diff --git a/src/trustRegion.jl b/src/trustRegion.jl index 403eed394..86cd4ea4b 100644 --- a/src/trustRegion.jl +++ b/src/trustRegion.jl @@ -203,6 +203,7 @@ end shrink_counter::Int du u_tmp + u_gauss_newton u_cauchy fu_new make_new_J::Bool @@ -229,6 +230,7 @@ function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::TrustRegion, linsolve_kwargs) u_tmp = zero(u) u_cauchy = zero(u) + u_gauss_newton = zero(u) loss_new = loss H = zero(J) @@ -265,7 +267,6 @@ function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::TrustRegion, expand_factor = convert(trustType, alg.expand_factor) # Parameters for the Schemes - floatType = typeof(r) p1 = convert(floatType, 0.0) p2 = convert(floatType, 0.0) p3 = convert(floatType, 0.0) @@ -321,28 +322,30 @@ function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::TrustRegion, jac_cache, false, maxiters, internalnorm, ReturnCode.Default, abstol, prob, radius_update_scheme, initial_trust_radius, max_trust_radius, step_threshold, shrink_threshold, expand_threshold, shrink_factor, expand_factor, loss, loss_new, - H, g, shrink_counter, du, u_tmp, u_cauchy, fu_new, make_new_J, r, p1, p2, p3, p4, ϵ, + H, g, shrink_counter, du, u_tmp, u_gauss_newton, u_cauchy, fu_new, make_new_J, r, p1, p2, p3, p4, ϵ, NLStats(1, 0, 0, 0, 0)) end isinplace(::TrustRegionCache{iip}) where {iip} = iip function perform_step!(cache::TrustRegionCache{true}) - @unpack make_new_J, J, fu, f, u, p, u_tmp, alg, linsolve = cache + @unpack make_new_J, J, fu, f, u, p, u_gauss_newton, alg, linsolve = cache if cache.make_new_J jacobian!!(J, cache) mul!(cache.H, J', J) mul!(cache.g, J', fu) cache.stats.njacs += 1 - end - # do not use A = cache.H, b = _vec(cache.g) since it is equivalent - # to A = cache.J, b = _vec(fu) as long as the Jacobian is non-singular - linres = dolinsolve(alg.precs, linsolve, A = J, b = _vec(fu), - linu = _vec(u_tmp), + # do not use A = cache.H, b = _vec(cache.g) since it is equivalent + # to A = cache.J, b = _vec(fu) as long as the Jacobian is non-singular + linres = dolinsolve(alg.precs, linsolve, A = J, b = _vec(fu), + linu = _vec(u_gauss_newton), p = p, reltol = cache.abstol) - cache.linsolve = linres.cache - cache.u_tmp .= -1 .* u_tmp + cache.linsolve = linres.cache + @. cache.u_gauss_newton = -1 * u_gauss_newton + end + + # Compute dogleg step dogleg!(cache) # Compute the potentially new u @@ -363,11 +366,10 @@ function perform_step!(cache::TrustRegionCache{false}) cache.H = J' * J cache.g = J' * fu cache.stats.njacs += 1 + cache.u_gauss_newton = -1 .* (cache.H \ cache.g) end - @unpack g, H = cache # Compute the Newton step. - cache.u_tmp = -1 .* (H \ g) dogleg!(cache) # Compute the potentially new u @@ -566,25 +568,26 @@ function trust_region_step!(cache::TrustRegionCache) end function dogleg!(cache::TrustRegionCache{true}) - @unpack u_tmp, u_cauchy, trust_r = cache + @unpack u_tmp, u_gauss_newton, u_cauchy, trust_r = cache # Take the full Gauss-Newton step if lies within the trust region. - if norm(u_tmp) ≤ trust_r - cache.du .= u_tmp + if norm(u_gauss_newton) ≤ trust_r + cache.du .= u_gauss_newton return end # Take intersection of steepest descent direction and trust region if Cauchy point lies outside of trust region l_grad = norm(cache.g) # length of the gradient d_cauchy = l_grad^3 / dot(cache.g, cache.H, cache.g) # distance of the cauchy point from the current iterate - if d_cauchy > trust_r + if d_cauchy >= trust_r @. cache.du = - (trust_r/l_grad) * cache.g # step to the end of the trust region return end - + # Take the intersection of dogled with trust region if Cauchy point lies inside the trust region @. u_cauchy = - (d_cauchy/l_grad) * cache.g # compute Cauchy point - @. u_tmp -= u_cauchy # calf of the dogleg -- use u_tmp to avoid allocation + @. u_tmp = u_gauss_newton - u_cauchy # calf of the dogleg -- use u_tmp to avoid allocation + a = dot(u_tmp, u_tmp) b = 2*dot(u_cauchy, u_tmp) c = d_cauchy^2 - trust_r^2 @@ -596,11 +599,11 @@ end function dogleg!(cache::TrustRegionCache{false}) - @unpack u_tmp, u_cauchy, trust_r = cache + @unpack u_tmp, u_gauss_newton, u_cauchy, trust_r = cache # Take the full Gauss-Newton step if lies within the trust region. - if norm(u_tmp) ≤ trust_r - cache.du = deepcopy(u_tmp) + if norm(u_gauss_newton) ≤ trust_r + cache.du = deepcopy(u_gauss_newton) return end @@ -614,7 +617,7 @@ function dogleg!(cache::TrustRegionCache{false}) # Take the intersection of dogled with trust region if Cauchy point lies inside the trust region u_cauchy = - (d_cauchy/l_grad) * cache.g # compute Cauchy point - u_tmp -= u_cauchy # calf of the dogleg -- use u_tmp to avoid allocation + u_tmp = u_gauss_newton - u_cauchy # calf of the dogleg a = dot(u_tmp, u_tmp) b = 2*dot(u_cauchy, u_tmp) c = d_cauchy^2 - trust_r^2