From effa015000ea0962d2a6687fb54e7216c9e3cf04 Mon Sep 17 00:00:00 2001 From: ArnoStrouwen Date: Sun, 16 Oct 2022 18:42:57 +0200 Subject: [PATCH] canonify docs --- README.md | 7 +++---- docs/make.jl | 2 +- docs/src/basics/FAQ.md | 2 +- docs/src/index.md | 2 +- 4 files changed, 6 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 20ee6f59f..ef305c0c8 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,7 @@ # NonlinearSolve.jl [![Join the chat at https://julialang.zulipchat.com #sciml-bridged](https://img.shields.io/static/v1?label=Zulip&message=chat&color=9558b2&labelColor=389826)](https://julialang.zulipchat.com/#narrow/stream/279055-sciml-bridged) -[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](http://nonlinearsolve.sciml.ai/stable/) -[![Global Docs](https://img.shields.io/badge/docs-SciML-blue.svg)](https://docs.sciml.ai/dev/modules/NonlinearSolve/) +[![Global Docs](https://img.shields.io/badge/docs-SciML-blue.svg)](https://docs.sciml.ai/NonlinearSolve/stable/) [![codecov](https://codecov.io/gh/SciML/NonlinearSolve.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/SciML/NonlinearSolve.jl) [![Build Status](https://github.com/SciML/NonlinearSolve.jl/workflows/CI/badge.svg)](https://github.com/SciML/NonlinearSolve.jl/actions?query=workflow%3ACI) @@ -16,8 +15,8 @@ Fast implementations of root finding algorithms in Julia that satisfy the SciML common interface. For information on using the package, -[see the stable documentation](https://nonlinearsolve.sciml.ai/stable/). Use the -[in-development documentation](https://nonlinearsolve.sciml.ai/dev/) for the version of +[see the stable documentation](https://docs.sciml.ai/NonlinearSolve/stable/). Use the +[in-development documentation](https://docs.sciml.ai/NonlinearSolve/dev/) for the version of the documentation which contains the unreleased features. ## High Level Examples diff --git a/docs/make.jl b/docs/make.jl index fb811e160..a191d9e0c 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -8,7 +8,7 @@ makedocs(sitename = "NonlinearSolve.jl", clean = true, doctest = false, format = Documenter.HTML(analytics = "UA-90474609-3", assets = ["assets/favicon.ico"], - canonical = "https://nonlinearsolve.sciml.ai/stable/"), + canonical = "https://docs.sciml.ai/NonlinearSolve/stable/"), pages = pages) deploydocs(repo = "github.com/SciML/NonlinearSolve.jl.git"; diff --git a/docs/src/basics/FAQ.md b/docs/src/basics/FAQ.md index 25314b030..9c521e57d 100644 --- a/docs/src/basics/FAQ.md +++ b/docs/src/basics/FAQ.md @@ -35,4 +35,4 @@ MATLAB 2022a achieves 1.66s. Try this code yourself: we receive 0.06 seconds, or This example is still not optimized in the Julia code and we expect an improvement in a near future version. -For more information on performance of SciML, see the [SciMLBenchmarks](https://github.com/SciML/SciMLBenchmarks.jl) +For more information on performance of SciML, see the [SciMLBenchmarks](https://docs.sciml.ai/SciMLBenchmarksOutput/stable/) diff --git a/docs/src/index.md b/docs/src/index.md index 1118ef667..cebd2db19 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -7,7 +7,7 @@ ability to use sparse automatic differentiation for Jacobian construction and Jacobian-vector products. It interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping. It also interfaces with the -[ModelingToolkit.jl](https://mtk.sciml.ai/dev/) world of symbolic modeling to +[ModelingToolkit.jl](https://docs.sciml.ai/ModelingToolkit/stable/) world of symbolic modeling to allow for automatically generating high-performance code. Performance is key: the current methods are made to be highly performant on