From 5ed45eded0e5940eebad27e873d9d9876a0c564c Mon Sep 17 00:00:00 2001 From: Yash Raj Singh Date: Fri, 15 Sep 2023 02:04:59 +0200 Subject: [PATCH] changed the tutorial method to itp --- docs/src/tutorials/nonlinear.md | 16 +++++++++++++--- 1 file changed, 13 insertions(+), 3 deletions(-) diff --git a/docs/src/tutorials/nonlinear.md b/docs/src/tutorials/nonlinear.md index 6404d2226..2a1ced12f 100644 --- a/docs/src/tutorials/nonlinear.md +++ b/docs/src/tutorials/nonlinear.md @@ -21,15 +21,25 @@ AbstractArray for automatic differentiation. ## Using Bracketing Methods -For scalar rootfinding problems, bracketing methods exist. In this case, one passes +For scalar rootfinding problems, bracketing methods exist in `SimpleNonlinearSolve`. In this case, one passes a bracket instead of an initial condition, for example: ```@example -using NonlinearSolve +using SimpleNonlinearSolve f(u, p) = u * u - 2.0 uspan = (1.0, 2.0) # brackets probB = IntervalNonlinearProblem(f, uspan) -sol = solve(probB, Falsi()) +sol = solve(probB, ITP()) +``` + +The user can also set a tolerance that suits the application. + +```@example +using SimpleNonlinearSolve +f(u, p) = u * u - 2.0 +uspan = (1.0, 2.0) # brackets +probB = IntervalNonlinearProblem(f, uspan) +sol = solve(probB, ITP(), abstol = 0.01) ``` ## Using Jacobian Free Newton Krylov (JNFK) Methods