Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Solving a nonlinear equation using NonlinearSolve.jl with AutoFiniteDiff() yields errors about dual number #408

Closed
qlx17 opened this issue Apr 16, 2024 · 1 comment · Fixed by #409
Labels
bug Something isn't working

Comments

@qlx17
Copy link

qlx17 commented Apr 16, 2024

EDIT: This issue has been posted in the julia forum.

Describe the bug 🐞

I am trying to solve a nonlinear equation, which is constructed using the thermophysical properties of fluids via CoolProp package (See MRE 1). The error message seems to indicate that PropsSI() cannot accept a dual number as an argument. Following the FAQ: The solver tried to set a Dual Number in my Vector of Floats. How do I fix that? in the NonlinearSolve.jl documentation, I have initialized the rho_fre with the same element type as p, but that doesn’t help.

I am not familiar with dual number, by google what it is, I think it is used when automatically differentiating the objective function. Therefore, I tried another solution in the FAQ, which is to specify the autodiff to be AutoFiniteDiff() (using the RobustMultiNewton() solver). The revised code is as MRE 2, but it yields the same error message, complaining about the dual number usage in PropsSI(). I find a similar issue being reported #360 , but in my case, using TrustRegion() still does not resolve the problem (See MRE 3).

My questions are:

  1. Should the PropsSI() function in the CoolProp package be modified to accept a dual number as an argument?

  2. Why does the AutoFiniteDiff() still yield the error about dual number? I expect this error only happens when automatic differentiation is used.

Expected behavior

The equation can be solved successfully when specifying autodiff = AutoFiniteDiff()

Minimal Reproducible Example 1 (not specifying autodiff = AutoFiniteDiff())👇

using NonlinearSolve, CoolProp

function myfun_P_MWE(p, (T, init_m))
    r_cont_ads = 10e-3
    r_ads_heat = 2.5e-3
    L = 0.5
    row_GGHS = 3
    row_cont = 3
    row_ads = 10
    delta_r_ads = (r_cont_ads - r_ads_heat) / row_ads

    rho_fre = zeros(typeof(p), row_ads)
    for i in eachindex(rho_fre)
        # Obtain the density of nitrogen according to temperature and pressure
        rho_fre[i] = PropsSI("D", "T", T[row_GGHS+row_cont+i], "P", p, "nitrogen")
    end

    # Construct the nonlinear equation
    f = 0.0
    for i in eachindex(rho_fre)
        f = f + rho_fre[i] * ((r_cont_ads - (i - 1) * delta_r_ads)^2 - (r_cont_ads - i * delta_r_ads)^2) / 2 * L
    end
    return f - init_m
end


# Solving the equation
T = collect(range(200.0, 500.0, 19))
p = 1e5
init_m = 2e-4

# myfun_P_MWE(p,(T, init_m))
p_new = solve(
    NonlinearProblem(myfun_P_MWE, p, (T, init_m))
    # RobustMultiNewton(; autodiff=AutoFiniteDiff())
).u

Error & Stacktrace 1⚠️

ERROR: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{SciMLBase.JacobianWrapper{…}, Float64}, Float64, 1})

Closest candidates are:
  (::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat
   @ Base rounding.jl:207
  (::Type{T})(::T) where T<:Number
   @ Core boot.jl:792
  Float64(::IrrationalConstants.Sqrt2)
   @ IrrationalConstants C:\Users\qlx\.julia\packages\IrrationalConstants\vp5v4\src\macro.jl:112
  ...

Stacktrace:
  [1] convert(::Type{Float64}, x::ForwardDiff.Dual{ForwardDiff.Tag{SciMLBase.JacobianWrapper{…}, Float64}, Float64, 1})
    @ Base .\number.jl:7
  [2] cconvert(T::Type, x::ForwardDiff.Dual{ForwardDiff.Tag{SciMLBase.JacobianWrapper{…}, Float64}, Float64, 1})
    @ Base .\essentials.jl:543
  [3] PropsSI(output::String, name1::String, value1::Float64, name2::String, value2::ForwardDiff.Dual{…}, fluid::String)
    @ CoolProp C:\Users\qlx\.julia\packages\CoolProp\RDEcq\src\CoolProp.jl:81
  [4] myfun_P_MWE(p::ForwardDiff.Dual{ForwardDiff.Tag{…}, Float64, 1}, ::Tuple{Vector{…}, Float64})
    @ Main c:\Users\qlx\Desktop\RB4_AP4_multi_stage_Julia_CoolProp\test2.jl:15
  [5] NonlinearFunction
    @ C:\Users\qlx\.julia\packages\SciMLBase\NjslX\src\scimlfunctions.jl:2185 [inlined]
  [6] JacobianWrapper
    @ C:\Users\qlx\.julia\packages\SciMLBase\NjslX\src\function_wrappers.jl:103 [inlined]
  [7] __value_derivative
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\internal\jacobian.jl:186 [inlined]
  [8] JacobianCache
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\internal\jacobian.jl:118 [inlined]
  [9] JacobianCache
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\internal\jacobian.jl:106 [inlined]
 [10] __step!(cache::NonlinearSolve.GeneralizedFirstOrderAlgorithmCache{…}; recompute_jacobian::Nothing, kwargs::@Kwargs{})
    @ NonlinearSolve C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generalized_first_order.jl:208
 [11] __step!
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generalized_first_order.jl:204 [inlined]
 [12] #step!#210
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:55 [inlined]
 [13] step!
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:50 [inlined]
 [14] solve!(cache::NonlinearSolve.GeneralizedFirstOrderAlgorithmCache{…})
    @ NonlinearSolve C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:13
 [15] #__solve#209
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:4 [inlined]
 [16] __solve
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:1 [inlined]
 [17] macro expansion
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\default.jl:278 [inlined]
 [18] __solve(::NonlinearProblem{…}, ::NonlinearSolvePolyAlgorithm{…}; alias_u0::Bool, verbose::Bool, kwargs::@Kwargs{})
    @ NonlinearSolve C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\default.jl:248
 [19] __solve
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\default.jl:248 [inlined]
 [20] #__solve#329
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\default.jl:511 [inlined]
 [21] __solve
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\default.jl:508 [inlined]
 [22] #__solve#72
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1394 [inlined]
 [23] __solve
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1386 [inlined]
 [24] #solve_call#44
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:612 [inlined]
 [25] solve_call
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:569 [inlined]
 [26] #solve_up#53
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1072 [inlined]
 [27] solve_up
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1066 [inlined]
 [28] #solve#52
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1060 [inlined]
 [29] solve(::NonlinearProblem{…})
    @ DiffEqBase C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1050
 [30] top-level scope
    @ c:\Users\qlx\Desktop\RB4_AP4_multi_stage_Julia_CoolProp\test2.jl:33
Some type information was truncated. Use `show(err)` to see complete types.

Minimal Reproducible Example 2 (using RobustMultiNewton() with autodiff = AutoFiniteDiff())👇

using NonlinearSolve, CoolProp

function myfun_P_MWE(p, (T, init_m))
    r_cont_ads = 10e-3
    r_ads_heat = 2.5e-3
    L = 0.5
    row_GGHS = 3
    row_cont = 3
    row_ads = 10
    delta_r_ads = (r_cont_ads - r_ads_heat) / row_ads

    rho_fre = zeros(typeof(p), row_ads)
    for i in eachindex(rho_fre)
        # Obtain the density of nitrogen according to temperature and pressure
        rho_fre[i] = PropsSI("D", "T", T[row_GGHS+row_cont+i], "P", p, "nitrogen")
    end

    # Construct the nonlinear equation
    f = 0.0
    for i in eachindex(rho_fre)
        f = f + rho_fre[i] * ((r_cont_ads - (i - 1) * delta_r_ads)^2 - (r_cont_ads - i * delta_r_ads)^2) / 2 * L
    end
    return f - init_m
end


# Solving the equation
T = collect(range(200.0, 500.0, 19))
p = 1e5
init_m = 2e-4

# myfun_P_MWE(p,(T, init_m))
p_new = solve(
    NonlinearProblem(myfun_P_MWE, p, (T, init_m)),
    RobustMultiNewton(; autodiff=AutoFiniteDiff())
).u

Error & Stacktrace 2⚠️

ERROR: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{SciMLBase.JacobianWrapper{…}, Float64}, Float64, 1})

Closest candidates are:
  (::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat
   @ Base rounding.jl:207
  (::Type{T})(::T) where T<:Number
   @ Core boot.jl:792
  Float64(::IrrationalConstants.Sqrt2)
   @ IrrationalConstants C:\Users\qlx\.julia\packages\IrrationalConstants\vp5v4\src\macro.jl:112
  ...

Stacktrace:
  [1] convert(::Type{Float64}, x::ForwardDiff.Dual{ForwardDiff.Tag{SciMLBase.JacobianWrapper{…}, Float64}, Float64, 1})
    @ Base .\number.jl:7
  [2] cconvert(T::Type, x::ForwardDiff.Dual{ForwardDiff.Tag{SciMLBase.JacobianWrapper{…}, Float64}, Float64, 1})
    @ Base .\essentials.jl:543
  [3] PropsSI(output::String, name1::String, value1::Float64, name2::String, value2::ForwardDiff.Dual{…}, fluid::String)
    @ CoolProp C:\Users\qlx\.julia\packages\CoolProp\RDEcq\src\CoolProp.jl:81
  [4] myfun_P_MWE(p::ForwardDiff.Dual{ForwardDiff.Tag{…}, Float64, 1}, ::Tuple{Vector{…}, Float64})
    @ Main c:\Users\qlx\Desktop\RB4_AP4_multi_stage_Julia_CoolProp\test2.jl:15
  [5] NonlinearFunction
    @ C:\Users\qlx\.julia\packages\SciMLBase\NjslX\src\scimlfunctions.jl:2185 [inlined]
  [6] JacobianWrapper
    @ C:\Users\qlx\.julia\packages\SciMLBase\NjslX\src\function_wrappers.jl:103 [inlined]
  [7] __value_derivative
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\internal\jacobian.jl:186 [inlined]
  [8] JacobianCache
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\internal\jacobian.jl:118 [inlined]
  [9] JacobianCache
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\internal\jacobian.jl:106 [inlined]
 [10] __step!(cache::NonlinearSolve.GeneralizedFirstOrderAlgorithmCache{…}; recompute_jacobian::Nothing, kwargs::@Kwargs{})
    @ NonlinearSolve C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generalized_first_order.jl:208
 [11] __step!
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generalized_first_order.jl:204 [inlined]
 [12] #step!#210
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:55 [inlined]
 [13] step!
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:50 [inlined]
 [14] solve!(cache::NonlinearSolve.GeneralizedFirstOrderAlgorithmCache{…})
    @ NonlinearSolve C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:13
 [15] #__solve#209
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:4 [inlined]
 [16] __solve
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:1 [inlined]
 [17] macro expansion
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\default.jl:278 [inlined]
 [18] __solve(::NonlinearProblem{…}, ::NonlinearSolvePolyAlgorithm{…}; alias_u0::Bool, verbose::Bool, kwargs::@Kwargs{})
    @ NonlinearSolve C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\default.jl:248
 [19] __solve
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\default.jl:248 [inlined]
 [20] #solve_call#44
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:612 [inlined]
 [21] solve_call
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:569 [inlined]
 [22] #solve_up#53
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1072 [inlined]
 [23] solve_up
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1066 [inlined]
 [24] #solve#52
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1060 [inlined]
 [25] solve(prob::NonlinearProblem{…}, args::NonlinearSolvePolyAlgorithm{…})
    @ DiffEqBase C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1050
 [26] top-level scope
    @ c:\Users\qlx\Desktop\RB4_AP4_multi_stage_Julia_CoolProp\test2.jl:33
Some type information was truncated. Use `show(err)` to see complete types.

Minimal Reproducible Example 3 (using TrustRegion() with autodiff = AutoFiniteDiff())👇

using NonlinearSolve, CoolProp

function myfun_P_MWE(p, (T, init_m))
    r_cont_ads = 10e-3
    r_ads_heat = 2.5e-3
    L = 0.5
    row_GGHS = 3
    row_cont = 3
    row_ads = 10
    delta_r_ads = (r_cont_ads - r_ads_heat) / row_ads

    rho_fre = zeros(typeof(p), row_ads)
    for i in eachindex(rho_fre)
        # Obtain the density of nitrogen according to temperature and pressure
        rho_fre[i] = PropsSI("D", "T", T[row_GGHS+row_cont+i], "P", p, "nitrogen")
    end

    # Construct the nonlinear equation
    f = 0.0
    for i in eachindex(rho_fre)
        f = f + rho_fre[i] * ((r_cont_ads - (i - 1) * delta_r_ads)^2 - (r_cont_ads - i * delta_r_ads)^2) / 2 * L
    end
    return f - init_m
end


# Solving the equation
T = collect(range(200.0, 500.0, 19))
p = 1e5
init_m = 2e-4

# myfun_P_MWE(p,(T, init_m))
p_new = solve(
    NonlinearProblem(myfun_P_MWE, p, (T, init_m)),
    # RobustMultiNewton(; autodiff=AutoFiniteDiff())
    TrustRegion(autodiff=AutoFiniteDiff(), radius_update_scheme=RadiusUpdateSchemes.Bastin)
).u

Error & Stacktrace 3⚠️

ERROR: MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{SciMLBase.JacobianWrapper{…}, Float64}, Float64, 1})

Closest candidates are:
  (::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat
   @ Base rounding.jl:207
  (::Type{T})(::T) where T<:Number
   @ Core boot.jl:792
  Float64(::IrrationalConstants.Sqrt2)
   @ IrrationalConstants C:\Users\qlx\.julia\packages\IrrationalConstants\vp5v4\src\macro.jl:112
  ...

Stacktrace:
  [1] convert(::Type{Float64}, x::ForwardDiff.Dual{ForwardDiff.Tag{SciMLBase.JacobianWrapper{…}, Float64}, Float64, 1})
    @ Base .\number.jl:7
  [2] cconvert(T::Type, x::ForwardDiff.Dual{ForwardDiff.Tag{SciMLBase.JacobianWrapper{…}, Float64}, Float64, 1})
    @ Base .\essentials.jl:543
  [3] PropsSI(output::String, name1::String, value1::Float64, name2::String, value2::ForwardDiff.Dual{…}, fluid::String)
    @ CoolProp C:\Users\qlx\.julia\packages\CoolProp\RDEcq\src\CoolProp.jl:81
  [4] myfun_P_MWE(p::ForwardDiff.Dual{ForwardDiff.Tag{…}, Float64, 1}, ::Tuple{Vector{…}, Float64})
    @ Main c:\Users\qlx\Desktop\RB4_AP4_multi_stage_Julia_CoolProp\test2.jl:15
  [5] NonlinearFunction
    @ C:\Users\qlx\.julia\packages\SciMLBase\NjslX\src\scimlfunctions.jl:2185 [inlined]
  [6] JacobianWrapper
    @ C:\Users\qlx\.julia\packages\SciMLBase\NjslX\src\function_wrappers.jl:103 [inlined]
  [7] __value_derivative
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\internal\jacobian.jl:186 [inlined]
  [8] JacobianCache
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\internal\jacobian.jl:118 [inlined]
  [9] JacobianCache
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\internal\jacobian.jl:106 [inlined]
 [10] __step!(cache::NonlinearSolve.GeneralizedFirstOrderAlgorithmCache{…}; recompute_jacobian::Nothing, kwargs::@Kwargs{})
    @ NonlinearSolve C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generalized_first_order.jl:208
 [11] __step!
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generalized_first_order.jl:204 [inlined]
 [12] #step!#210
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:55 [inlined]
 [13] step!
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:50 [inlined]
 [14] solve!(cache::NonlinearSolve.GeneralizedFirstOrderAlgorithmCache{…})
    @ NonlinearSolve C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:13
 [15] __solve(::NonlinearProblem{…}, ::GeneralizedFirstOrderAlgorithm{…}; kwargs::@Kwargs{})
    @ NonlinearSolve C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:4
 [16] __solve
    @ C:\Users\qlx\.julia\packages\NonlinearSolve\R8LAH\src\core\generic.jl:1 [inlined]
 [17] #solve_call#44
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:612 [inlined]
 [18] solve_call
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:569 [inlined]
 [19] #solve_up#53
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1072 [inlined]
 [20] solve_up
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1066 [inlined]
 [21] #solve#52
    @ C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1060 [inlined]
 [22] solve(prob::NonlinearProblem{…}, args::GeneralizedFirstOrderAlgorithm{…})
    @ DiffEqBase C:\Users\qlx\.julia\packages\DiffEqBase\O8cUq\src\solve.jl:1050
 [23] top-level scope
    @ c:\Users\qlx\Desktop\RB4_AP4_multi_stage_Julia_CoolProp\test2.jl:33
Some type information was truncated. Use `show(err)` to see complete types.

Environment (please complete the following information):

  • Output of using Pkg; Pkg.status()
  [6e4b80f9] BenchmarkTools v1.5.0        
  [e084ae63] CoolProp v0.2.0
  [0c46a032] DifferentialEquations v7.13.0
  [6a86dc24] FiniteDiff v2.23.0
  [f6369f11] ForwardDiff v0.10.36
  [86223c79] Graphs v1.10.0
  [10e44e05] MATLAB v0.8.4
⌃ [961ee093] ModelingToolkit v9.9.0
  [8913a72c] NonlinearSolve v3.9.1
  [7f7a1694] Optimization v3.24.3
  [4e6fcdb7] OptimizationNLopt v0.2.0
⌃ [91a5bcdd] Plots v1.40.3
Info Packages marked with ⌃ have new versions available and may be upgradable.
  • Output of using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
  [47edcb42] ADTypes v0.2.7
  [1520ce14] AbstractTrees v0.4.5
  [7d9f7c33] Accessors v0.1.36
  [79e6a3ab] Adapt v4.0.4
  [ec485272] ArnoldiMethod v0.4.0
  [4fba245c] ArrayInterface v7.9.0
⌃ [4c555306] ArrayLayouts v1.9.1
  [aae01518] BandedMatrices v1.6.1
  [6e4b80f9] BenchmarkTools v1.5.0
  [e2ed5e7c] Bijections v0.1.6
  [d1d4a3ce] BitFlags v0.1.8
  [62783981] BitTwiddlingConvenienceFunctions v0.1.5
  [764a87c0] BoundaryValueDiffEq v5.7.1
  [fa961155] CEnum v0.5.0
  [2a0fbf3d] CPUSummary v0.2.4
  [00ebfdb7] CSTParser v3.4.2
  [49dc2e85] Calculus v0.5.1
  [d360d2e6] ChainRulesCore v1.23.0
  [fb6a15b2] CloseOpenIntervals v0.1.12
  [944b1d66] CodecZlib v0.7.4
  [35d6a980] ColorSchemes v3.24.0
⌃ [3da002f7] ColorTypes v0.11.4
  [c3611d14] ColorVectorSpace v0.10.0
  [5ae59095] Colors v0.12.10
  [861a8166] Combinatorics v1.0.2
  [a80b9123] CommonMark v0.8.12
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.0
  [34da2185] Compat v4.14.0
⌃ [b152e2b5] CompositeTypes v0.1.3
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
  [f0e56b4a] ConcurrentUtilities v2.4.1
  [88cd18e8] ConsoleProgressMonitor v0.1.2
  [187b0558] ConstructionBase v1.5.5
  [d38c429a] Contour v0.6.3
  [e084ae63] CoolProp v0.2.0
  [adafc99b] CpuId v0.3.1
  [a8cc5b0e] Crayons v4.1.1
  [9a962f9c] DataAPI v1.16.0
⌃ [864edb3b] DataStructures v0.18.18
  [e2d170a0] DataValueInterfaces v1.0.0
  [bcd4f6db] DelayDiffEq v5.47.1
  [8bb1440f] DelimitedFiles v1.9.1
  [2b5f629d] DiffEqBase v6.149.0
⌃ [459566f4] DiffEqCallbacks v3.5.0
  [77a26b50] DiffEqNoiseProcess v5.21.0
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
  [0c46a032] DifferentialEquations v7.13.0
  [b4f34e82] Distances v0.10.11
  [31c24e10] Distributions v0.25.107
  [ffbed154] DocStringExtensions v0.9.3
⌃ [5b8099bc] DomainSets v0.7.11
  [fa6b7ba4] DualNumbers v0.6.8
⌃ [7c1d4256] DynamicPolynomials v0.5.5
  [06fc5a27] DynamicQuantities v0.13.2
  [4e289a0a] EnumX v1.0.4
⌃ [f151be2c] EnzymeCore v0.6.6
  [460bff9d] ExceptionUnwrapping v0.1.10
  [d4d017d3] ExponentialUtilities v1.26.1
  [e2ba6199] ExprTools v0.1.10
  [c87230d0] FFMPEG v0.4.1
  [9d29842c] FastAlmostBandedMatrices v0.1.1
  [7034ab61] FastBroadcast v0.2.8
  [9aa1b823] FastClosures v0.3.2
  [29a986be] FastLapackInterface v2.0.2
  [1a297f60] FillArrays v1.10.0
  [64ca27bc] FindFirstFunctions v1.2.0
  [6a86dc24] FiniteDiff v2.23.0
  [53c48c17] FixedPointNumbers v0.8.4
  [1fa38f19] Format v1.3.7
  [f6369f11] ForwardDiff v0.10.36
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [d9f16b24] Functors v0.4.10
  [46192b85] GPUArraysCore v0.1.6
  [28b8d3ca] GR v0.73.3
  [c145ed77] GenericSchur v0.5.4
  [c27321d9] Glob v1.3.1
  [86223c79] Graphs v1.10.0
  [42e2da0e] Grisu v1.0.2
  [cd3eb016] HTTP v1.10.5
  [3e5b6fbb] HostCPUFeatures v0.1.16
  [34004b35] HypergeometricFunctions v0.3.23
  [615f187c] IfElse v0.1.1
  [d25df0c9] Inflate v0.1.4
  [8197267c] IntervalSets v0.7.10
  [3587e190] InverseFunctions v0.1.13
  [92d709cd] IrrationalConstants v0.2.2
  [82899510] IteratorInterfaceExtensions v1.0.0
  [1019f520] JLFzf v0.1.7
  [692b3bcd] JLLWrappers v1.5.0
  [682c06a0] JSON v0.21.4
⌃ [98e50ef6] JuliaFormatter v1.0.55
  [ccbc3e58] JumpProcesses v9.11.1
  [ef3ab10e] KLU v0.6.0
  [ba0b0d4f] Krylov v0.9.5
  [b964fa9f] LaTeXStrings v1.3.1
  [2ee39098] LabelledArrays v1.15.1
  [984bce1d] LambertW v0.4.6
  [23fbe1c1] Latexify v0.16.2
  [10f19ff3] LayoutPointers v0.1.15
⌃ [5078a376] LazyArrays v1.9.0
  [1d6d02ad] LeftChildRightSiblingTrees v0.2.0
  [2d8b4e74] LevyArea v1.0.0
  [d3d80556] LineSearches v7.2.0
  [7ed4a6bd] LinearSolve v2.28.0
  [2ab3a3ac] LogExpFunctions v0.3.27
  [e6f89c97] LoggingExtras v1.0.3
  [bdcacae8] LoopVectorization v0.12.169
  [10e44e05] MATLAB v0.8.4
  [d8e11817] MLStyle v0.4.17
  [1914dd2f] MacroTools v0.5.13
  [d125e4d3] ManualMemory v0.1.8
⌃ [a3b82374] MatrixFactorizations v2.1.0
  [bb5d69b7] MaybeInplace v0.1.2
  [739be429] MbedTLS v1.1.9
  [442fdcdd] Measures v0.3.2
⌃ [e1d29d7a] Missings v1.1.0
⌃ [961ee093] ModelingToolkit v9.9.0
  [46d2c3a1] MuladdMacro v0.2.4
  [102ac46a] MultivariatePolynomials v0.5.4
  [d8a4904e] MutableArithmetics v1.4.2
  [d41bc354] NLSolversBase v7.8.3
  [76087f3c] NLopt v1.0.2
  [2774e3e8] NLsolve v4.5.1
  [77ba4419] NaNMath v1.0.2
  [8913a72c] NonlinearSolve v3.9.1
  [6fe1bfb0] OffsetArrays v1.13.0
  [4d8831e6] OpenSSL v1.4.2
  [429524aa] Optim v1.9.4
  [7f7a1694] Optimization v3.24.3
  [bca83a33] OptimizationBase v0.0.5
  [4e6fcdb7] OptimizationNLopt v0.2.0
  [bac558e1] OrderedCollections v1.6.3
  [1dea7af3] OrdinaryDiffEq v6.74.1
  [90014a1f] PDMats v0.11.31
  [65ce6f38] PackageExtensionCompat v1.0.2
  [d96e819e] Parameters v0.12.3
  [69de0a69] Parsers v2.8.1
  [b98c9c47] Pipe v1.3.0
  [ccf2f8ad] PlotThemes v3.1.0
  [995b91a9] PlotUtils v1.4.1
⌃ [91a5bcdd] Plots v1.40.3
  [e409e4f3] PoissonRandom v0.4.4
  [f517fe37] Polyester v0.7.12
  [1d0040c9] PolyesterWeave v0.2.1
  [85a6dd25] PositiveFactorizations v0.2.4
  [d236fae5] PreallocationTools v0.4.20
  [aea7be01] PrecompileTools v1.2.1
  [21216c6a] Preferences v1.4.3
  [33c8b6b6] ProgressLogging v0.1.4
  [92933f4c] ProgressMeter v1.10.0
  [1fd47b50] QuadGK v2.9.4
  [74087812] Random123 v1.7.0
  [e6cf234a] RandomNumbers v1.5.3
  [3cdcf5f2] RecipesBase v1.3.4
  [01d81517] RecipesPipeline v0.6.12
  [731186ca] RecursiveArrayTools v3.13.0
⌃ [f2c3362d] RecursiveFactorization v0.2.21
  [189a3867] Reexport v1.2.2
  [05181044] RelocatableFolders v1.0.1
  [ae029012] Requires v1.3.0
  [ae5879a3] ResettableStacks v1.1.1
  [79098fc4] Rmath v0.7.1
  [7e49a35a] RuntimeGeneratedFunctions v0.5.12
  [94e857df] SIMDTypes v0.1.0
  [476501e8] SLEEFPirates v0.6.42
⌃ [0bca4576] SciMLBase v2.31.0
  [c0aeaf25] SciMLOperators v0.3.8
  [53ae85a6] SciMLStructures v1.1.0
  [6c6a2e73] Scratch v1.2.1
  [efcf1570] Setfield v1.1.1
  [992d4aef] Showoff v1.0.3
  [777ac1f9] SimpleBufferStream v1.1.0
  [727e6d20] SimpleNonlinearSolve v1.7.0
  [699a6c99] SimpleTraits v0.9.4
  [ce78b400] SimpleUnPack v1.1.0
  [a2af1166] SortingAlgorithms v1.2.1
  [47a9eef4] SparseDiffTools v2.17.0
  [e56a9233] Sparspak v0.3.9
  [276daf66] SpecialFunctions v2.3.1
  [aedffcd0] Static v0.8.10
  [0d7ed370] StaticArrayInterface v1.5.0
  [90137ffa] StaticArrays v1.9.3
  [1e83bf80] StaticArraysCore v1.4.2
  [82ae8749] StatsAPI v1.7.0
  [2913bbd2] StatsBase v0.34.3
  [4c63d2b9] StatsFuns v1.3.1
  [9672c7b4] SteadyStateDiffEq v2.1.0
  [789caeaf] StochasticDiffEq v6.65.1
⌃ [7792a7ef] StrideArraysCore v0.5.2
  [c3572dad] Sundials v4.24.0
⌃ [2efcf032] SymbolicIndexingInterface v0.3.15
  [19f23fe9] SymbolicLimits v0.2.0
  [d1185830] SymbolicUtils v1.5.1
⌃ [0c5d862f] Symbolics v5.27.1
  [3783bdb8] TableTraits v1.0.1
  [bd369af6] Tables v1.11.1
  [62fd8b95] TensorCore v0.1.1
  [5d786b92] TerminalLoggers v0.1.7
  [8290d209] ThreadingUtilities v0.5.2
  [a759f4b9] TimerOutputs v0.5.23
  [0796e94c] Tokenize v0.5.28
  [3bb67fe8] TranscodingStreams v0.10.7
  [d5829a12] TriangularSolve v0.1.21
  [410a4b4d] Tricks v0.1.8
  [781d530d] TruncatedStacktraces v1.4.0
  [5c2747f8] URIs v1.5.1
  [3a884ed6] UnPack v1.0.2
  [1cfade01] UnicodeFun v0.4.1
  [1986cc42] Unitful v1.19.0
  [45397f5d] UnitfulLatexify v1.6.3
  [a7c27f48] Unityper v0.1.6
  [41fe7b60] Unzip v0.2.0
  [3d5dd08c] VectorizationBase v0.21.65
  [19fa3120] VertexSafeGraphs v0.2.0
  [6e34b625] Bzip2_jll v1.0.8+1
  [83423d85] Cairo_jll v1.18.0+1
  [3351c21f] CoolProp_jll v6.6.0+0
  [2702e6a9] EpollShim_jll v0.0.20230411+0
  [2e619515] Expat_jll v2.5.0+0
⌅ [b22a6f82] FFMPEG_jll v4.4.4+1
  [a3f928ae] Fontconfig_jll v2.13.93+0
  [d7e528f0] FreeType2_jll v2.13.1+0
  [559328eb] FriBidi_jll v1.0.10+0
  [0656b61e] GLFW_jll v3.3.9+0
  [d2c73de3] GR_jll v0.73.3+0
  [78b55507] Gettext_jll v0.21.0+0
  [7746bdde] Glib_jll v2.80.0+0
  [3b182d85] Graphite2_jll v1.3.14+0
  [2e76f6c2] HarfBuzz_jll v2.8.1+1
  [1d5cc7b8] IntelOpenMP_jll v2024.0.2+0
  [aacddb02] JpegTurbo_jll v3.0.2+0
  [c1c5ebd0] LAME_jll v3.100.1+0
  [88015f11] LERC_jll v3.0.0+1
  [1d63c593] LLVMOpenMP_jll v15.0.7+0
  [dd4b983a] LZO_jll v2.10.1+0
⌅ [e9f186c6] Libffi_jll v3.2.2+1
  [d4300ac3] Libgcrypt_jll v1.8.7+0
  [7e76a0d4] Libglvnd_jll v1.6.0+0
  [7add5ba3] Libgpg_error_jll v1.42.0+0
  [94ce4f54] Libiconv_jll v1.17.0+0
  [4b2f31a3] Libmount_jll v2.39.3+0
⌅ [89763e89] Libtiff_jll v4.5.1+1
  [38a345b3] Libuuid_jll v2.39.3+1
  [856f044c] MKL_jll v2024.0.0+0
  [079eb43e] NLopt_jll v2.7.1+0
  [e7412a2a] Ogg_jll v1.3.5+1
  [458c3c95] OpenSSL_jll v3.0.13+1
  [efe28fd5] OpenSpecFun_jll v0.5.5+0
  [91d4177d] Opus_jll v1.3.2+0
  [30392449] Pixman_jll v0.42.2+0
  [c0090381] Qt6Base_jll v6.5.3+1
  [f50d1b31] Rmath_jll v0.4.0+0
⌅ [fb77eaff] Sundials_jll v5.2.2+0
  [a44049a8] Vulkan_Loader_jll v1.3.243+0
  [a2964d1f] Wayland_jll v1.21.0+1
  [2381bf8a] Wayland_protocols_jll v1.31.0+0
  [02c8fc9c] XML2_jll v2.12.6+0
  [aed1982a] XSLT_jll v1.1.34+0
  [ffd25f8a] XZ_jll v5.4.6+0
  [f67eecfb] Xorg_libICE_jll v1.0.10+1
  [c834827a] Xorg_libSM_jll v1.2.3+0
  [4f6342f7] Xorg_libX11_jll v1.8.6+0
  [0c0b7dd1] Xorg_libXau_jll v1.0.11+0
  [935fb764] Xorg_libXcursor_jll v1.2.0+4
  [a3789734] Xorg_libXdmcp_jll v1.1.4+0
  [1082639a] Xorg_libXext_jll v1.3.4+4
  [d091e8ba] Xorg_libXfixes_jll v5.0.3+4
  [a51aa0fd] Xorg_libXi_jll v1.7.10+4
  [d1454406] Xorg_libXinerama_jll v1.1.4+4
  [ec84b674] Xorg_libXrandr_jll v1.5.2+4
  [ea2f1a96] Xorg_libXrender_jll v0.9.10+4
  [14d82f49] Xorg_libpthread_stubs_jll v0.1.1+0
  [c7cfdc94] Xorg_libxcb_jll v1.15.0+0
  [cc61e674] Xorg_libxkbfile_jll v1.1.2+0
  [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.4+0
  [12413925] Xorg_xcb_util_image_jll v0.4.0+1
  [2def613f] Xorg_xcb_util_jll v0.4.0+1
  [975044d2] Xorg_xcb_util_keysyms_jll v0.4.0+1
  [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.9+1
  [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.1+1
  [35661453] Xorg_xkbcomp_jll v1.4.6+0
  [33bec58e] Xorg_xkeyboard_config_jll v2.39.0+0
  [c5fb5394] Xorg_xtrans_jll v1.5.0+0
  [3161d3a3] Zstd_jll v1.5.6+0
  [35ca27e7] eudev_jll v3.2.9+0
⌅ [214eeab7] fzf_jll v0.43.0+0
  [1a1c6b14] gperf_jll v3.1.1+0
  [a4ae2306] libaom_jll v3.4.0+0
  [0ac62f75] libass_jll v0.15.1+0
  [2db6ffa8] libevdev_jll v1.11.0+0
  [f638f0a6] libfdk_aac_jll v2.0.2+0
  [36db933b] libinput_jll v1.18.0+0
  [b53b4c65] libpng_jll v1.6.43+1
  [f27f6e37] libvorbis_jll v1.3.7+1
  [009596ad] mtdev_jll v1.1.6+0
  [1270edf5] x264_jll v2021.5.5+0
  [dfaa095f] x265_jll v3.5.0+0
  [d8fb68d0] xkbcommon_jll v1.4.1+1
  [0dad84c5] ArgTools v1.1.1
  [56f22d72] Artifacts
  [2a0f44e3] Base64
  [ade2ca70] Dates
  [8ba89e20] Distributed
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching
  [9fa8497b] Future
  [b77e0a4c] InteractiveUtils
  [4af54fe1] LazyArtifacts
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2
  [8f399da3] Libdl
  [37e2e46d] LinearAlgebra
  [56ddb016] Logging
  [d6f4376e] Markdown
  [a63ad114] Mmap
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.10.0
  [de0858da] Printf
  [9abbd945] Profile
  [3fa0cd96] REPL
  [9a3f8284] Random
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization
  [1a1011a3] SharedArrays
  [6462fe0b] Sockets
  [2f01184e] SparseArrays v1.10.0
  [10745b16] Statistics v1.10.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test
  [cf7118a7] UUIDs
  [4ec0a83e] Unicode
  [e66e0078] CompilerSupportLibraries_jll v1.1.0+0
  [deac9b47] LibCURL_jll v8.4.0+0
  [e37daf67] LibGit2_jll v1.6.4+0
  [29816b5a] LibSSH2_jll v1.11.0+1
  [c8ffd9c3] MbedTLS_jll v2.28.2+1
  [14a3606d] MozillaCACerts_jll v2023.1.10
  [4536629a] OpenBLAS_jll v0.3.23+4
  [05823500] OpenLibm_jll v0.8.1+2
  [efcefdf7] PCRE2_jll v10.42.0+1
  [bea87d4a] SuiteSparse_jll v7.2.1+1
  [83775a58] Zlib_jll v1.2.13+1
  [8e850b90] libblastrampoline_jll v5.8.0+1
  [8e850ede] nghttp2_jll v1.52.0+1
  [3f19e933] p7zip_jll v17.4.0+2
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`
  • Output of versioninfo()
Julia Version 1.10.2
Commit bd47eca2c8 (2024-03-01 10:14 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
  CPU: 12 × Intel(R) Core(TM) i5-10400F CPU @ 2.90GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-15.0.7 (ORCJIT, skylake)
Threads: 12 default, 0 interactive, 6 GC (on 12 virtual cores)
Environment:
  JULIA_EDITOR = code
@qlx17 qlx17 added the bug Something isn't working label Apr 16, 2024
@avik-pal
Copy link
Member

Ah it's a scalar problem, that case was hard coded for dual numbers. let me fix it

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants