diff --git a/docs/src/api/nonlinearsolve.md b/docs/src/api/nonlinearsolve.md index e4554f3e6..5da204f07 100644 --- a/docs/src/api/nonlinearsolve.md +++ b/docs/src/api/nonlinearsolve.md @@ -8,6 +8,9 @@ These are the native solvers of NonlinearSolve.jl. NewtonRaphson TrustRegion PseudoTransient +DFSane +GeneralBroyden +GeneralKlement ``` ## Polyalgorithms diff --git a/src/NonlinearSolve.jl b/src/NonlinearSolve.jl index 438cea870..8d3a8ca2b 100644 --- a/src/NonlinearSolve.jl +++ b/src/NonlinearSolve.jl @@ -9,7 +9,7 @@ import ArrayInterface: restructure import ForwardDiff import ADTypes: AbstractFiniteDifferencesMode -import ArrayInterface: undefmatrix, matrix_colors, parameterless_type, ismutable +import ArrayInterface: undefmatrix, matrix_colors, parameterless_type, ismutable, issingular import ConcreteStructs: @concrete import EnumX: @enumx import ForwardDiff: Dual diff --git a/src/dfsane.jl b/src/dfsane.jl index 13de5ff6a..f5bf69eca 100644 --- a/src/dfsane.jl +++ b/src/dfsane.jl @@ -43,7 +43,6 @@ See also the implementation in [SimpleNonlinearSolve.jl](https://github.com/SciM - `max_inner_iterations`: the maximum number of iterations allowed for the inner loop of the algorithm. Defaults to `1000`. """ - struct DFSane{T, F} <: AbstractNonlinearSolveAlgorithm σ_min::T σ_max::T diff --git a/src/klement.jl b/src/klement.jl index 42cac5bbe..5674b1757 100644 --- a/src/klement.jl +++ b/src/klement.jl @@ -1,15 +1,36 @@ +""" + GeneralKlement(; max_resets = 5, linsolve = LUFactorization(), + linesearch = LineSearch(), precs = DEFAULT_PRECS) + +An implementation of `Klement` with line search, preconditioning and customizable linear +solves. + +## Keyword Arguments + + - `max_resets`: the maximum number of resets to perform. Defaults to `5`. + - `linsolve`: the [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) used for the + linear solves within the Newton method. Defaults to `nothing`, which means it uses the + LinearSolve.jl default algorithm choice. For more information on available algorithm + choices, see the [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). + - `precs`: the choice of preconditioners for the linear solver. Defaults to using no + preconditioners. For more information on specifying preconditioners for LinearSolve + algorithms, consult the + [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). + - `linesearch`: the line search algorithm to use. Defaults to [`LineSearch()`](@ref), + which means that no line search is performed. Algorithms from `LineSearches.jl` can be + used here directly, and they will be converted to the correct `LineSearch`. +""" @concrete struct GeneralKlement <: AbstractNewtonAlgorithm{false, Nothing} max_resets::Int linsolve precs linesearch - singular_tolerance end -function GeneralKlement(; max_resets::Int = 5, linsolve = nothing, - linesearch = LineSearch(), precs = DEFAULT_PRECS, singular_tolerance = nothing) +function GeneralKlement(; max_resets::Int = 5, linsolve = LUFactorization(), + linesearch = LineSearch(), precs = DEFAULT_PRECS) linesearch = linesearch isa LineSearch ? linesearch : LineSearch(; method = linesearch) - return GeneralKlement(max_resets, linsolve, precs, linesearch, singular_tolerance) + return GeneralKlement(max_resets, linsolve, precs, linesearch) end @concrete mutable struct GeneralKlementCache{iip} <: AbstractNonlinearSolveCache{iip} @@ -27,7 +48,6 @@ end Jᵀ²du Jdu resets - singular_tolerance force_stop maxiters::Int internalnorm @@ -60,11 +80,8 @@ function SciMLBase.__init(prob::NonlinearProblem{uType, iip}, alg::GeneralKlemen linsolve_kwargs...) end - singular_tolerance = alg.singular_tolerance === nothing ? inv(sqrt(eps(eltype(u)))) : - eltype(u)(alg.singular_tolerance) - return GeneralKlementCache{iip}(f, alg, u, fu, zero(fu), _mutable_zero(u), p, linsolve, - J, zero(J), zero(J), zero(fu), zero(fu), 0, singular_tolerance, false, + J, zero(J), zero(J), _vec(zero(fu)), _vec(zero(fu)), 0, false, maxiters, internalnorm, ReturnCode.Default, abstol, prob, NLStats(1, 0, 0, 0, 0), init_linesearch_cache(alg.linesearch, f, u, p, fu, Val(iip))) end @@ -73,21 +90,23 @@ function perform_step!(cache::GeneralKlementCache{true}) @unpack u, fu, f, p, alg, J, linsolve, du = cache T = eltype(J) - # FIXME: How can we do this faster? - if cond(J) > cache.singular_tolerance + singular, fact_done = _try_factorize_and_check_singular!(linsolve, J) + + if singular if cache.resets == alg.max_resets cache.force_stop = true cache.retcode = ReturnCode.Unstable return nothing end + fact_done = false fill!(J, zero(T)) J[diagind(J)] .= T(1) cache.resets += 1 end # u = u - J \ fu - linres = dolinsolve(alg.precs, linsolve; A = J, b = -_vec(fu), linu = _vec(du), - p, reltol = cache.abstol) + linres = dolinsolve(alg.precs, linsolve; A = ifelse(fact_done, nothing, J), + b = -_vec(fu), linu = _vec(du), p, reltol = cache.abstol) cache.linsolve = linres.cache # Line Search @@ -108,7 +127,8 @@ function perform_step!(cache::GeneralKlementCache{true}) mul!(cache.Jᵀ²du, cache.J_cache, cache.Jdu) mul!(cache.Jdu, J, _vec(du)) cache.fu .= cache.fu2 .- cache.fu - cache.fu .= (cache.fu .- _restructure(cache.fu, cache.Jdu)) ./ max.(cache.Jᵀ²du, eps(T)) + cache.fu .= _restructure(cache.fu, + (_vec(cache.fu) .- cache.Jdu) ./ max.(cache.Jᵀ²du, eps(T))) mul!(cache.J_cache, _vec(cache.fu), _vec(du)') cache.J_cache .*= J mul!(cache.J_cache2, cache.J_cache, J) @@ -123,14 +143,16 @@ function perform_step!(cache::GeneralKlementCache{false}) @unpack fu, f, p, alg, J, linsolve = cache T = eltype(J) - # FIXME: How can we do this faster? - if cond(J) > cache.singular_tolerance + singular, fact_done = _try_factorize_and_check_singular!(linsolve, J) + + if singular if cache.resets == alg.max_resets cache.force_stop = true cache.retcode = ReturnCode.Unstable return nothing end - cache.J = __init_identity_jacobian(u, fu) + fact_done = false + cache.J = __init_identity_jacobian(cache.u, fu) cache.resets += 1 end @@ -138,8 +160,8 @@ function perform_step!(cache::GeneralKlementCache{false}) if linsolve === nothing cache.du = -fu / cache.J else - linres = dolinsolve(alg.precs, linsolve; A = J, b = -_vec(fu), - linu = _vec(cache.du), p, reltol = cache.abstol) + linres = dolinsolve(alg.precs, linsolve; A = ifelse(fact_done, nothing, J), + b = -_vec(fu), linu = _vec(cache.du), p, reltol = cache.abstol) cache.linsolve = linres.cache end @@ -161,7 +183,8 @@ function perform_step!(cache::GeneralKlementCache{false}) cache.Jᵀ²du = cache.J_cache * cache.Jdu cache.Jdu = J * _vec(cache.du) cache.fu = cache.fu2 .- cache.fu - cache.fu = (cache.fu .- _restructure(cache.fu, cache.Jdu)) ./ max.(cache.Jᵀ²du, eps(T)) + cache.fu = _restructure(cache.fu, + (_vec(cache.fu) .- cache.Jdu) ./ max.(cache.Jᵀ²du, eps(T))) cache.J_cache = ((_vec(cache.fu) * _vec(cache.du)') .* J) * J cache.J = J .+ cache.J_cache diff --git a/src/trustRegion.jl b/src/trustRegion.jl index 8094dc09c..8e7118cc6 100644 --- a/src/trustRegion.jl +++ b/src/trustRegion.jl @@ -81,7 +81,6 @@ states as `RadiusUpdateSchemes.T`. Simply put the desired scheme as follows: end """ -```julia TrustRegion(; concrete_jac = nothing, linsolve = nothing, precs = DEFAULT_PRECS, radius_update_scheme::RadiusUpdateSchemes.T = RadiusUpdateSchemes.Simple, max_trust_radius::Real = 0 // 1, initial_trust_radius::Real = 0 // 1, diff --git a/src/utils.jl b/src/utils.jl index 7c6413937..3369e5c01 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -221,3 +221,28 @@ function __init_identity_jacobian(u::StaticArray, fu) return convert(MArray{Tuple{length(fu), length(u)}}, Matrix{eltype(u)}(I, length(fu), length(u))) end + +# Check Singular Matrix +_issingular(x::Number) = iszero(x) +@generated function _issingular(x::T) where {T} + hasmethod(issingular, Tuple{T}) && return :(issingular(x)) + return :(__issingular(x)) +end +__issingular(x::AbstractMatrix{T}) where {T} = cond(x) > inv(sqrt(eps(T))) +__issingular(x) = false ## If SciMLOperator and such + +# If factorization is LU then perform that and update the linsolve cache +# else check if the matrix is singular +function _try_factorize_and_check_singular!(linsolve, X) + if linsolve.cacheval isa LU + # LU Factorization was used + linsolve.A = X + linsolve.cacheval = LinearSolve.do_factorization(linsolve.alg, X, linsolve.b, + linsolve.u) + linsolve.isfresh = false + + return !issuccess(linsolve.cacheval), true + end + return _issingular(X), false +end +_try_factorize_and_check_singular!(::Nothing, x) = _issingular(x), false diff --git a/test/23_test_problems.jl b/test/23_test_problems.jl index 39ae155a3..25bb8a68a 100644 --- a/test/23_test_problems.jl +++ b/test/23_test_problems.jl @@ -87,7 +87,7 @@ end broken_tests = Dict(alg => Int[] for alg in alg_ops) broken_tests[alg_ops[1]] = [1, 3, 4, 5, 6, 8, 11, 12, 13, 14, 21] - broken_tests[alg_ops[2]] = [1, 2, 3, 4, 5, 6, 9, 11, 13, 22] + broken_tests[alg_ops[2]] = [1, 2, 3, 4, 5, 6, 9, 11, 13, 16, 21, 22] broken_tests[alg_ops[3]] = [1, 2, 4, 5, 6, 8, 11, 12, 13, 14, 21] test_on_library(problems, dicts, alg_ops, broken_tests) @@ -95,11 +95,13 @@ end @testset "GeneralKlement 23 Test Problems" begin alg_ops = (GeneralKlement(), - GeneralKlement(; linesearch = BackTracking())) + GeneralKlement(; linesearch = BackTracking()), + GeneralKlement(; linesearch = HagerZhang())) broken_tests = Dict(alg => Int[] for alg in alg_ops) - broken_tests[alg_ops[1]] = [1, 2, 3, 4, 5, 6, 7, 13, 22] - broken_tests[alg_ops[2]] = [1, 2, 4, 5, 6, 7, 11, 12, 22] + broken_tests[alg_ops[1]] = [1, 2, 4, 5, 6, 7, 11, 13, 22] + broken_tests[alg_ops[2]] = [1, 2, 4, 5, 6, 7, 11, 13, 22] + broken_tests[alg_ops[3]] = [1, 2, 5, 6, 11, 12, 13, 22] test_on_library(problems, dicts, alg_ops, broken_tests) end diff --git a/test/matrix_resizing.jl b/test/matrix_resizing.jl index 1aa60fa05..9c16fe0fe 100644 --- a/test/matrix_resizing.jl +++ b/test/matrix_resizing.jl @@ -7,7 +7,7 @@ vecprob = NonlinearProblem(ff, vec(u0), p) prob = NonlinearProblem(ff, u0, p) for alg in (NewtonRaphson(), TrustRegion(), LevenbergMarquardt(), PseudoTransient(), - RobustMultiNewton(), FastShortcutNonlinearPolyalg(), GeneralBroyden()) + RobustMultiNewton(), FastShortcutNonlinearPolyalg(), GeneralBroyden(), GeneralKlement()) @test vec(solve(prob, alg).u) == solve(vecprob, alg).u end @@ -18,6 +18,6 @@ vecprob = NonlinearProblem(fiip, vec(u0), p) prob = NonlinearProblem(fiip, u0, p) for alg in (NewtonRaphson(), TrustRegion(), LevenbergMarquardt(), PseudoTransient(), - RobustMultiNewton(), FastShortcutNonlinearPolyalg(), GeneralBroyden()) + RobustMultiNewton(), FastShortcutNonlinearPolyalg(), GeneralBroyden(), GeneralKlement()) @test vec(solve(prob, alg).u) == solve(vecprob, alg).u end