From 85857f517947e05daba66c72f3be3d168f1d8ceb Mon Sep 17 00:00:00 2001 From: Avik Pal Date: Sat, 9 Dec 2023 00:38:27 -0500 Subject: [PATCH] Add a tutorial demonstrating NLLS methods for ODE Parameter Estim --- docs/Project.toml | 1 + docs/pages.jl | 3 +- .../tutorials/optimizing_parameterized_ode.md | 76 +++++++++++++++++++ 3 files changed, 79 insertions(+), 1 deletion(-) create mode 100644 docs/src/tutorials/optimizing_parameterized_ode.md diff --git a/docs/Project.toml b/docs/Project.toml index 573533e21..d87833c7d 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -9,6 +9,7 @@ LinearSolve = "7ed4a6bd-45f5-4d41-b270-4a48e9bafcae" ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78" NonlinearSolve = "8913a72c-1f9b-4ce2-8d82-65094dcecaec" OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" +Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" SimpleNonlinearSolve = "727e6d20-b764-4bd8-a329-72de5adea6c7" diff --git a/docs/pages.jl b/docs/pages.jl index e9999c82c..8552f3d19 100644 --- a/docs/pages.jl +++ b/docs/pages.jl @@ -6,7 +6,8 @@ pages = ["index.md", "tutorials/large_systems.md", "tutorials/modelingtoolkit.md", "tutorials/small_compile.md", - "tutorials/iterator_interface.md"], + "tutorials/iterator_interface.md", + "tutorials/optimizing_parameterized_ode.md",], "Basics" => Any["basics/NonlinearProblem.md", "basics/NonlinearFunctions.md", "basics/solve.md", diff --git a/docs/src/tutorials/optimizing_parameterized_ode.md b/docs/src/tutorials/optimizing_parameterized_ode.md new file mode 100644 index 000000000..44ba65eb5 --- /dev/null +++ b/docs/src/tutorials/optimizing_parameterized_ode.md @@ -0,0 +1,76 @@ +# [Optimizing a Parameterized ODE](@id optimizing-parameterized-ode) + +Let us fit a parameterized ODE to some data. We will use the Lotka-Volterra model as an +example. We will use Single Shooting to fit the parameters. + +```@example parameterized_ode +using OrdinaryDiffEq, NonlinearSolve, Plots +``` + +Let us simulate some real data from the Lotka-Volterra model. + +```@example parameterized_ode +function lotka_volterra!(du, u, p, t) + x, y = u + α, β, δ, γ = p + du[1] = dx = α * x - β * x * y + du[2] = dy = -δ * y + γ * x * y +end + +# Initial condition +u0 = [1.0, 1.0] + +# Simulation interval and intermediary points +tspan = (0.0, 2.0) +tsteps = 0.0:0.1:10.0 + +# LV equation parameter. p = [α, β, δ, γ] +p = [1.5, 1.0, 3.0, 1.0] + +# Setup the ODE problem, then solve +prob = ODEProblem(lotka_volterra!, u0, tspan, p) +sol = solve(prob, Tsit5(); saveat = tsteps) + +# Plot the solution +using Plots +plot(sol; linewidth = 3) +savefig("LV_ode.png") +``` + +Let us now formulate the parameter estimation as a Nonlinear Least Squares Problem. + +```@example parameterized_ode +function loss_function(ode_param, data) + sol = solve(prob, Tsit5(); p = ode_param, saveat = tsteps) + return vec(reduce(hcat, sol.u)) .- data +end + +p_init = zeros(4) + +nlls_prob = NonlinearLeastSquaresProblem(loss_function, p_init, vec(reduce(hcat, sol.u))) +``` + +Now, we can use any NLLS solver to solve this problem. + +```@example parameterized_ode +res = solve(nlls_prob, LevenbergMarquardt(); maxiters = 1000, show_trace = Val(true), + trace_level = TraceAll()) +``` + +We can also use Trust Region methods. + +```@example parameterized_ode +res = solve(nlls_prob, TrustRegion(); maxiters = 1000, show_trace = Val(true), + trace_level = TraceAll()) +``` + +Let's plot the solution. + +```@example parameterized_ode +prob2 = remake(prob; tspan = (0.0, 10.0)) +sol_fit = solve(prob2, Tsit5(); p = res.u) +sol_true = solve(prob2, Tsit5(); p = p) +plot(sol_true; linewidth = 3) +plot!(sol_fit; linewidth = 3, linestyle = :dash) +savefig("LV_ode_fit.png") +```