56,9 @@ "metadata": {}, "outputs": [], "source": [ - "boston = load_boston()" + "# New source for Boston housing data per https://scikit-learn.org/1.0/whats_new/v1.0.html#changes-1-0\n", + "data_url = \"http://lib.stat.cmu.edu/datasets/boston\"\n", + "raw_df = pd.read_csv(data_url, sep=\"\\s+\", skiprows=22, header=None)" ] }, { @@ -65,9 +67,10 @@ "metadata": {}, "outputs": [], "source": [ - "data = boston.data\n", - "target = boston.target\n", - "features = boston.feature_names" + "data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])\n", + "target = raw_df.values[1::2, 2]\n", + "features = np.array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS',\n", + " 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'])" ] }, { diff --git a/03_dlfs/Code.ipynb b/03_dlfs/Code.ipynb index 70401bc..c38d07f 100644 --- a/03_dlfs/Code.ipynb +++ b/03_dlfs/Code.ipynb @@ -820,12 +820,13 @@ "metadata": {}, "outputs": [], "source": [ - "from sklearn.datasets import load_boston\n", + "import pandas as pd\n", + "data_url = \"http://lib.stat.cmu.edu/datasets/boston\"\n", + "raw_df = pd.read_csv(data_url, sep=\"\\s+\", skiprows=22, header=None)\n", "\n", - "boston = load_boston()\n", - "data = boston.data\n", - "target = boston.target\n", - "features = boston.feature_names" + "data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])\n", + "target = raw_df.values[1::2, 2]\n", + "features = np.array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'])" ] }, { diff --git a/07_PyTorch/Code.ipynb b/07_PyTorch/Code.ipynb index ad4c8eb..b0c3b8b 100644 --- a/07_PyTorch/Code.ipynb +++ b/07_PyTorch/Code.ipynb @@ -61,13 +61,13 @@ "metadata": {}, "outputs": [], "source": [ - "from sklearn.datasets import load_boston\n", - "\n", - "boston = load_boston()\n", + "import pandas as pd\n", + "data_url = \"http://lib.stat.cmu.edu/datasets/boston\"\n", + "raw_df = pd.read_csv(data_url, sep=\"\\s+\", skiprows=22, header=None)\n", "\n", - "data = boston.data\n", - "target = boston.target\n", - "features = boston.feature_names\n", + "data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])\n", + "target = raw_df.values[1::2, 2]\n", + "features = np.array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'])\n", "\n", "from sklearn.preprocessing import StandardScaler\n", "s = StandardScaler()\n",