We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
此处的dataset=labeled_train_set引用的是有标记的数据,但是dataset=train_set却还是总的数据集,为什么不是unlabeled_train_set呢?
The text was updated successfully, but these errors were encountered:
train_set = ISICDataset(image_path=args.data_path, stage='train', image_size=args.image_size, is_augmentation=True) #1045 labeled_train_set, unlabeled_train_set = random_split(train_set, [int(len(train_set) * args.labeled_percentage), ## 1045, 52, len(train_set) - int(len(train_set) * args.labeled_percentage)]) # 1045, 993个无标记的样本 print('before:', len(labeled_train_set), len(train_set)) #52个有标记的样本 # repeat the labeled set to have a equal length with the unlabeled set (dataset) labeled_ratio = len(train_set) // len(labeled_train_set) ##20倍 labeled_train_set = ConcatDataset([labeled_train_set for i in range(labeled_ratio)]) #翻倍20次 变成1040 labeled_train_set = ConcatDataset([labeled_train_set, Subset(labeled_train_set, range(len(train_set) - len(labeled_train_set)))]) assert len(labeled_train_set) == len(train_set) print('after:', len(labeled_train_set), len(train_set)) train_labeled_dataloder = DataLoader(dataset=labeled_train_set, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True, pin_memory=True) train_unlabeled_dataloder = DataLoader(dataset=train_set, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True, pin_memory=True)是这些代码中的
Sorry, something went wrong.
将全集作为无标注数据集,使一致性正则能够利用全部数据
No branches or pull requests
此处的dataset=labeled_train_set引用的是有标记的数据,但是dataset=train_set却还是总的数据集,为什么不是unlabeled_train_set呢?
The text was updated successfully, but these errors were encountered: