diff --git a/src/core/approximate_jacobian.jl b/src/core/approximate_jacobian.jl index afdd445bb..d5329f1c8 100644 --- a/src/core/approximate_jacobian.jl +++ b/src/core/approximate_jacobian.jl @@ -206,7 +206,7 @@ function SciMLBase.__init( update_rule_cache = __internal_init( prob, alg.update_rule, J, fu, u, du; internalnorm) - trace = init_nonlinearsolve_trace(alg, u, fu, ApplyArray(__zero, J), du; + trace = init_nonlinearsolve_trace(prob, alg, u, fu, ApplyArray(__zero, J), du; uses_jacobian_inverse = Val(INV), kwargs...) return ApproximateJacobianSolveCache{INV, GB, iip, maxtime !== nothing}( diff --git a/src/core/generalized_first_order.jl b/src/core/generalized_first_order.jl index 883609006..2769736ff 100644 --- a/src/core/generalized_first_order.jl +++ b/src/core/generalized_first_order.jl @@ -191,7 +191,7 @@ function SciMLBase.__init( GB = :LineSearch end - trace = init_nonlinearsolve_trace(alg, u, fu, ApplyArray(__zero, J), du; kwargs...) + trace = init_nonlinearsolve_trace(prob, alg, u, fu, ApplyArray(__zero, J), du; kwargs...) return GeneralizedFirstOrderAlgorithmCache{iip, GB, maxtime !== nothing}( fu, u, u_cache, p, du, J, alg, prob, jac_cache, descent_cache, linesearch_cache, diff --git a/src/core/spectral_methods.jl b/src/core/spectral_methods.jl index a2966c765..d9d271d78 100644 --- a/src/core/spectral_methods.jl +++ b/src/core/spectral_methods.jl @@ -134,7 +134,7 @@ function SciMLBase.__init(prob::AbstractNonlinearProblem, alg::GeneralizedDFSane abstol, reltol, tc_cache = init_termination_cache( prob, abstol, reltol, fu, u_cache, termination_condition) - trace = init_nonlinearsolve_trace(alg, u, fu, nothing, du; kwargs...) + trace = init_nonlinearsolve_trace(prob, alg, u, fu, nothing, du; kwargs...) if alg.σ_1 === nothing σ_n = dot(u, u) / dot(u, fu) diff --git a/src/internal/tracing.jl b/src/internal/tracing.jl index 8f0f10fb1..d5edb3a49 100644 --- a/src/internal/tracing.jl +++ b/src/internal/tracing.jl @@ -52,7 +52,7 @@ for Tr in (:TraceMinimal, :TraceWithJacobianConditionNumber, :TraceAll) end # NonlinearSolve Tracing Utilities -@concrete struct NonlinearSolveTraceEntry +@concrete struct NonlinearSolveTraceEntry{nType} iteration::Int fnorm stepnorm @@ -63,19 +63,27 @@ end δu end -function __show_top_level(io::IO, entry::NonlinearSolveTraceEntry) +function __show_top_level(io::IO, entry::NonlinearSolveTraceEntry{nType}) where {nType} if entry.condJ === nothing @printf io "%-8s %-20s %-20s\n" "----" "-------------" "-----------" - @printf io "%-8s %-20s %-20s\n" "Iter" "f(u) inf-norm" "Step 2-norm" + if nType === :L2 + @printf io "%-8s %-20s %-20s\n" "Iter" "f(u) 2-norm" "Step 2-norm" + else + @printf io "%-8s %-20s %-20s\n" "Iter" "f(u) inf-norm" "Step 2-norm" + end @printf io "%-8s %-20s %-20s\n" "----" "-------------" "-----------" else @printf io "%-8s %-20s %-20s %-20s\n" "----" "-------------" "-----------" "-------" - @printf io "%-8s %-20s %-20s %-20s\n" "Iter" "f(u) inf-norm" "Step 2-norm" "cond(J)" + if nType === :L2 + @printf io "%-8s %-20s %-20s %-20s\n" "Iter" "f(u) 2-norm" "Step 2-norm" "cond(J)" + else + @printf io "%-8s %-20s %-20s %-20s\n" "Iter" "f(u) inf-norm" "Step 2-norm" "cond(J)" + end @printf io "%-8s %-20s %-20s %-20s\n" "----" "-------------" "-----------" "-------" end end -function Base.show(io::IO, entry::NonlinearSolveTraceEntry) +function Base.show(io::IO, entry::NonlinearSolveTraceEntry{nType}) where {nType} entry.iteration == 0 && __show_top_level(io, entry) if entry.iteration < 0 # Special case for final entry @@ -89,18 +97,24 @@ function Base.show(io::IO, entry::NonlinearSolveTraceEntry) return nothing end -function NonlinearSolveTraceEntry(iteration, fu, δu) - return NonlinearSolveTraceEntry( - iteration, norm(fu, Inf), norm(δu, 2), nothing, nothing, nothing, nothing, nothing) +function NonlinearSolveTraceEntry(prob::AbstractNonlinearProblem, iteration, fu, δu) + nType = ifelse(prob isa NonlinearLeastSquaresProblem, :L2, :Inf) + fnorm = prob isa NonlinearLeastSquaresProblem ? norm(fu, 2) : norm(fu, Inf) + return NonlinearSolveTraceEntry{nType}( + iteration, fnorm, norm(δu, 2), nothing, nothing, nothing, nothing, nothing) end -function NonlinearSolveTraceEntry(iteration, fu, δu, J) - return NonlinearSolveTraceEntry(iteration, norm(fu, Inf), norm(δu, 2), +function NonlinearSolveTraceEntry(prob::AbstractNonlinearProblem, iteration, fu, δu, J) + nType = ifelse(prob isa NonlinearLeastSquaresProblem, :L2, :Inf) + fnorm = prob isa NonlinearLeastSquaresProblem ? norm(fu, 2) : norm(fu, Inf) + return NonlinearSolveTraceEntry{nType}(iteration, fnorm, norm(δu, 2), __cond(J), nothing, nothing, nothing, nothing) end -function NonlinearSolveTraceEntry(iteration, fu, δu, J, u) - return NonlinearSolveTraceEntry(iteration, norm(fu, Inf), norm(δu, 2), __cond(J), +function NonlinearSolveTraceEntry(prob::AbstractNonlinearProblem, iteration, fu, δu, J, u) + nType = ifelse(prob isa NonlinearLeastSquaresProblem, :L2, :Inf) + fnorm = prob isa NonlinearLeastSquaresProblem ? norm(fu, 2) : norm(fu, Inf) + return NonlinearSolveTraceEntry{nType}(iteration, fnorm, norm(δu, 2), __cond(J), __copy(J), __copy(u), __copy(fu), __copy(δu)) end @@ -108,6 +122,7 @@ end show_trace, store_trace, Tr <: AbstractNonlinearSolveTraceLevel} history trace_level::Tr + prob end function reset!(trace::NonlinearSolveTrace) @@ -123,44 +138,44 @@ function Base.show(io::IO, trace::NonlinearSolveTrace) return nothing end -function init_nonlinearsolve_trace(alg, u, fu, J, δu; show_trace::Val = Val(false), +function init_nonlinearsolve_trace(prob, alg, u, fu, J, δu; show_trace::Val = Val(false), trace_level::AbstractNonlinearSolveTraceLevel = TraceMinimal(), store_trace::Val = Val(false), uses_jac_inverse = Val(false), kwargs...) return init_nonlinearsolve_trace( - alg, show_trace, trace_level, store_trace, u, fu, J, δu, uses_jac_inverse) + prob, alg, show_trace, trace_level, store_trace, u, fu, J, δu, uses_jac_inverse) end -function init_nonlinearsolve_trace( - alg, ::Val{show_trace}, trace_level::AbstractNonlinearSolveTraceLevel, - ::Val{store_trace}, u, fu, J, δu, - ::Val{uses_jac_inverse}) where {show_trace, store_trace, uses_jac_inverse} +function init_nonlinearsolve_trace(prob::AbstractNonlinearProblem, alg, ::Val{show_trace}, + trace_level::AbstractNonlinearSolveTraceLevel, ::Val{store_trace}, u, fu, J, + δu, ::Val{uses_jac_inverse}) where {show_trace, store_trace, uses_jac_inverse} if show_trace print("\nAlgorithm: ") Base.printstyled(alg, "\n\n"; color = :green, bold = true) end J_ = uses_jac_inverse ? (trace_level isa TraceMinimal ? J : __safe_inv(J)) : J history = __init_trace_history( - Val{show_trace}(), trace_level, Val{store_trace}(), u, fu, J_, δu) - return NonlinearSolveTrace{show_trace, store_trace}(history, trace_level) + prob, Val{show_trace}(), trace_level, Val{store_trace}(), u, fu, J_, δu) + return NonlinearSolveTrace{show_trace, store_trace}(history, trace_level, prob) end -function __init_trace_history(::Val{show_trace}, trace_level, ::Val{store_trace}, - u, fu, J, δu) where {show_trace, store_trace} +function __init_trace_history( + prob::AbstractNonlinearProblem, ::Val{show_trace}, trace_level, + ::Val{store_trace}, u, fu, J, δu) where {show_trace, store_trace} !store_trace && !show_trace && return nothing - entry = __trace_entry(trace_level, 0, u, fu, J, δu) + entry = __trace_entry(prob, trace_level, 0, u, fu, J, δu) show_trace && show(entry) store_trace && return NonlinearSolveTraceEntry[entry] return nothing end -function __trace_entry(::TraceMinimal, iter, u, fu, J, δu, α = 1) - return NonlinearSolveTraceEntry(iter, fu, δu .* α) +function __trace_entry(prob, ::TraceMinimal, iter, u, fu, J, δu, α = 1) + return NonlinearSolveTraceEntry(prob, iter, fu, δu .* α) end -function __trace_entry(::TraceWithJacobianConditionNumber, iter, u, fu, J, δu, α = 1) - return NonlinearSolveTraceEntry(iter, fu, δu .* α, J) +function __trace_entry(prob, ::TraceWithJacobianConditionNumber, iter, u, fu, J, δu, α = 1) + return NonlinearSolveTraceEntry(prob, iter, fu, δu .* α, J) end -function __trace_entry(::TraceAll, iter, u, fu, J, δu, α = 1) - return NonlinearSolveTraceEntry(iter, fu, δu .* α, J, u) +function __trace_entry(prob, ::TraceAll, iter, u, fu, J, δu, α = 1) + return NonlinearSolveTraceEntry(prob, iter, fu, δu .* α, J, u) end function update_trace!(trace::NonlinearSolveTrace{ShT, StT}, iter, u, fu, J, δu, @@ -168,8 +183,10 @@ function update_trace!(trace::NonlinearSolveTrace{ShT, StT}, iter, u, fu, J, δu !StT && !ShT && return nothing if L - entry = NonlinearSolveTraceEntry( - -1, norm(fu, Inf), NaN32, nothing, nothing, nothing, nothing, nothing) + nType = ifelse(trace.prob isa NonlinearLeastSquaresProblem, :L2, :Inf) + fnorm = trace.prob isa NonlinearLeastSquaresProblem ? norm(fu, 2) : norm(fu, Inf) + entry = NonlinearSolveTraceEntry{nType}( + -1, fnorm, NaN32, nothing, nothing, nothing, nothing, nothing) ShT && show(entry) return trace end @@ -177,7 +194,7 @@ function update_trace!(trace::NonlinearSolveTrace{ShT, StT}, iter, u, fu, J, δu show_now = ShT && (mod1(iter, trace.trace_level.print_frequency) == 1) store_now = StT && (mod1(iter, trace.trace_level.store_frequency) == 1) (show_now || store_now) && - (entry = __trace_entry(trace.trace_level, iter, u, fu, J, δu, α)) + (entry = __trace_entry(trace.prob, trace.trace_level, iter, u, fu, J, δu, α)) store_now && push!(trace.history, entry) show_now && show(entry) return trace diff --git a/test/core/forward_ad_tests.jl b/test/core/forward_ad_tests.jl index 24258e157..46034d844 100644 --- a/test/core/forward_ad_tests.jl +++ b/test/core/forward_ad_tests.jl @@ -79,7 +79,6 @@ end gs = abs.(ForwardDiff.derivative(solve_with(Val{mode}(), u0, alg), p)) gs_true = abs.(jacobian_f(u0, p)) if !(isapprox(gs, gs_true, atol = 1e-5)) - @show sol.retcode, sol.u @error "ForwardDiff Failed for u0=$(u0) and p=$(p) with $(alg)" forwardiff_gradient=gs true_gradient=gs_true else @test abs.(gs)≈abs.(gs_true) atol=1e-5 diff --git a/test/core/nlls_tests.jl b/test/core/nlls_tests.jl index 6b7b018cd..64ef9dea9 100644 --- a/test/core/nlls_tests.jl +++ b/test/core/nlls_tests.jl @@ -6,11 +6,11 @@ using Reexport true_function(x, θ) = @. θ[1] * exp(θ[2] * x) * cos(θ[3] * x + θ[4]) true_function(y, x, θ) = (@. y = θ[1] * exp(θ[2] * x) * cos(θ[3] * x + θ[4])) -θ_true = [1.0, 0.1, 2.0, 0.5] +const θ_true = [1.0, 0.1, 2.0, 0.5] -x = [-1.0, -0.5, 0.0, 0.5, 1.0] +const x = [-1.0, -0.5, 0.0, 0.5, 1.0] -y_target = true_function(x, θ_true) +const y_target = true_function(x, θ_true) function loss_function(θ, p) ŷ = true_function(p, θ) @@ -23,7 +23,7 @@ function loss_function(resid, θ, p) return resid end -θ_init = θ_true .+ randn!(StableRNG(0), similar(θ_true)) * 0.1 +const θ_init = θ_true .+ randn!(StableRNG(0), similar(θ_true)) * 0.1 solvers = [] for linsolve in [nothing, LUFactorization(), KrylovJL_GMRES(), KrylovJL_LSMR()] @@ -56,9 +56,9 @@ end nlls_problems = [prob_oop, prob_iip] for prob in nlls_problems, solver in solvers - sol = solve(prob, solver; maxiters = 10000, abstol = 1e-8) + sol = solve(prob, solver; maxiters = 10000, abstol = 1e-6) @test SciMLBase.successful_retcode(sol) - @test maximum(abs, sol.resid) < 1e-6 + @test norm(sol.resid, 2) < 1e-6 end end @@ -90,8 +90,9 @@ end x)] for prob in probs, solver in solvers - sol = solve(prob, solver; maxiters = 10000, abstol = 1e-8) - @test maximum(abs, sol.resid) < 1e-6 + sol = solve(prob, solver; maxiters = 10000, abstol = 1e-6) + @test SciMLBase.successful_retcode(sol) + @test norm(abs, 2) < 1e-6 end end diff --git a/test/core/rootfind_tests.jl b/test/core/rootfind_tests.jl index 87ba7cd35..caa776d5a 100644 --- a/test/core/rootfind_tests.jl +++ b/test/core/rootfind_tests.jl @@ -120,7 +120,7 @@ end @test all(solve(probN, NewtonRaphson(; autodiff)).u .≈ sqrt(2.0)) end - @testset "Termination condition: $(termination_condition) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, + @testset "Termination condition: $(_nameof(termination_condition)) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, u0 in (1.0, [1.0, 1.0]) probN = NonlinearProblem(quadratic_f, u0, 2.0) @@ -238,7 +238,7 @@ end end end - @testset "Termination condition: $(termination_condition) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, + @testset "Termination condition: $(_nameof(termination_condition)) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, u0 in (1.0, [1.0, 1.0]) probN = NonlinearProblem(quadratic_f, u0, 2.0) @@ -324,7 +324,7 @@ end end end - @testset "Termination condition: $(termination_condition) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, + @testset "Termination condition: $(_nameof(termination_condition)) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, u0 in (1.0, [1.0, 1.0]) probN = NonlinearProblem(quadratic_f, u0, 2.0) @@ -395,7 +395,7 @@ end end end - @testset "Termination condition: $(termination_condition) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, + @testset "Termination condition: $(_nameof(termination_condition)) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, u0 in (1.0, [1.0, 1.0]) probN = NonlinearProblem(quadratic_f, u0, 2.0) @@ -462,7 +462,7 @@ end sqrt(2.0)) end - @testset "Termination condition: $(termination_condition) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, + @testset "Termination condition: $(_nameof(termination_condition)) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, u0 in (1.0, [1.0, 1.0]) probN = NonlinearProblem(quadratic_f, u0, 2.0) @@ -514,7 +514,7 @@ end @test nlprob_iterator_interface(quadratic_f, p, Val(false), Broyden()) ≈ sqrt.(p) @test nlprob_iterator_interface(quadratic_f!, p, Val(true), Broyden()) ≈ sqrt.(p) - @testset "Termination condition: $(termination_condition) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, + @testset "Termination condition: $(_nameof(termination_condition)) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, u0 in (1.0, [1.0, 1.0]) probN = NonlinearProblem(quadratic_f, u0, 2.0) @@ -563,7 +563,7 @@ end @test nlprob_iterator_interface(quadratic_f, p, Val(false), Klement()) ≈ sqrt.(p) @test nlprob_iterator_interface(quadratic_f!, p, Val(true), Klement()) ≈ sqrt.(p) - @testset "Termination condition: $(termination_condition) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, + @testset "Termination condition: $(_nameof(termination_condition)) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, u0 in (1.0, [1.0, 1.0]) probN = NonlinearProblem(quadratic_f, u0, 2.0) @@ -613,7 +613,7 @@ end @test nlprob_iterator_interface( quadratic_f!, p, Val(true), LimitedMemoryBroyden())≈sqrt.(p) atol=1e-2 - @testset "Termination condition: $(termination_condition) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, + @testset "Termination condition: $(_nameof(termination_condition)) u0: $(_nameof(u0))" for termination_condition in TERMINATION_CONDITIONS, u0 in (1.0, [1.0, 1.0]) probN = NonlinearProblem(quadratic_f, u0, 2.0)