-
-
Notifications
You must be signed in to change notification settings - Fork 79
/
simple.jl
311 lines (275 loc) · 10.4 KB
/
simple.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
##################################################################
#
# Simplified interfaces that only uses Julia vectors and functions.
#
##################################################################
"""
Insert a check that the given function call returns 0,
throw an error otherwise. Only apply directly to function calls.
"""
macro checkflag(ex, throw_error = false)
@assert Base.Meta.isexpr(ex, :call)
fname = ex.args[1]
quote
flag = $(esc(ex))
if flag < 0
if $(esc(throw_error))
@error($(string(fname, " failed with error code = ")), flag)
else
@warn($(string(fname, " failed with error code = ")), flag)
end
end
flag
end
end
mutable struct UserFunctionAndData{F}
func::F
data::Any
UserFunctionAndData{F}(func, data) where {F} = new{F}(func, data)
end
UserFunctionAndData(func) = func
UserFunctionAndData(func, data::Nothing) = func
function kinsolfun(y::N_Vector, fy::N_Vector, userfun::UserFunctionAndData)
userfun[].func(convert(Vector, fy), convert(Vector, y), userfun[].data)
return KIN_SUCCESS
end
function kinsolfun(y::N_Vector, fy::N_Vector, userfun)
userfun(convert(Vector, fy), convert(Vector, y))
return KIN_SUCCESS
end
function ___kinsol(f,
y0::Vector{Float64};
userdata::Any = nothing,
linear_solver::Symbol = :Dense,
jac_upper::Int = 0,
jac_lower::Int = 0,
abstol::Float64 = eps(Float64) ^ (4 // 5),
prec_side::Int = 0,
krylov_dim::Int = 0,
jac_prototype = nothing,
maxiters = 1000,
strategy = :None)
# f, Function to be optimized of the form f(y::Vector{Float64}, fy::Vector{Float64})
# where `y` is the input vector, and `fy` is the result of the function
# y0, Vector of initial values
# return: the solution vector
mem_ptr = KINCreate()
(mem_ptr == C_NULL) && error("Failed to allocate KINSOL solver object")
kmem = Handle(mem_ptr)
y = copy(y0)
# use the user_data field to pass a function
# see: https://github.com/JuliaLang/julia/issues/2554
userfun = UserFunctionAndData(f, userdata)
function getcfun(userfun::T) where {T}
@cfunction(kinsolfun, Cint, (N_Vector, N_Vector, Ref{T}))
end
flag = @checkflag KINInit(kmem, getcfun(userfun), NVector(y0)) true
if linear_solver == :Dense
A = Sundials.SUNDenseMatrix(length(y0), length(y0))
LS = Sundials.SUNLinSol_Dense(y0, A)
elseif linear_solver == :LapackDense
A = Sundials.SUNDenseMatrix(length(y0), length(y0))
LS = Sundials.SUNLinSol_LapackDense(y0, A)
elseif linear_solver == :Band
A = Sundials.SUNBandMatrix(length(y0), jac_upper, jac_lower)
LS = Sundials.SUNLinSol_Band(y0, A)
elseif linear_solver == :LapackBand
A = Sundials.SUNBandMatrix(length(y0), jac_upper, jac_lower)
LS = Sundials.SUNLinSol_LapackBand(y0, A)
elseif linear_solver == :GMRES
A = C_NULL
LS = Sundials.SUNLinSol_SPGMR(y0, prec_side, krylov_dim)
elseif linear_solver == :FGMRES
A = C_NULL
LS = Sundials.SUNLinSol_SPFGMR(y0, prec_side, krylov_dim)
elseif linear_solver == :BCG
A = C_NULL
LS = Sundials.SUNLinSol_SPBCGS(y0, prec_side, krylov_dim)
elseif linear_solver == :PCG
A = C_NULL
LS = Sundials.SUNLinSol_PCG(y0, prec_side, krylov_dim)
elseif linear_solver == :TFQMR
A = C_NULL
LS = Sundials.SUNLinSol_SPTFQMR(y0, prec_side, krylov_dim)
elseif linear_solver == :KLU
nnz = length(SparseArrays.nonzeros(jac_prototype))
A = Sundials.SUNSparseMatrix(length(y0), length(y0), nnz, CSC_MAT)
LS = SUNLinSol_KLU(y0, A)
else
error("Unknown linear solver")
end
flag = @checkflag KINSetFuncNormTol(kmem, abstol) true
flag = @checkflag KINSetLinearSolver(kmem, LS, A) true
flag = @checkflag KINSetUserData(kmem, userfun) true
flag = @checkflag KINSetNumMaxIters(kmem, maxiters) true
## Solve problem
scale = ones(length(y0))
if strategy == :None
strategy = KIN_NONE
elseif strategy == :LineSearch
strategy = KIN_LINESEARCH
else
error("Unknown strategy")
end
flag = @checkflag KINSol(kmem, y, strategy, scale, scale) true
return y, flag
end
kinsol(args...; kwargs...) = first(___kinsol(args...; kwargs...))
function cvodefun(t::Float64, y::N_Vector, yp::N_Vector, userfun::UserFunctionAndData)
userfun.func(t, convert(Vector, y), convert(Vector, yp), userfun.data)
return CV_SUCCESS
end
function cvodefun(t::Float64, y::N_Vector, yp::N_Vector, userfun)
userfun(t, convert(Vector, y), convert(Vector, yp))
return CV_SUCCESS
end
"""
`cvode(f, y0::Vector{Float64}, t::Vector{Float64}, userdata::Any=nothing;
integrator=:BDF, reltol::Float64=1e-3, abstol::Float64=1e-6, callback=(mem,t,y)->true)`
* `f`, Function of the form
`f(t, y::Vector{Float64}, yp::Vector{Float64})`
where `y` is the input state vector, and `yp` is the output vector
of time derivatives for the states `y`
* `y0`, Vector of initial values
* `t`, Vector of time values at which to record integration results
* `integrator`, the chosen integration algorithm. Default is `:BDF`
, other option is `:Adams`
* `reltol`, Relative Tolerance to be used (default=1e-3)
* `abstol`, Absolute Tolerance to be used (default=1e-6)
* `callback`, Callback function of the form
`callback(mem, t_k::Float64, y_k::Vector{Float64})::Bool`
where `mem` is the integrator and `t_k`/`y_k` the time/state at timestep `k`.
A return value of `false` exits the integrator at timestep `k` and returns the all the timesteps preceding `k`.
(default=(mem,t_k,y_k)->true)
return: a solution matrix with time steps in `t` along rows and
state variable `y` along columns
"""
function cvode(f::Function,
y0::Vector{Float64},
t::AbstractVector,
userdata::Any = nothing;
kwargs...)
y = zeros(length(t), length(y0))
n = cvode!(f, y, y0, t, userdata; kwargs...)
return y[1:n, :]
end
function cvode!(f::Function,
y::Matrix{Float64},
y0::Vector{Float64},
t::AbstractVector,
userdata::Any = nothing;
integrator = :BDF,
reltol::Float64 = 1e-3,
abstol::Float64 = 1e-6,
callback = (x, y, z) -> true)
if integrator == :BDF
mem_ptr = CVodeCreate(CV_BDF)
elseif integrator == :Adams
mem_ptr = CVodeCreate(CV_ADAMS)
end
(mem_ptr == C_NULL) && error("Failed to allocate CVODE solver object")
mem = Handle(mem_ptr)
c = 1
userfun = UserFunctionAndData(f, userdata)
y0nv = NVector(y0)
function getcfun(userfun::T) where {T}
@cfunction(cvodefun, Cint, (realtype, N_Vector, N_Vector, Ref{T}))
end
flag = @checkflag CVodeInit(mem, getcfun(userfun), t[1], convert(NVector, y0nv)) true
flag = @checkflag CVodeSetUserData(mem, userfun) true
flag = @checkflag CVodeSStolerances(mem, reltol, abstol) true
A = Sundials.SUNDenseMatrix(length(y0), length(y0))
LS = Sundials.SUNLinSol_Dense(y0nv, A)
flag = Sundials.@checkflag Sundials.CVDlsSetLinearSolver(mem, LS, A) true
y[1, :] = y0
ynv = NVector(copy(y0))
tout = [0.0]
for k in 2:length(t)
flag = @checkflag CVode(mem, t[k], ynv, tout, CV_NORMAL) true
if !callback(mem, t[k], ynv)
break
end
y[k, :] = convert(Vector, ynv)
c = c + 1
end
Sundials.SUNLinSolFree_Dense(LS)
Sundials.SUNMatDestroy_Dense(A)
return c
end
function idasolfun(t::Float64,
y::N_Vector,
yp::N_Vector,
r::N_Vector,
userfun::UserFunctionAndData)
userfun.func(t,
convert(Vector, y),
convert(Vector, yp),
convert(Vector, r),
userfun.data)
return IDA_SUCCESS
end
function idasolfun(t::Float64, y::N_Vector, yp::N_Vector, r::N_Vector, userfun)
userfun(t, convert(Vector, y), convert(Vector, yp), convert(Vector, r))
return IDA_SUCCESS
end
"""
`idasol(f, y0::Vector{Float64}, yp0::Vector{Float64}, t::Vector{Float64}, userdata::Any=nothing;
reltol::Float64=1e-3, abstol::Float64=1e-6, diffstates::Union{Vector{Bool},Void}=nothing)`
* `f`, Function of the form
`f(t, y::Vector{Float64}, yp::Vector{Float64}, r::Vector{Float64})``
where `y` and `yp` are the input state and derivative vectors,
and `r` is the output residual vector
* `y0`, Vector of initial values
* `yp0`, Vector of initial values of the derivatives
* `reltol`, Relative Tolerance to be used (default=1e-3)
* `abstol`, Absolute Tolerance to be used (default=1e-6)
* `diffstates`, Boolean vector, true for the positions such that `r` depends on `yp[k]`
return: (y,yp) two solution matrices representing the states and state derivatives
with time steps in `t` along rows and state variable `y` or `yp` along columns
"""
function idasol(f,
y0::Vector{Float64},
yp0::Vector{Float64},
t::Vector{Float64},
userdata::Any = nothing;
reltol::Float64 = 1e-3,
abstol::Float64 = 1e-6,
diffstates::Union{Vector{Bool}, Nothing} = nothing)
mem_ptr = IDACreate()
(mem_ptr == C_NULL) && error("Failed to allocate IDA solver object")
mem = Handle(mem_ptr)
yres = zeros(length(t), length(y0))
ypres = zeros(length(t), length(y0))
userfun = UserFunctionAndData(f, userdata)
function getcfun(userfun::T) where {T}
@cfunction(idasolfun, Cint, (realtype, N_Vector, N_Vector, N_Vector, Ref{T}))
end
flag = @checkflag IDAInit(mem, getcfun(userfun), t[1], y0, yp0) true
flag = @checkflag IDASetUserData(mem, userfun) true
flag = @checkflag IDASStolerances(mem, reltol, abstol) true
A = Sundials.SUNDenseMatrix(length(y0), length(y0))
LS = Sundials.SUNLinSol_Dense(y0, A)
flag = Sundials.@checkflag Sundials.IDADlsSetLinearSolver(mem, LS, A) true
rtest = zeros(length(y0))
f(t[1], y0, yp0, rtest)
if any(abs.(rtest) .>= reltol)
if diffstates === nothing
error("Must supply diffstates argument to use IDA initial value solver.")
end
flag = @checkflag IDASetId(mem, collect(Float64, diffstates)) true
flag = @checkflag IDACalcIC(mem, IDA_YA_YDP_INIT, t[2]) true
end
yres[1, :] = y0
ypres[1, :] = yp0
y = copy(y0)
yp = copy(yp0)
tout = [0.0]
for k in 2:length(t)
retval = @checkflag IDASolve(mem, t[k], tout, y, yp, IDA_NORMAL) true
yres[k, :] = y
ypres[k, :] = yp
end
Sundials.SUNLinSolFree_Dense(LS)
Sundials.SUNMatDestroy_Dense(A)
return yres, ypres
end