diff --git a/src/TensorFlowNET.Core/Gradients/array_grad.cs b/src/TensorFlowNET.Core/Gradients/array_grad.cs index 4b7027992..016e4f029 100644 --- a/src/TensorFlowNET.Core/Gradients/array_grad.cs +++ b/src/TensorFlowNET.Core/Gradients/array_grad.cs @@ -381,5 +381,29 @@ public static Tensor[] _ReverseV2Grad(Operation op, Tensor[] grads) var axis = op.inputs[1]; return new Tensor[] { array_ops.reverse(grad, axis), null }; } + + [RegisterGradient("Tile")] + public static Tensor[] _TileGrad(Operation op, Tensor[] grads) + { + var grad = grads[0]; + var input_shape = array_ops.shape(op.inputs[0], out_type: op.inputs[1].dtype); + var split_shape = array_ops.reshape(array_ops.transpose(array_ops.stack(new Tensor[] { op.inputs[1], input_shape })), new Shape(-1)); + var axes = math_ops.range(0, array_ops.size(split_shape), 2); + + //# Sum reduces grad along the first dimension for IndexedSlices + //if isinstance(grad, indexed_slices_lib.IndexedSlices): + //input_shape_0 = math_ops.cast(input_shape[0], grad.indices.dtype) + //grad = math_ops.unsorted_segment_sum( + // grad.values, math_ops.mod(grad.indices, input_shape_0), input_shape_0) + //split_shape = array_ops.concat([[1], split_shape[1:]], axis = 0) + + var input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes); + if (!tf.Context.executing_eagerly()) + { + input_grad.set_shape(op.inputs[0].GetShape()); + } + return new Tensor[] { input_grad, null }; + + } } } diff --git a/src/TensorFlowNET.Core/Operations/array_ops.cs b/src/TensorFlowNET.Core/Operations/array_ops.cs index fdc53cd7e..abf44c643 100644 --- a/src/TensorFlowNET.Core/Operations/array_ops.cs +++ b/src/TensorFlowNET.Core/Operations/array_ops.cs @@ -990,7 +990,7 @@ public static Tensor gather(ResourceVariable @params, Tensor indices, string nam return @params.sparse_read(indices, name); } - public static Tensor transpose(T1 a, Axis perm, string name = "transpose", bool conjugate = false) + public static Tensor transpose(T1 a, Axis perm = null, string name = "transpose", bool conjugate = false) { return tf_with(ops.name_scope(name, "transpose", new { a }), scope => { diff --git a/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs b/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs index e41e1d617..ed7599045 100644 --- a/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs +++ b/test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs @@ -173,5 +173,19 @@ public void ConditionalMultiply() var result = grad(x, 4); Assert.AreEqual((float)result, 4.0f); } + + [TestMethod] + public void Tile() + { + var a = tf.constant(new int[] { 1 }, TF_DataType.TF_FLOAT); + var b = tf.constant(new int[] { 2 }); + using (var tape = tf.GradientTape()) + { + tape.watch(a); + var y = tf.tile(a, b); + var grad = tape.gradient(y, a); + Assert.AreEqual((float)grad.numpy(), 2.0f); + } + } } }