diff --git a/Project.toml b/Project.toml index d63cf5913..11fb4ef68 100644 --- a/Project.toml +++ b/Project.toml @@ -15,6 +15,7 @@ Reexport = "189a3867-3050-52da-a836-e630ba90ab69" SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" SimpleNonlinearSolve = "727e6d20-b764-4bd8-a329-72de5adea6c7" SnoopPrecompile = "66db9d55-30c0-4569-8b51-7e840670fc0c" +SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" SparseDiffTools = "47a9eef4-7e08-11e9-0b38-333d64bd3804" StaticArraysCore = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" UnPack = "3a884ed6-31ef-47d7-9d2a-63182c4928ed" @@ -40,7 +41,8 @@ ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" +Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [targets] -test = ["BenchmarkTools", "SafeTestsets", "Pkg", "Test", "ForwardDiff", "StaticArrays"] +test = ["BenchmarkTools", "SafeTestsets", "Pkg", "Test", "ForwardDiff", "StaticArrays", "Symbolics"] diff --git a/test/runtests.jl b/test/runtests.jl index 7269ed6bf..37b9957e7 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -9,4 +9,5 @@ const is_APPVEYOR = Sys.iswindows() && haskey(ENV, "APPVEYOR") if GROUP == "All" || GROUP == "Core" @time @safetestset "Basic Tests + Some AD" begin include("basictests.jl") end + @time @safetestset "Sparsity Tests" begin include("sparse.jl") end end end diff --git a/test/sparse.jl b/test/sparse.jl new file mode 100644 index 000000000..24c16408a --- /dev/null +++ b/test/sparse.jl @@ -0,0 +1,43 @@ +using NonlinearSolve, LinearAlgebra, SparseArrays + +const N = 32 +const xyd_brusselator = range(0,stop=1,length=N) +brusselator_f(x, y) = (((x-0.3)^2 + (y-0.6)^2) <= 0.1^2) * 5. +limit(a, N) = a == N+1 ? 1 : a == 0 ? N : a +function brusselator_2d_loop(du, u, p) + A, B, alpha, dx = p + alpha = alpha/dx^2 + @inbounds for I in CartesianIndices((N, N)) + i, j = Tuple(I) + x, y = xyd_brusselator[I[1]], xyd_brusselator[I[2]] + ip1, im1, jp1, jm1 = limit(i+1, N), limit(i-1, N), limit(j+1, N), limit(j-1, N) + du[i,j,1] = alpha*(u[im1,j,1] + u[ip1,j,1] + u[i,jp1,1] + u[i,jm1,1] - 4u[i,j,1]) + + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] + brusselator_f(x, y) + du[i,j,2] = alpha*(u[im1,j,2] + u[ip1,j,2] + u[i,jp1,2] + u[i,jm1,2] - 4u[i,j,2]) + + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] + end +end +p = (3.4, 1., 10., step(xyd_brusselator)) + +function init_brusselator_2d(xyd) + N = length(xyd) + u = zeros(N, N, 2) + for I in CartesianIndices((N, N)) + x = xyd[I[1]] + y = xyd[I[2]] + u[I,1] = 22*(y*(1-y))^(3/2) + u[I,2] = 27*(x*(1-x))^(3/2) + end + u +end +u0 = init_brusselator_2d(xyd_brusselator) +prob_brusselator_2d = NonlinearProblem(brusselator_2d_loop,u0,p) +sol = solve(prob_brusselator_2d, NewtonRaphson()) + +using Symbolics +du0 = copy(u0) +jac_sparsity = Symbolics.jacobian_sparsity((du,u)->brusselator_2d_loop(du,u,p),du0,u0) + +f = NonlinearFunction(brusselator_2d_loop;jac_prototype=float.(jac_sparsity)) +prob_brusselator_2d = NonlinearProblem(f,u0,p) +sol = solve(prob_brusselator_2d, NewtonRaphson())