-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathsampler.py
241 lines (210 loc) · 9.58 KB
/
sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import random
import traceback
import lightning.pytorch as pl
import torch
import torch.nn.functional as F
from config import fontogen_config, FontogenConfig
from fonts import Fonts, Font
from model.model import FontogenModule
from model.text_embedding import TextEmbedder
class SamplingCallback(pl.Callback):
def __init__(self, config: FontogenConfig, sample_every_epoch: int, out_folder: str):
super().__init__()
self.config = config
self.device = config.device
self.out_folder = out_folder
self.sample_every_epoch = sample_every_epoch
def on_train_epoch_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
if (trainer.current_epoch + 1) % self.sample_every_epoch == 0:
model: FontogenModule = pl_module
model.eval()
try:
sampler = FontogenSampler(model, self.config, self.out_folder)
sampler.sample('bold sans', trainer.current_epoch)
except Exception as e:
print(f'failed to sample', e)
model.train()
# Source: https://github.com/samxuxiang/SkexGen/blob/c38f30e8ac40aabfa2a71d6842cc585faa9b9862/model/code.py#L12
def top_k_top_p_filtering(logits: torch.Tensor, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k >0: keep only top k tokens with the highest probability (top-k filtering).
top_p >0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
class FontogenSampler:
def __init__(self, model: FontogenModule, config: FontogenConfig, out_folder: str, glyphs: str = None):
self.model = model
if glyphs is None:
glyphs = config.glyphs
self.glyphs = glyphs
self.glyph_res = config.glyph_res
# import string
# self.glyphs = 'ABCDEFGHIJK'
self.font_codec = model.font_codec
self.max_glyph_tokens = config.max_glyph_tokens
self.max_font_tokens = config.max_font_tokens
self.out_folder = out_folder
self.device = config.device
# do not consume GPU memory for the text module
self.text_embedder = TextEmbedder(config.max_text_tokens, self.device)
def sample_next_token(self, logit: torch.Tensor, strategy: str = 'greedy', temperature: float = 1.0):
max_index: torch.Tensor
logit /= temperature
max_index: torch.Tensor
if strategy == 'multinomial':
probabilities = torch.softmax(logit, dim=0)
max_index = torch.multinomial(probabilities, num_samples=1)
elif strategy == 'greedy':
probabilities = torch.softmax(logit, dim=0)
max_index = torch.argmax(probabilities, dim=0)
elif strategy == 'topknuc':
# Top-K and/or Nucleus Filtering
top_k = 10
top_p = 0.9
logit = top_k_top_p_filtering(logit, top_k=top_k, top_p=top_p)
probabilities = torch.softmax(logit, dim=0)
max_index = torch.multinomial(probabilities, num_samples=1)
else:
raise ValueError(f'Unknown type {strategy}')
return max_index.item()
def sample_font(self, text_embeddings: torch.Tensor, temperature: int = None, strategy: str = None) -> Font:
if temperature is None:
temperature = 0.6
if strategy is None:
strategy = 'multinomial'
font_tokens, _ = self.font_codec.encode_font(Font({'A': []}))
font_tokens = font_tokens.to(self.device)
font_tokens = torch.stack([font_tokens])
max_length = self.max_font_tokens
curr_token = 'A'
tokens_per_glyph = 0
token_idx = 1
token_attempt = 1
i = 1
while i < max_length:
if tokens_per_glyph > self.max_glyph_tokens * 2:
if token_attempt > 5:
raise Exception(f'too many tokens for glyph {curr_token}')
else:
print(f'too many tokens for glyph {curr_token}, trying again')
token_attempt += 1
tokens_per_glyph = 0
i = token_idx
font_tokens[0][token_idx] = self.font_codec.eos_token
_, font_out = self.model(text_embeddings, font_tokens)
last_predicted = font_out[0][i] # B, S, Prob
next_token = self.sample_next_token(last_predicted, strategy=strategy, temperature=temperature)
if next_token in self.font_codec.glyph_vocab or next_token == self.font_codec.eos_token:
if self.glyphs.index(curr_token) + 1 == len(self.glyphs):
#
next_token = self.font_codec.eos_token
else:
curr_token = self.glyphs[self.glyphs.index(curr_token) + 1]
next_token = self.font_codec.mapping[str(curr_token)]
print(f'Starting building {self.font_codec.reverse_mapping[next_token]}')
tokens_per_glyph = 0
token_idx = i + 1
token_attempt = 1
if next_token == self.font_codec.eos_token:
break
# put EOS at the end
eos = font_tokens[0][i].item()
assert eos == self.font_codec.eos_token, f'unexpected eos at position {i}'
font_tokens[0][i] = next_token
if i + 1 < max_length:
font_tokens[0][i + 1] = eos
if i == max_length - 1:
raise ValueError('Max length reached')
tokens_per_glyph += 1
i += 1
return self.font_codec.decode_font(font_tokens[0])
def sample(self, text: str, step: int = -1, temperature: int = None, strategy: str = None) -> str:
print(f'sampling {text}')
out_folder = self.out_folder
with torch.no_grad():
text_tokens, _ = self.text_embedder.tokenize_batch([text])
text_tokens = text_tokens.to(self.device)
text_embeddings = self.text_embedder.embed_tokens(text_tokens)
text_embeddings = text_embeddings.to(self.device)
out_font: Font = self.sample_font(text_embeddings, temperature, strategy)
step_str = "" if step < 0 else f"{step}_"
out_path = f'{out_folder}/{step_str}{text.replace(" ", "_")}_{random.randint(0, 100000)}.ttf'
self.try_save_font_tokens(out_path, out_font)
return out_path
def try_save_font_tokens(self, font_path: str, font: Font):
print(f'saving font as {font_path}')
try:
fonts = Fonts(self.glyphs, self.glyph_res)
os.makedirs(os.path.dirname(font_path), exist_ok=True)
fonts.save_as_ttf(font_path, font)
except Exception as e:
print(f'failed to save font', e)
def create_sampler(
out_folder: str,
glyphs: str = None,
checkpoint_path: str = 'models/fontogen_78958.ckpt') -> FontogenSampler:
config = fontogen_config()
device = "cuda" if torch.cuda.is_available() else "mps" if torch.has_mps else "cpu"
model = FontogenModule.load_from_checkpoint(
checkpoint_path,
map_location=device,
config=config,
)
model.eval()
return FontogenSampler(model, config, out_folder, glyphs)
if __name__ == '__main__':
texts = [
'bold sans',
'canvalove sans',
'basic, serif, new times',
'Beauty, Script, Calligraphy',
'techno, sci-fi, extrabold',
'handwritten, beauty, script',
'soviet, block, russian',
'serif, newspaper, news',
'tech blog, perfect',
'fancy, horror, scary, halloween',
'horror scary',
'anime, Fancy, Horror',
'bold, cyrrilic',
'basic,serif,harry, potter',
'taco, bell',
'celtic, magic',
'elvish, runes',
'fancy, kids',
'Script,Handwritten,Painter',
'medieval, gothic',
'newspaper, typewriter',
'comic, superman',
'sci-fi, futuristic',
'_',
'',
]
sampler = create_sampler('training/samples')
for (ind, text) in enumerate(texts):
for i in range(2):
try:
sampler.sample(text, -1, strategy='multinomial')
except Exception as e:
traceback.print_exc()
print(f'Failed to generate font for {text}', e)